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Aerospace Blockset Product Description
Model, simulate, and analyze aerospace vehicle dynamics

Aerospace Blockset provides Simulink® reference examples and blocks for modeling, simulating, and
analyzing high-fidelity aircraft and spacecraft platforms. It includes vehicle dynamics, validated
models of the flight environment, and blocks for pilot behavior, actuator dynamics, and propulsion.
Built-in aerospace math operations and coordinate system and spatial transformations let you
represent aircraft and spacecraft motion and orientation. To examine simulation results, you can
connect 2D and 3D visualization blocks to your model.

Aerospace Blockset provides standard model architectures for building reusable vehicle platform
models. These platform models can support flight and mission analysis; conceptual studies; detailed
mission design; guidance, navigation, and control (GNC) algorithm development; software integration
testing; and hardware-in-the-loop (HIL) testing for applications in autonomous flight, radar, and
communications.
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Code Generation Support
Use the Aerospace Blockset software with the Simulink Coder software to automatically generate
code for real-time execution in rapid prototyping and for hardware-in-the-loop systems.
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Support for Aerospace Toolbox Quaternion Functions
The Aerospace Blockset product supports the following Aerospace Toolbox quaternion functions in
the MATLAB Function block:
quatconj
quatinv
quatmod
quatmultiply
quatdivide
quatnorm
quatnormalize

For further information on using the MATLAB Function block, see:

• “Implement MATLAB Functions in Simulink with MATLAB Function Blocks”
• asbQuatEML example, which illustrates quaternions and models the equations
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Explore the NASA HL-20 Model
In this section...
“Introduction” on page 1-5
“What This Example Illustrates” on page 1-5
“Open the Model” on page 1-5
“Key Subsystems” on page 1-7
“NASA HL-20 Example” on page 1-8
“Modify the Model” on page 1-10

Introduction
This section introduces a NASA HL-20 lifting body airframe model that uses blocks from the
Aerospace Blockset software to simulate the airframe of a NASA HL-20 lifting body, in conjunction
with other Simulink blocks.

The model simulates the NASA HL-20 lifting body airframe approach and landing flight phases using
an automatic-landing controller.

For more information on this model, see “NASA HL-20 Lifting Body Airframe” on page 3-14.

What This Example Illustrates
The NASA HL-20 lifting body airframe example illustrates the following features of the blockset:

• Representing bodies and their degrees of freedom with the Equations of Motion library blocks
• Using the Aerospace Blockset blocks with other Simulink blocks
• Feeding Simulink signals to and from Aerospace Blockset blocks with Actuator and Sensor blocks
• Encapsulating groups of blocks into subsystems
• Visualizing an aircraft with Simulink 3D Animation™ and Aerospace Blockset Flight Instrument

library blocks.

Open the Model
To open the NASA HL-20 airframe example, type the example name, aeroblk_HL20, at the
MATLAB® command line. The model opens.
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The visualization subsystem, multiple scopes, and a Simulink 3D Animation viewer for the airframe
might also appear.

1 Getting Started

1-6



Key Subsystems
The model implements the airframe using the following subsystems:
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• The 6DOF (Euler Angles) subsystem implements the 6DOF (Euler Angles) block along with other
Simulink blocks.

• The Environment Models subsystem implements the WGS84 Gravity Model and COESA
Atmosphere Model blocks. It also contains a Wind Models subsystem that implements a number of
wind blocks.

• The Alpha, Beta, Mach subsystem implements the Incidence, Sideslip, & Airspeed, Mach Number,
and Dynamic Pressure blocks. These blocks calculate aerodynamic coefficient values and lookup
functionality.

• The Forces and Moments subsystem implements the Aerodynamic Forces and Moments block.
This subsystem calculates body forces and body moments.

• The Aerodynamic Coefficients subsystem implements several subsystems to calculate six
aerodynamic coefficients.

NASA HL-20 Example
Running an example lets you observe the model simulation in real time. After you run the example,
you can examine the resulting data in plots, graphs, and other visualization tools. To run this model,
follow these steps:

1 If it is not already open, open the aeroblk_HL20 example.
2 In the Simulink Editor, from the Simulation tab, select Run.

The simulation proceeds until the aircraft lands:

View of the landed airframe
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Plot that Measures Guidance Performance

Plot that Measures Altitude Accelerations Mach
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Plot that Measures Inertial Position

Plot that Measures Demand Data Against Achieved Data

Modify the Model
You can adjust the airframe model settings and examine the effects on simulation performance. Here
is one modification that you can try. It changes the camera point of view for the landing animation.

Change the Animation Point of View

By default, the airframe animation viewpoint is Rear position, which means the view tracks with
the airframe flight path from the rear. You can change the animation point of view by selecting
another viewpoint from the Simulink 3D Animation viewer:

1 Open the aeroblk_HL20 model, and click the Simulink 3D Animation viewer.
2 From the list of existing viewpoints, change the viewpoint to Fixed Position.
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The airframe view changes to a fixed position.
3 Start the model again. Notice the different airframe viewpoint when the airframe lands.

You can experiment with different viewpoints to watch the animation from different perspectives.

See Also
6DOF (Euler Angles) | Incidence, Sideslip, & Airspeed | Mach Number | Dynamic Pressure |
Aerodynamic Forces and Moments
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Related Examples
• “Flight Instrument Gauges” on page 2-49
• “Simulink 3D Animation Viewer” (Simulink 3D Animation)
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Aerospace Blockset Software

• “Create Aerospace Models” on page 2-2
• “About Aerospace Coordinate Systems” on page 2-7
• “Visualization Tools” on page 2-15
• “Flight Simulator Interface” on page 2-19
• “Work with the Flight Simulator Interface” on page 2-23
• “Unreal Engine Simulation Environment Requirements and Limitations” on page 2-36
• “Acknowledgements” on page 2-38
• “How 3D Simulation for Aerospace Blockset Works” on page 2-39
• “Visualize with Cesium” on page 2-41
• “Projects Template for Flight Simulation Applications” on page 2-45
• “Flight Instrument Gauges” on page 2-49
• “Display Measurements with Cockpit Instruments” on page 2-50
• “Programmatically Interact with Gauge Band Colors” on page 2-52
• “Calculate UT1 to UTC Values” on page 2-54
• “Analyze Dynamic Response and Flying Qualities of Aerospace Vehicles” on page 2-56
• “Model Spacecraft” on page 2-62
• “Model and Simulate CubeSats” on page 2-64

2



Create Aerospace Models
In this section...
“Basic Steps” on page 2-2
“Build a Simple Actuator System” on page 2-3
“Create a Model” on page 2-3
“Run the Simulation” on page 2-6
“Access Aerospace Examples” on page 2-6

Basic Steps
Regardless of the model complexity, you use the same essential steps for creating an aerospace model
as you would for creating any other Simulink model.

1 Open the Aerospace Blockset Library. You can access this library through the Simulink Library
Browser or directly open the Aerospace Blockset window from the MATLAB command line:

aerolib 

Double-click any library in the window to display its contents. This figure shows the Aerospace
Blockset library window.

2 Select and position the blocks. You must first select the blocks that you need to build your model,
and then position the blocks in the model window. For the majority of Simulink models, you select
one or more blocks from each of these categories:

a Source blocks generate or import signals into the model, such as a sine wave, a clock, or
limited-band white noise.

b Simulation blocks can consist of almost any type of block that performs an action in the
simulation. A simulation block represents a part of the model functionality to be simulated,
such as an actuator block, a mathematical operation, a block from the Aerospace Blockset
library, and so on.

c Signal Routing blocks route signals from one point in a model to another. If you need to
combine or redirect two or more signals in your model, you will probably use a Simulink
Signal Routing block, such as Mux and Demux.
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As an alternative to the Mux block, consider the Vector option of the Vector Concatenate
block Mode parameter. This block provides a more general way for you to route signals from
one point in a model to another. The Vector mode takes as input a vector of signals of the
same data type and creates a contiguous output signal. Depending on the input, this block
outputs a row or column vector if any of the inputs are row or column vectors, respectively.

d Sink blocks display, write, or save model output. To see the results of the simulation, you
must use a Sink block.

3 Configure the blocks. Most blocks feature configuration options that let you customize block
functionality to specific simulation parameters. For example, the ISA Atmosphere Model block
provides configuration options for setting the height of the troposphere, tropopause, and air
density at sea level.

4 Connect the blocks. To create signal pathways between blocks, you connect the blocks to each
other. You can do this manually by clicking and dragging, or you can connect blocks
automatically.

5 Encapsulate subsystems. Systems made with Aerospace Blockset blocks can function as
subsystems of larger, more complex models, like subsystems in any Simulink model.

Build a Simple Actuator System
The Simulink product is a software environment for modeling, simulating, and analyzing dynamic
systems. Try building a simple model that drives an actuator with a sine wave and displays the
actuator's position superimposed on the sine wave.

Note If you prefer to open the complete model shown below instead of building it, enter
aeroblktutorial at the MATLAB command line.

The “Create a Model” on page 2-3 sections explains how to build a model on Windows® platforms.
You can use this same procedure to build a model on Linux® platforms.

The section describes how to build the model. It does not describe how to set the configuration
parameters for the model. See “Set Model Configuration Parameters for a Model”. That topic
describes the Configuration Parameters dialog box for models. If you do not set any configuration
parameters, simulating models might cause warnings like:

Warning: Using a default value of 0.2 for maximum step size.  
The simulation step size will be equal to or less than this 
value.  You can disable this diagnostic by setting 
'Automatic solver parameter selection' diagnostic to 'none' 
in the Diagnostics page of the configuration parameters 
dialog 

Create a Model
To create a new blank model and open the Simulink library browser:
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1 On the MATLAB Home tab, click Simulink. In the Simulink start page, click the Blank Model
template, and then click Create Model.

2 To open the Library Browser, click the browser button.
3 Add a Sine Wave block to the model.

a Click Sources in the Library Browser to view the blocks in the Simulink Sources library.
b Drag the Sine Wave block from the Sources library into the new model window.

4 Add a Linear Second-Order Actuator block to the model.

a
Click the  symbol next to Aerospace Blockset in the Library Browser to expand the
hierarchical list of the aerospace blocks.

b In the expanded list, click Actuators to view the blocks in the Actuator library.
c Drag the Linear Second-Order Actuator block into the model window.

5 Add a Mux block to the model.

a Click Signal Routing in the Library Browser to view the blocks in the Simulink Signals &
Systems library.

b Drag the Mux block from the Signal Routing library into the model window.
6 Add a Scope block to the model.

a Click Sinks in the Library Browser to view the blocks in the Simulink Sinks library.
b Drag the Scope block from the Sinks library into the model window.

7 Resize the Mux block in the model.

a Click the Mux block to select the block.
b Hold down the mouse button and drag a corner of the Mux block to change the size of the

block.
8 Connect the blocks.

a Position the pointer near the output port of the Sine Wave block. Hold down the mouse
button and drag the line that appears until it touches the input port of the Linear Second-
Order Actuator block. Release the mouse button.

b Using the same technique, connect the output of the Linear Second-Order Actuator block to
the second input port of the Mux block.

c Using the same technique, connect the output of the Mux block to the input port of the
Scope block.

d Position the pointer near the first input port of the Mux block. Hold down the mouse button
and drag the line that appears over the line from the output port of the Sine Wave block until
double crosshairs appear. Release the mouse button. The lines are connected when a knot is
present at their intersection.

9 Set the block parameters.

a Double-click the Sine Wave block. The dialog box that appears allows you to set the block's
parameters.

For this example, configure the block to generate a 10 rad/s sine wave by entering 10 for the
Frequency parameter. The sinusoid has the default amplitude of 1 and phase of 0 specified
by the Amplitude and Phase offset parameters.
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b Click OK.

c Double-click the Linear Second-Order Actuator block.

In this example, the actuator has the default natural frequency of 150 rad/s, a damping ratio
of 0.7, and an initial position of 0 radians specified by the Natural frequency, Damping
ratio, and Initial position parameters.

d Click OK.
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Run the Simulation
You can now run the model that you built to see how the system behaves in time:

1 Double-click the Scope block if the Scope window is not already open on your screen. The Scope
window appears.

2 Select Run from the Simulation menu in the model window. The signal containing the 10 rad/s
sinusoid and the signal containing the actuator position are plotted on the scope.

3 Adjust the Scope block's display. While the simulation is running, right-click the y-axis of the
scope and select Autoscale. The vertical range of the scope is adjusted to better fit the signal.

4 Vary the Sine Wave block parameters.

a While the simulation is running, double-click the Sine Wave block to open its parameter
dialog box.

b You can then change the frequency of the sinusoid. Try entering 1 or 20 in the Frequency
field. Close the Sine Wave dialog box to enter your change. You can then observe the
changes on the scope.

5 Select Stop from the Simulation menu to stop the simulation.

Many parameters cannot be changed while a simulation is running. This is usually the case for
parameters that directly or indirectly alter a signal's dimensions or sample rate. However, there are
some parameters, like the Sine Wave Frequency parameter, that you can tune without stopping the
simulation.

Run a Simulation from a Script

You can also modify and run a Simulink simulation from a script. By doing this, you can automate the
variation of model parameters to explore a large number of simulation conditions rapidly and
efficiently. For information on how to do this, see “Run Simulations Programmatically”.

Access Aerospace Examples
To access an Aerospace Blockset example:

1 Open the MATLAB Command Window.
2 Click the question mark.
3 Navigate to Aerospace Blockset and click the Examples tab.

See Also
Linear Second-Order Actuator

Related Examples
• “Run Simulations Programmatically”
• “Ideal Airspeed Correction” on page 3-2
• “1903 Wright Flyer” on page 3-7
• “NASA HL-20 Lifting Body Airframe” on page 3-14
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About Aerospace Coordinate Systems
In this section...
“Fundamental Coordinate System Concepts” on page 2-7
“Coordinate Systems for Modeling” on page 2-8
“Body Coordinates” on page 2-8
“Wind Coordinates” on page 2-9
“Coordinate Systems for Navigation” on page 2-10
“Coordinate Systems for Display” on page 2-12

Fundamental Coordinate System Concepts
Coordinate systems allow you to keep track of an aircraft or spacecraft position and orientation in
space. The Aerospace Blockset coordinate systems are based on these underlying concepts from
geodesy, astronomy, and physics.

Definitions

The blockset uses right-handed (RH) Cartesian coordinate systems. The right-hand rule establishes
the x-y-z sequence of coordinate axes.

An inertial frame is a nonaccelerating motion reference frame. In an inertial frame, Newton's second
law holds: force = mass x acceleration. Loosely speaking, acceleration is defined with respect to the
distant cosmos, and an inertial frame is often said to be nonaccelerated with respect to the fixed
stars. Because the Earth and stars move so slowly with respect to one another, this assumption is a
very accurate approximation.

Strictly defined, an inertial frame is a member of the set of all frames not accelerating relative to one
another. A noninertial frame is any frame accelerating relative to an inertial frame. Its acceleration,
in general, includes both translational and rotational components, resulting in pseudoforces
(pseudogravity, as well as Coriolis and centrifugal forces).

The blockset models the Earth shape (the geoid) as an oblate spheroid, a special type of ellipsoid with
two longer axes equal (defining the equatorial plane) and a third, slightly shorter (geopolar) axis of
symmetry. The equator is the intersection of the equatorial plane and the Earth surface. The
geographic poles are the intersection of the Earth surface and the geopolar axis. In general, the
Earth geopolar and rotation axes are not identical.

Latitudes parallel the equator. Longitudes parallel the geopolar axis. The zero longitude or prime
meridian passes through Greenwich, England.

Approximations

The blockset makes three standard approximations in defining coordinate systems relative to the
Earth.

• The Earth surface or geoid is an oblate spheroid, defined by its longer equatorial and shorter
geopolar axes. In reality, the Earth is slightly deformed with respect to the standard geoid.

• The Earth rotation axis and equatorial plane are perpendicular, so that the rotation and geopolar
axes are identical. In reality, these axes are slightly misaligned, and the equatorial plane wobbles
as the Earth rotates. This effect is negligible in most applications.
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• The only noninertial effect in Earth-fixed coordinates is due to the Earth rotation about its axis.
This is a rotating, geocentric system. The blockset ignores the Earth acceleration around the Sun,
the Sun acceleration in the Galaxy, and the Galaxy acceleration through the cosmos. In most
applications, only the Earth rotation matters.

This approximation must be changed for spacecraft sent into deep space, such as outside the
Earth-Moon system, and a heliocentric system is preferred.

Passive Transformations

All quaternions in Aerospace Blockset are passive transformations. In a passive transformation, the
vector is unchanged and the coordinate system in which it is defined is rotated. For more information
on transformations, see Active and passive transformations.

Motion with Respect to Other Planets

The blockset uses the standard WGS-84 geoid to model the Earth. You can change the equatorial axis
length, the flattening, and the rotation rate.

You can represent the motion of spacecraft with respect to any celestial body that is well
approximated by an oblate spheroid by changing the spheroid size, flattening, and rotation rate. If the
celestial body is rotating westward (retrogradely), make the rotation rate negative.

Coordinate Systems for Modeling
Modeling aircraft and spacecraft is simplest if you use a coordinate system fixed in the body itself. In
the case of aircraft, the forward direction is modified by the presence of wind, and the craft motion
through the air is not the same as its motion relative to the ground.

See “Equations of Motion” for further details on how the blockset implements body and wind
coordinates.

Body Coordinates
The noninertial body coordinate system is fixed in both origin and orientation to the moving craft. The
craft is assumed to be rigid.

The orientation of the body coordinate axes is fixed in the shape of body.

• The x-axis points through the nose of the craft.
• The y-axis points to the right of the x-axis (facing in the pilot's direction of view), perpendicular to

the x-axis.
• The z-axis points down through the bottom the craft, perpendicular to the xy plane and satisfying

the RH rule.

Translational Degrees of Freedom

Translations are defined by moving along these axes by distances x, y, and z from the origin.

Rotational Degrees of Freedom

Rotations are defined by the Euler angles P, Q, R or Φ, Θ, Ψ. They are:
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P or Φ Roll about the x-axis
Q or Θ Pitch about the y-axis
R or Ψ Yaw about the z-axis

Unless otherwise specified, by default the software uses ZYX rotation order for Euler angles.

Wind Coordinates
The noninertial wind coordinate system has its origin fixed in the rigid aircraft. The coordinate
system orientation is defined relative to the craft velocity V.

The orientation of the wind coordinate axes is fixed by the velocity V.

• The x-axis points in the direction of V.
• The y-axis points to the right of the x-axis (facing in the direction of V), perpendicular to the x-

axis.
• The z-axis points perpendicular to the xy plane in whatever way needed to satisfy the RH rule with

respect to the x- and y-axes.

Translational Degrees of Freedom

Translations are defined by moving along these axes by distances x, y, and z from the origin.

Rotational Degrees of Freedom

Rotations are defined by the Euler angles Φ, γ, χ:

Φ Bank angle about the x-axis
γ Flight path about the y-axis
χ Heading angle about the z-axis
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Unless otherwise specified, by default the software uses ZYX rotation order for Euler angles.

Coordinate Systems for Navigation
Modeling aerospace trajectories requires positioning and orienting the aircraft or spacecraft with
respect to the rotating Earth. Navigation coordinates are defined with respect to the center and
surface of the Earth.

Geocentric and Geodetic Latitudes

The geocentric latitude λ on the Earth surface is defined by the angle subtended by the radius vector
from the Earth center to the surface point with the equatorial plane.

The geodetic latitude µ on the Earth surface is defined by the angle subtended by the surface normal
vector n and the equatorial plane.

NED Coordinates

The north-east-down (NED) system is a noninertial system with its origin fixed at the aircraft or
spacecraft center of gravity. Its axes are oriented along the geodetic directions defined by the Earth
surface.

• The x-axis points north parallel to the geoid surface, in the polar direction.
• The y-axis points east parallel to the geoid surface, along a latitude curve.
• The z-axis points downward, toward the Earth surface, antiparallel to the surface outward normal
n.
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Flying at a constant altitude means flying at a constant z above the Earth surface.

ECI Coordinates

The Earth-centered inertial (ECI) system is non-rotating. For most applications, assume this frame to
be inertial, although the equinox and equatorial plane move very slightly over time. The ECI system is
considered to be truly inertial for high-precision orbit calculations when the equator and equinox are
defined at a particular epoch (e.g. J2000). Aerospace functions and blocks that use a particular
realization of the ECI coordinate system provide that information in their documentation. The ECI
system origin is fixed at the center of the Earth (see figure).

• The x-axis points towards the vernal equinox (First Point of Aries ♈).
• The y-axis points 90 degrees to the east of the x-axis in the equatorial plane.
• The z-axis points northward along the Earth rotation axis.
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Earth-Centered Coordinates

ECEF Coordinates

The Earth-center, Earth-fixed (ECEF) system is noninertial and rotates with the Earth. Its origin is
fixed at the center of the Earth (see preceding figure).

• The x′-axis points towards the intersection of Earth equatorial plane and the Greenwich Meridian.
• The y′-axis points 90 degrees to the east of the x’-axis in the equatorial plane.
• The z′-axis points northward along the Earth rotation axis.

Coordinate Systems for Display
Several display tools are available for use with the Aerospace Blockset product. Each has a specific
coordinate system for rendering motion.

MATLAB Graphics Coordinates

See the “Axes Appearance” for more information about the MATLAB Graphics coordinate axes.

MATLAB Graphics uses this default coordinate axis orientation:

• The x-axis points out of the screen.
• The y-axis points to the right.
• The z-axis points up.
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FlightGear Coordinates

FlightGear is an open-source, third-party flight simulator with an interface supported by the blockset.

• “Work with the Flight Simulator Interface” on page 2-23 discusses the blockset interface to
FlightGear.

• See the FlightGear documentation at www.flightgear.org for complete information about this
flight simulator.

The FlightGear coordinates form a special body-fixed system, rotated from the standard body
coordinate system about the y-axis by -180 degrees:

• The x-axis is positive toward the back of the vehicle.
• The y-axis is positive toward the right of the vehicle.
• The z-axis is positive upward, e.g., wheels typically have the lowest z values.

AC3D Coordinates

AC3D is a low-cost, widely used, geometry editor available from https://www.inivis.com/. Its
body-fixed coordinates are formed by inverting the three standard body coordinate axes:

• The x-axis is positive toward the back of the vehicle.
• The y-axis is positive upward, e.g., wheels typically have the lowest y values.
• The z-axis is positive to the left of the vehicle.

References
[1] Recommended Practice for Atmospheric and Space Flight Vehicle Coordinate Systems,

R-004-1992, ANSI/AIAA, February 1992.

[2] Rogers, R. M., Applied Mathematics in Integrated Navigation Systems, AIAA, Reston, Virginia,
2000.
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See Also

External Websites
• Office of Geomatics
• https://www.inivis.com/
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Visualization Tools
You can visualize stages of your Aerospace Blockset application using flight simulator, flight
instrument, aircraft scenario, and MATLABgraphics-based tools.

Flight Simulation Interface Blocks
Use flight simulator interface blocks to visualize flight paths using FlightGear and input FlightGear
data to models.

To use FlightGear to visualize flight paths, first install FlightGear software. For more information, see
“Flight Simulator Interface” on page 2-19. The Flight Simulator Interfaces sublibrary contains:

• FlightGear Preconfigured 6DoF Animation — Connect model to FlightGear flight simulator.
• Generate Run Script — Generate FlightGear run script on current platform.
• Pack net_fdm Packet for FlightGear — Generate net_fdm packet for FlightGear.
• Receive net_ctrl Packet from FlightGear — Receive net_ctrl packet from FlightGear.
• Send net_fdm Packet to FlightGear — Transmit net_fdm packet to destination IP address and port

for FlightGear session.
• Unpack net_ctrl Packet from FlightGear — Unpack net_ctrl variable packet received from

FlightGear.

Here is an example of the model in “HL-20 Project with Optional FlightGear Interface” on page 9-42.

Flight Instrument Blocks
Use blocks representing standard cockpit instruments to display flight status information from the
model. Each block graphically represents a cockpit instrument.

• Airspeed Indicator — Display measurements for aircraft airspeed
• Altimeter — Display measurements for aircraft altitude
• Artificial Horizon — Represent aircraft attitude relative to horizon
• Climb Rate Indicator — Display measurements for aircraft climb rate
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• Exhaust Gas Temperature (EGT) Indicator — Display measurements for engine exhaust gas
temperature (EGT)

• Heading Indicator — Display measurements for aircraft heading
• Revolutions Per Minute (RPM) Indicator — Display measurements for engine revolutions per

minute (RPM) in percentage of RPM
• Turn Coordinator — Display measurements on turn coordinator and inclinometer

After you add a flight instruments block to a model, a table in the block dialog is automatically filled
with observable signals from the model. To display one of the observable signals on an instrument
gauge, select the signal.

Here is an example of the model with the flight instruments panel in “HL-20 with Flight
Instrumentation Blocks” on page 9-27.

Simulation 3D Blocks
Use the Simulation 3D blocks to view 3D aircraft dynamics and airport operations in the Unreal®
environment. Use supporting functions to customize your projects.

• Simulation 3D Actor Transform Get — Get actor translation, rotation, scale.
• Simulation 3D Actor Transform Set — Set actor translation, rotation, scale.
• Simulation 3D Aircraft — Implement aircraft in 3D environment.
• Simulation 3D Camera Get — Camera image.
• Simulation 3D Scene Configuration — Scene configuration for 3D simulation environment.
• Simulation 3D Message Get — Retrieve data from Unreal Engine visualization environment.
• Simulation 3D Message Set — Send data to Unreal Engine visualization environment.

Here is the animation from a simulation in “Using Unreal Engine Visualization for Airplane Flight” on
page 9-126.
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To customize your projects, Aerospace Blockset also contains functions that let you work with blue
print actors and send and receive messages between Unreal Engine and Simulink.

While the blocks and functions are available with Aerospace Blockset, to customize scenes in your
installation of the Unreal Engine and simulate within these scenes in Simulink, you must install and
configure the Aerospace Blockset Interface for Unreal Engine Projects support package. This support
package contains customizable scenes and the Griffiss airport.

MATLAB Graphics-Based Animation
Use MATLAB graphics-based animation blocks to visualize flight paths using MATLAB graphics
software.

• 3DoF Animation — Create 3-D MATLAB Graphics animation of three-degrees-of-freedom object.
• 6DoF Animation — Create 3-D MATLAB Graphics animation of six-degrees-of-freedom object.
• MATLAB Animation — Create six-degrees-of-freedom multibody custom geometry block.

Here is the animation from a simulation in “Multiple Aircraft with Collaborative Control” on page 9-
25 using the MATLAB Animation block.
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Utility Visualization Blocks
Use the utility visualization blocks to provide joystick interface inputs to your model. This library also
contains the Simulation Pace block, to set the simulation rate for animation viewing.

• Pilot Joystick — Provide joystick interface on Windows platform. This block is the same as the Pilot
Joystick All block with the Output configuration parameter set to FourAxis.

• Pilot Joystick All — Provide joystick interface in All Outputs configuration on Windows platform.
This block is the same as the Pilot Joystick block with the Output configuration parameter set to
AllOutputs.

• Simulation Pace — Set simulation rate for animation viewing.

See Also

Related Examples
• “Flight Simulator Interface” on page 2-19
• “Flight Instrument Gauges” on page 2-49
• “How 3D Simulation for Aerospace Blockset Works” on page 2-39
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Flight Simulator Interface

About the FlightGear Interface
The Aerospace Blockset product supports an interface to the third-party FlightGear flight simulator,
open-source software available through a GNU General Public License (GPL). The FlightGear flight
simulator interface included with the blockset is a unidirectional transmission link from the Simulink
interface to FlightGear using the FlightGear published net_fdm binary data exchange protocol. Data
is transmitted via UDP network packets to a running instance of FlightGear. The blockset supports
multiple standard binary distributions of FlightGear. See “Run FlightGear with Simulink Models” on
page 2-27 for interface details.

FlightGear is a separate software entity not created, owned, or maintained by MathWorks.

• To report bugs in or request enhancements to the Aerospace Blockset FlightGear interface, use
the form.

• To report bugs or request enhancements to FlightGear itself, visit FlightGear website.

Supported FlightGear Versions

The Aerospace Toolbox product supports FlightGear versions starting from v2.6.

If you are using a FlightGear version older than 2.6, update your FlightGear installation to a
supported version. When you open the model, the software returns a warning or error. Obtain
updated FlightGear software from https://www.flightgear.org in the download area.

Obtain FlightGear
You can obtain FlightGear from the FlightGear website in the download area or by ordering CDs from
FlightGear. The download area contains extensive documentation for installation and configuration.
Because FlightGear is an open-source project, source downloads are also available for customizing
and porting to custom environments.

Configure Your Computer for FlightGear
To use FlightGear, you must have a high-performance graphics card with stable drivers For more
information, see the FlightGear CD distribution or the hardware requirements and documentation
areas of the FlightGear website.

FlightGear performance and stability can be sensitive to computer video cards, driver versions, and
driver settings. You need OpenGL® support with hardware acceleration activated. Without proper
setup, performance can drop from about a 30 frames-per-second (fps) update rate to less than 1 fps.
If your system allows you to update OpenGL settings, modify them to improve performance.

Graphics Recommendations for Windows

For Windows systems, use these graphics recommendations:

 Flight Simulator Interface

2-19

https://www.mathworks.com/support/contact_us.html
https://www.flightgear.org
https://www.flightgear.org


• A graphics card with acceptable OpenGL performance (as outlined at the FlightGear website).
• The latest tested and stable driver release for your video card. Test the driver thoroughly on a few

computers before deploying to others.

For more information, see FlightGear Hardware Recommendations.

Setup on Linux, Macintosh, and Other Platforms

FlightGear distributions are available for Linux, Macintosh, and other platforms from the FlightGear
website, https://www.flightgear.org. Installation on these platforms, like Windows, requires
careful configuration of graphics cards and drivers. Consult the documentation and hardware
requirements sections at the FlightGear website.

FlightGear and Video Cards in Windows Systems
Your computer built-in video card, such as NVIDIA® cards, can conflict with FlightGear shaders.
Consider this workaround:

• Disable the FlightGear shaders by selecting the Generate Run Script block Disable FlightGear
shader options check box.

Install and Start FlightGear
The extensive FlightGear documentation guides you through the installation in detail. Consult these
notes:

• Documentation section of the FlightGear website for installation instructions: https://
www.flightgear.org.

• Hardware recommendations section of the FlightGear website.
• MATLAB system requirements.

Keep these points in mind:

• Configure your computer graphics card before you install FlightGear. See the preceding section,
“Configure Your Computer for FlightGear” on page 2-19.

• Shut down all running applications (including the MATLAB interface) before installing FlightGear.
• Install FlightGear in a folder path name composed of ASCII characters.
• MathWorks tests indicate that the operational stability of FlightGear is especially sensitive during

startup. It is best not to move, resize, mouse over, overlap, or cover up the FlightGear window
until the initial simulation scene appears after the startup splash screen fades out.

Aerospace Blockset supports FlightGear on several platforms. This table lists the properties to
consider before you start to use FlightGear.

FlightGear Property Folder Description Platforms Typical Location
FlightGearBase‐
Directory

FlightGear installation
folder.

Windows 64-bit C:\Program Files\FlightGear
(default)

Linux Folder into which you installed
FlightGear
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FlightGear Property Folder Description Platforms Typical Location
Mac /Applications

(folder to which you dragged the
FlightGear icon)

GeometryModelName Model geometry folder Windows 64-bit C:\Program Files\FlightGear\‐
data\Aircraft\HL20
(default)

Linux $FlightGearBaseDirectory/data/
Aircraft/HL20

Mac $FlightGearBaseDirectory/‐
FlightGear.app/Contents/‐
Resources/data/Aircraft/HL20

Install Additional FlightGear Scenery
When you install the FlightGear software, the installation provides a basic level of scenery files. The
FlightGear documentation guides you through installing scenery as part the general FlightGear
installation.

If you need to install more FlightGear scenery files, see the instructions at https://
www.flightgear.org. The instructions describe how to install the additional scenery in a default
location. MathWorks® recommends that you follow those instructions.

If you install additional scenery in a nonstandard location, you may need to update the FG_SCENERY
environment variable in the script output from the Generate Run Script block to include the new
path. For a description of the FG_SCENERY variable, see the documentation at https://
www.flightgear.org.

If you do not download scenery in advance, you can direct FlightGear to download it automatically
during simulation by selecting the Generate Run Script block Install FlightGear scenery during
simulation (requires Internet connection) check box.

For Windows systems, you may encounter an error message while launching FlightGear with the
InstallScenery option enabled:

Error creating directory: No such file or directory

This error likely indicates that your default FlightGear download folder is not writeable, the path
cannot be resolved, or the path contains UNC path names. To work around the issue, edit the
runfg.bat file to specify a new folder path to store the scenery data:

1 Edit runfg.bat.
2 To the list of command options, append --download-dir= and specify a folder to which to

download the scenery data. For example:

--download-dir=C:\Users\user1\Documents\FlightGear

All data downloaded during this FlightGear session is saved to the specified directory. To avoid
downloading duplicate scenery data, use the same directory in succeeding FlightGear sessions

3 To open FlightGear, run runfg.bat.
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Note Each time that you run the Generate Run Script block, it creates a new script. It overwrites any
edits that you have added.

See Also
FlightGear Preconfigured 6DoF Animation | Generate Run Script | Pack net_fdm Packet for
FlightGear | Receive net_ctrl Packet from FlightGear | Send net_fdm Packet to FlightGear | Unpack
net_ctrl Packet from FlightGear

Related Examples
• “Work with the Flight Simulator Interface” on page 2-23

External Websites
• https://www.flightgear.org
• Hardware recommendations section of the FlightGear website
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Work with the Flight Simulator Interface

In this section...
“Introduction” on page 2-23
“About Aircraft Geometry Models” on page 2-23
“Work with Aircraft Geometry Models” on page 2-25
“Run FlightGear with Simulink Models” on page 2-27
“Run the HL-20 Example with FlightGear” on page 2-31
“Send and Receive Data” on page 2-33

Introduction
Use this section to learn how to use the FlightGear flight simulator and the Aerospace Blockset
software to visualize your Simulink aircraft models. If you have not yet installed FlightGear, see
“Flight Simulator Interface” on page 2-19 first.

Simulink Driven HL-20 Model in a Landing Flare at KSFC

About Aircraft Geometry Models
Before you can visualize your aircraft dynamics, you need to create or obtain an aircraft model file
compatible with FlightGear. This section explains how to do this.

Aircraft Geometry Editors and Formats

You have a competitive choice of over twelve 3-D geometry file formats supported by FlightGear.

Currently, the most popular 3-D geometry file format is the AC3D format, which has the suffix *.ac.
AC3D is a low-cost geometry editor available from www.ac3d.org.
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Aircraft Model Structure and Requirements

Aircraft models are contained in the FlightGearRoot/data/Aircraft/ folder and subfolders. A
complete aircraft model must contain a folder linked through the required file named model-
set.xml.

All other model elements are optional. This is a partial list of the optional elements you can put in an
aircraft data folder:

• Vehicle objects and their shapes and colors
• Vehicle objects' surface bitmaps
• Variable geometry descriptions
• Cockpit instrument 3-D models
• Vehicle sounds to tie to events (e.g., engine, gear, wind noise)
• Flight dynamics model
• Simulator views
• Submodels (independently movable items) associated with the vehicle

Model behavior reverts to defaults when these elements are not used. For example,

• Default sound: no vehicle-related sounds are emitted.
• Default instrument panel: no instruments are shown.

Models can contain some, all, or even none of the above elements. If you always run FlightGear from
the cockpit view, the aircraft geometry is often secondary to the instrument geometries.

A how-to document for including optional elements is included in the FlightGear documentation at:

https://wiki.flightgear.org/Howto:3D_Aircraft_Models

Required Flight Dynamics Model Specification

The flight dynamics model (FDM) specification is a required element for an aircraft model. To set the
Simulink software as the source of the flight dynamics model data stream for a given geometry
model, you put this line in data/Aircraft/model/model-set.xml:

<flight-model>network</flight-model>

Obtain and Modify Existing Aircraft Models

You can quickly build models from scratch by referencing instruments, sounds, and other optional
elements from existing FlightGear models. Such models provide examples of geometry, dynamics,
instruments, views, and sounds. It is simple to copy an aircraft folder to a new name, rename the
model-set.xml file, modify it for network flight dynamics, and then run FlightGear with the –
aircraft flag set to the name in model-set.xml.

Many existing 3-D aircraft geometry models are available for use with FlightGear. Visit the download
area of https://www.flightgear.org to see some of the aircraft models available. Additional models can
be obtained via Web search. Search key words such as “flight gear aircraft model” are a good starting
point. Be sure to comply with copyrights when distributing these files.
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Hardware Requirements for Aircraft Geometry Rendering

When creating your own geometry files, keep in mind that your graphics card can efficiently render a
limited number of surfaces. Some cards can efficiently render fewer than 1000 surfaces with bitmaps
and specular reflections at the nominal rate of 30 frames per second. Other cards can easily render
on the order of 10,000 surfaces.

If your performance slows while using a particular geometry, gauge the effect of geometric
complexity on graphics performance by varying the number of aircraft model surfaces. An easy way
to check this is to replace the full aircraft geometry file with a simple shape, such as a single triangle,
then test FlightGear with this simpler geometry. If a geometry file is too complex for smooth display,
use a 3-D geometry editor to simplify your model by reducing the number of surfaces in the geometry.

Work with Aircraft Geometry Models
Once you have obtained, modified, or created an aircraft data file, you need to put it in the correct
folder for FlightGear to access it.

Import Aircraft Models into FlightGear

To install a compatible model into FlightGear, use one of these procedures. Choose the one
appropriate for your platform. This section assumes that you have read “Install and Start FlightGear”
on page 2-20.

If your platform is Windows:

1 Go to your installed FlightGear folder. Open the data folder, then the Aircraft folder:
\FlightGear\data\Aircraft\.

2 Make a subfolder model\ here for your aircraft data.
3 Put model-set.xml in that subfolder, plus any other files needed.

It is common practice to make subdirectories for the vehicle geometry files (\model\),
instruments (\instruments\), and sounds (\sounds\).

If your platform is Linux:

1 Go to your installed FlightGear directory. Open the data directory, then the Aircraft directory:
$FlightGearBaseDirectory/data/Aircraft/.

2 Make a subdirectory model/ here for your aircraft data.
3 Put model-set.xml in that subdirectory, plus any other files needed.

It is common practice to make subdirectories for the vehicle geometry files (/model/),
instruments (/instruments/), and sounds (/sounds/).

If your platform is Mac:

1 Open a terminal.
2 Go to your installed FlightGear folder. Open the data folder, then the Aircraft folder:

$FlightGearBaseDirectory/FlightGear.app/Contents/Resources/data/Aircraft/

3 Make a subfolder model/ here for your aircraft data.
4 Put model-set.xml in that subfolder, plus any other files needed.
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It is common practice to make subdirectories for the vehicle geometry files (/model/),
instruments (/instruments/), and sounds (/sounds/).

Example: Animate Vehicle Geometries

This example illustrates how to prepare hinge line definitions for animated elements such as vehicle
control surfaces and landing gear. To enable animation, each element must be a named entity in a
geometry file. The resulting code forms part of the HL20 lifting body model presented in “Run the
HL-20 Example with FlightGear” on page 2-31.

1 The standard body coordinates used in FlightGear geometry models form a right-handed system,
rotated from the standard body coordinate system in Y by -180 degrees:

• X = positive toward the back of the vehicle
• Y = positive toward the right of the vehicle
• Z = positive is up, e.g., wheels typically have the lowest Z values.

See “About Aerospace Coordinate Systems” on page 2-7 for more details.
2 Find two points that lie on the desired named-object hinge line in body coordinates and write

them down as XYZ triplets or put them into a MATLAB calculation like this:

a = [2.98, 1.89, 0.53];
b = [3.54, 2.75, 1.46];

3 Calculate the difference between the points:

pdiff = b - a
pdiff =
    0.5600    0.8600    0.9300

4 The hinge point is either of the points in step 2 (or the midpoint as shown here):

mid = a + pdiff/2
mid =
    3.2600    2.3200    0.9950

5 Put the hinge point into the animation scope in model-set.xml:

<center>
    <x-m>3.26</x-m>
    <y-m>2.32</y-m>
    <z-m>1.00</z-m>
</center>

6 Use the difference from step 3 to define the relative motion vector in the animation axis:

<axis>
    <x>0.56</x>
    <y>0.86</y>
    <z>0.93</z>
</axis>

7 Put these steps together to obtain the complete hinge line animation used in the HL20 example
model:
<animation>
    <type>rotate</type>
    <object-name>RightAileron</object-name>
    <property>/surface-positions/right-aileron-pos-norm</property>
    <factor>30</factor>
    <offset-deg>0</offset-deg>
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    <center>
        <x-m>3.26</x-m>
        <y-m>2.32</y-m>
        <z-m>1.00</z-m>
    </center>
    <axis>
        <x>0.56</x>
        <y>0.86</y>
        <z>0.93</z>
    </axis>
</animation>

Run FlightGear with Simulink Models
To run a Simulink model of your aircraft and simultaneously animate it in FlightGear with an aircraft
data file model-set.xml, you need to configure the aircraft data file and modify your Simulink
model with some new blocks.

These are the main steps to connecting and using FlightGear with the Simulink software:

• “Set the Flight Dynamics Model to Network in the Aircraft Data File” on page 2-27 explains how
to create the network connection you need.

• “Obtain the Destination IP Address” on page 2-27 starts by determining the IP address of the
computer running FlightGear.

• “Send Simulink Data to FlightGear” on page 2-33 shows how to add and connect interface and
pace blocks to your Simulink model.

• “Create a FlightGear Run Script” on page 2-28 shows how to write a FlightGear run script
compatible with your Simulink model.

• “Start FlightGear” on page 2-29 guides you through the final steps to making the Simulink
software work with FlightGear.

• “Improve Performance” on page 2-30 helps you speed your model up.
• “Run FlightGear and Simulink Software on Different Computers” on page 2-31 explains how to

connect a simulation from the Simulink software running on one computer to FlightGear running
on another computer.

Set the Flight Dynamics Model to Network in the Aircraft Data File

Be sure to:

• Remove any pre-existing flight dynamics model (FDM) data from the aircraft data file.
• Indicate in the aircraft data file that its FDM is streaming from the network by adding this line:

    <flight-model>network</flight-model>

Obtain the Destination IP Address

You need the destination IP address for your Simulink model to stream its flight data to FlightGear.

• If you know your computer name, enter at the MATLAB command line:

    java.net.InetAddress.getByName('www.mathworks.com')
• If you are running FlightGear and the Simulink software on the same computer, get your computer

name by entering at the MATLAB command line:

    java.net.InetAddress.getLocalHost
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• If you are working in Windows, get your computer IP address by entering at the DOS prompt:

    ipconfig /all

Examine the IP address entry in the resulting output. There is one entry per Ethernet device.

Create a FlightGear Run Script

To start FlightGear with the desired initial conditions (location, date, time, weather, operating
modes), it is best to create a run script by “Use the Generate Run Script Block” on page 2-28 or
“Use the Interface Provided with FlightGear” on page 2-29.

If you make separate run scripts for each model you intend to link to FlightGear and place them in
separate directories, run the appropriate script from the MATLAB interface just before starting your
Simulink model.

Use the Generate Run Script Block

The easiest way to create a run script is by using the Generate Run Script block. Use this procedure:

1 Open the Flight Simulator Interfaces sublibrary.
2 Create a new Simulink model or open an existing model.
3 Drag a Generate Run Script block into the Simulink diagram.
4 Double-click the Generate Run Script block. Its dialog opens. Observe the three panes,

FlightGear, Network, and File.
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5 In the Output file name parameter of the File tab, type the name of the output file. This name
should be the name of the command you want to use to start FlightGear with these initial
parameters. Use the appropriate file extension:

Platform Extension
Windows .bat
Linux and macOS .sh

For example, if your file name is runfg.bat, use the runfg command to execute the run script
and start FlightGear.

6 In the FlightGear base directory parameter of the File tab, specify the name of your
FlightGear installation folder.

7 In the FlightGear geometry model name parameter of the File tab, specify the name of the
subfolder, in the FlightGear/data/Aircraft folder, containing the desired model geometry.

8 Specify the initial conditions as needed.
9 Click the Generate Script button at the top of the Parameters area.

The Aerospace Blockset software generates the run script, and saves it in your MATLAB working
folder under the file name that you specified in the File > Output file name field.

10 Select or clear these check boxes and

• To direct FlightGear to automatically install required scenery while the simulator is running
— Select Install FlightGear scenery during simulation (requires Internet connection).
For Windows systems, you may encounter an error message while launching FlightGear with
this option enabled. For more information, see “Install Additional FlightGear Scenery” on
page 2-21.

• To disable FlightGear shader options — Select Disable FlightGear shader options.
11 Repeat steps 5 through 10 to generate other run scripts, if needed.
12 Click OK to close the dialog box. You do not need to save the Generate Run Script block with the

Simulink model.

The Generate Run Script block saves the run script as a text file in your working folder. This is an
example of the contents of a run script file:
>> cd C:\Applications\FlightGear-<your_FlightGear_version>
>> SET FG_ROOT=C:\Applications\FlightGear-<your_FlightGear_version>\data
>> cd \bin\
>> fgfs --aircraft=HL20 --fdm=network,localhost,5501,5502,5503
  --fog-fastest --disable-clouds --start-date-lat=2004:06:01:09:00:00 
  --disable-sound --in-air --enable-freeze --airport=KSFO --runway=10L
  --altitude=7224 --heading=113 --offset-distance=4.72 --offset-azimuth=0

Use the Interface Provided with FlightGear

The FlightGear launcher GUI (part of FlightGear, not the Aerospace Blockset product) lets you build
simple and advanced options into a visible FlightGear run command.

Start FlightGear

If your computer has enough computational power to run both the Simulink software and FlightGear
at the same time, a simple way to start FlightGear on a Windows system is to create a MATLAB
desktop button containing this command to execute a run script like the one created above:
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system('runfg &')

To create a desktop button:

1 In the MATLAB Command Window, select Shortcuts and click New Shortcut. The Shortcut
Editor dialog opens.

2 Set the Label, Callback, Category, and Icon fields as shown in this figure.

3 Click Save.

The FlightGear button appears in your MATLAB desktop. If you click it, the output file, for
example runfg.bat, runs in the current folder.

Once you have completed the setup, start FlightGear and run your model:

1 Make sure your model is in a writable folder. Open the model, and update the diagram. This step
ensures that any referenced block code is compiled and that the block diagram is compiled
before running. Once you start FlightGear, it uses all available processor power while it is
running.

2 Click the FlightGear button or run the FlightGear run script manually.
3 When FlightGear starts, it displays the initial view at the initial coordinates specified in the run

script. If you are running the Simulink software and FlightGear on different computers, arrange
to view the two displays at the same time.

4 Now begin the simulation and view the animation in FlightGear.

Improve Performance

If your Simulink model is complex and cannot run at the aggregate rate needed for the visualization,
you might need to

• Use the Accelerator mode in Simulink (“Perform Acceleration”.)
• Free up processor power by running the Simulink model on one computer and FlightGear on

another computer. Use the Destination IP Address parameter of the Send net_fdm Packet to
FlightGear block to specify the network address of the computer where FlightGear is running.

• Simulate the Simulink model first, then save the resulting translations (x-axis, y-axis, z-axis) and
positions (latitude, longitude, altitude), and use the FlightGear Animation object in Aerospace
Toolbox to visualize this data.
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Tip If FlightGear uses more computer resources than you want, you can change its scheduling
priority to a lesser one. For example, see commands like Windows start and Linux nice or their
equivalents.

Run FlightGear and Simulink Software on Different Computers

It is possible to simulate an aerospace system in the Simulink environment on one computer (the
source) and use its simulation output to animate FlightGear on another computer (the target). The
steps are similar to those already explained, with certain modifications.

1 Obtain the IP address of the computer running FlightGear. See “Obtain the Destination IP
Address” on page 2-27.

2 Enter this target computer IP address in the Send net_fdm Packet to FlightGear block. See “Send
Simulink Data to FlightGear” on page 2-33.

3 Update the Generate Run Script block in your model with the target computer FlightGear base
folder. Regenerate the run script to reflect the target computer separate identity.

See “Create a FlightGear Run Script” on page 2-28.
4 Copy the generated run script to the target computer. Start FlightGear there. See “Start

FlightGear” on page 2-29.
5 If you want to also receive data from FlightGear, use the Receive net_ctrl Packet from FlightGear

block. Enter the IP address of the computer running FlightGear in the Origin IP address
parameter.

6 Update the run script for the receive data. Use the Generate Run Script block to regenerate the
run script.

7 Start your Simulink model on the source computer. FlightGear running on the target displays the
simulation motion.

Run the HL-20 Example with FlightGear

The Aerospace Blockset software contains an example model of the HL-20 lifting body that uses the
FlightGear interface and projects. This example illustrates many features of the Aerospace Blockset
software. It also contains a Variant Subsystem block that you can use to specify the data source for
the simulation. You might want to use the Variant Subsystem block to change the terrain data source
or if you do not want to use FlightGear but still want to simulate the model.

To install and configure FlightGear before attempting to simulate this model, see “Flight Simulator
Interface” on page 2-19. Also, before attempting to simulate this model, read “Install and Start
FlightGear” on page 2-20.

Note Step 2 of this example copies the preconfigured geometries for the HL-20 simulation from
projectroot\support to FlightGear\data\Aircraft\. It requires that you have system
administrator privileges for your machine. If you do not have these privileges, manually copy these
files, depending on your platform.
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Windows
Copy the HL20 folder from projectroot\support folder to FlightGear\data\Aircraft\
folder. This folder contains the preconfigured geometries for the HL-20 simulation and HL20-
set.xml. The file projectroot\support\HL20\Models\HL20.xml defines the geometry.

For Windows platforms, start the MATLAB app with administrator privileges. For example, in the
Start menu, right click the MATLAB app, then select Run as administrator.

For more information, see “Import Aircraft Models into FlightGear” on page 2-25.
Linux

Copy the HL20 directory from projectroot/support directory to
$FlightGearBaseDirectory/data/Aircraft/ directory. This directory contains the
preconfigured geometries for the HL-20 simulation and HL20-set.xml. The file projectroot/
support/HL20/Models/HL20.xml defines the geometry.

For more about this step, see “Import Aircraft Models into FlightGear” on page 2-25.
Mac

Copy the HL20 folder from projectroot/support folder to $FlightGearBaseDirectory/
FlightGear.app/Contents/Resources/data/Aircraft/ folder. This folder contains the
preconfigured geometries for the HL-20 simulation and HL20-set.xml. The file projectroot/
support/HL20/Models/HL20.xml defines the geometry.

For more about this step, see “Import Aircraft Models into FlightGear” on page 2-25.

1 Start the MATLAB interface. Open the “HL-20 Project with Optional FlightGear Interface” on
page 9-42example. The project for the model starts and the model opens.

2 If this is your first time running FlightGear for this model, you need to create and run a
customized FlightGear run script. You can do this with one of these:

• In the model, double-click the Install FlightGear block and follow the steps in the block.
Initially, this block is red. As you follow the steps outlined in the block, the block mask
changes.

To start FlightGear for the model, click Launch HL20 in FlightGear.
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3 Now start the simulation and view the animation in FlightGear.

Note With the FlightGear window in focus, press the V key to alternate between the different
aircraft views: cockpit view, helicopter view, chase view, and so on.

Send and Receive Data
You can send and receive data between a Simulink model and a running FlightGear Flight Simulator.

Send Simulink Data to FlightGear

The easiest way to connect your model to FlightGear with the blockset is to use the FlightGear
Preconfigured 6DoF Animation block:

The FlightGear Preconfigured 6DoF Animation block is a subsystem containing the Pack net_fdm
Packet for FlightGear and Send net_fdm Packet to FlightGear blocks:

These blocks transmit data from a model to a FlightGear session. The blocks are separate for
maximum flexibility and compatibility.

• The Pack net_fdm Packet for FlightGear block formats a binary structure compatible with
FlightGear from model inputs. In the default configuration, the block displays only the 6DoF ports,
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but you can configure the full FlightGear interface supporting more than 50 distinct signals from
the block dialog box:

• The Send net_fdm Packet to FlightGear block transmits this packet via UDP to the specified IP
address and port where a FlightGear session awaits an incoming datastream. Use the IP address
you found in “Obtain the Destination IP Address” on page 2-27.

• The Simulation Pace block slows the simulation so that its aggregate run rate is 1 second of
simulation time per second of clock time. You can also use it to specify other ratios of simulation
time to clock time.

Send FlightGear Data to Model

To increase the accuracy of your model simulation, you might want to send FlightGear environment
variables to the Simulink model. Use these blocks:
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• Receive net_ctrl Packet from FlightGear — Receives a network control and environment data
packet net_ctrl from either the simulation of a Simulink model in the FlightGear simulator, or
from a FlightGear session.

• Unpack net_ctrl Packet from FlightGear — Unpacks net_ctrl variable packets received from
FlightGear and makes them available for the Simulink environment.

• Generate Run Script — Generates a customized FlightGear run script on the current platform.

For an example of how to use these blocks to send data to a Simulink model, see “HL-20 Project with
Optional FlightGear Interface” on page 9-42.

These blocks use UDP to transfer data from FlightGear to the Simulink environment. Note:

• When a host and target are Windows or Linux platforms, you can use any combination of Windows
or Linux platforms for the host and target.

• When a host or target is a Mac platform, use only Mac platforms for both the host and target.

See Also
FlightGear Preconfigured 6DoF Animation | Generate Run Script | Pack net_fdm Packet for
FlightGear | Receive net_ctrl Packet from FlightGear | Send net_fdm Packet to FlightGear | Unpack
net_ctrl Packet from FlightGear

Related Examples
• “Flight Simulator Interface” on page 2-19

External Websites
• https://www.flightgear.org
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Unreal Engine Simulation Environment Requirements and
Limitations

Aerospace Blockset provides an interface to a simulation environment that is visualized using the
Unreal Engine from Epic Games®. This visualization engine comes installed with the toolbox. When
simulating in this environment, keep these requirements and limitations in mind.

Software Requirements
• Windows 64-bit platform
• Visual Studio® 2019
• Microsoft® DirectX® — If this software is not already installed on your machine and you try to

simulate in the environment, the toolbox prompts you to install it. Once you install the software,
you must restart the simulation.

In you are customizing scenes, verify that your Unreal Engine project is compatible with the Unreal
Engine version supported by your MATLAB release.

MATLAB Release Unreal Engine Version Visual Studio Version
R2021b 4.25 2019
R2022a–R2022b 4.26 2019

Note Mac and Linux platforms are not supported for Unreal Engine simulation.

Minimum Hardware Requirements
• Graphics card (GPU) — Virtual reality-ready with 8 GB of on-board RAM
• Processor (CPU) — 2.60 GHz
• Memory (RAM) — 12 GB

Limitations
The Unreal Engine simulation environment blocks do not support:

• Code generation
• Model reference
• Multiple instances of the Simulation 3D Scene Configuration block
• Multiple Unreal Engine instances in the same MATLAB session
• Parallel simulations
• Rapid accelerator mode
• Multiple instances of the same actor tag. To refer to the same scene actor when you use the 3D

block pairs, such as Simulation 3D Actor Transform Get and Simulation 3D Actor Transform Set,
specify the same Tag for actor in 3D scene, Actortag parameter.

In addition, when using these blocks in a closed-loop simulation, all Unreal Engine simulation
environment blocks must be in the same subsystem.
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See Also

More About
• “Customize 3D Scenes for Aerospace Blockset Simulations” on page 4-2

External Websites
• Unreal Engine Documentation
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How 3D Simulation for Aerospace Blockset Works
The aerospace models run programmable maneuvers in a photorealistic 3D visualization
environment. Aerospace Blockset integrates the 3D simulation environment with Simulink so that you
can query the world around aerospace vehicles for virtually testing perception, control, and planning
algorithms. The Aerospace Blockset visualization environment uses the Unreal Engine by Epic
Games.

Understanding how this simulation environment works can help you troubleshoot issues and
customize your models.

Communication with 3D Simulation Environment
When you use Aerospace Blockset to run your algorithms, Simulink co-simulates the algorithms in the
visualization engine.

In the Simulink environment, Aerospace Blockset:

• Determines the next position of objects by using 3D visualization environment feedback and
aerospace vehicle dynamics models.

• Configures the 3D visualization environment, specifically:

• Ray tracing
• Scene capture cameras
• Initial object positions

• In the visualization engine environment, Aerospace Blockset positions the objects and uses ray
tracing to query the environment.

The diagram summarizes the communication between Simulink and the visualization engine.

Block Execution Order

During simulation, the 3D simulation blocks follow a specific execution order:

1 The aerospace blocks initialize the vehicles and send their X, Y, and Yaw signal data to the
Simulation 3D Scene Configuration block.

2 The Simulation 3D Scene Configuration block receives the vehicle data and sends it to the sensor
blocks.

3 The sensor blocks receive the vehicle data and use it to accurately locate and visualize the
vehicles.
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The Priority property of the blocks controls this execution order. To access this property for any
block, right-click the block, select Properties, and click the General tab. By default, Simulation 3D
Aircraft blocks have a priority of -1, Simulation 3D Scene Configuration blocks have a priority of 0,
and sensor blocks have a priority of 1.

If your sensors are not detecting vehicles in the scene, it is possible that the 3D simulation blocks are
executing out of order. Try updating the execution order and simulating again. For more details on
execution order, see “Control and Display Execution Order”.

Also be sure that all 3D simulation blocks are located in the same subsystem. Even if the blocks have
the correct Priority settings, if they are located in different subsystems, they still might execute out
of order.

See Also

Related Examples
• “Unreal Engine Simulation Environment Requirements and Limitations” on page 2-36
• “Customize 3D Scenes for Aerospace Blockset Simulations” on page 4-2
• “Customize Scenes Using Simulink and Unreal Editor” on page 4-6
• “Get Started Communicating with the Unreal Engine Visualization Environment” (Vehicle

Dynamics Blockset)
• “Prepare Custom Vehicle Mesh for the Unreal Editor” (Vehicle Dynamics Blockset)
• “Place Cameras on Actors in the Unreal Editor” (Vehicle Dynamics Blockset)

External Websites
• Unreal Engine
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Visualize with Cesium
Aerospace Blockset can now stream 3D map and terrain data of a location using Cesium ion®.
Aerospace Blockset uses Unreal Engine to build an executable window that visualizes your simulation
and uses Cesium® to create a scene for that visualization at runtime. To customize scenes, download
the Cesium for Unreal plugin and use the Aerospace Blockset Interface for Unreal Engine Projects.
For information on installing Cesium for Unreal, see “Install Cesium for Unreal Plugin” on page 4-
12. For more information on customizing scenes, see “Customize 3D Scenes for Aerospace Blockset
Simulations” on page 4-2.

This example has you create a Cesium ion, then create a model and configure it for simulation.

Set Up a Cesium ion Account
1 Create or log into your Cesium ion account at https://cesium.com/ion.
2 On the Cesium ion page, click Access Tokens.
3 On the Access Tokens page, click Create token to create a new access token. Enter a unique

name and note it. Leave the other settings at their default values.

You use this access token ID in the Access token ID parameter of the Simulation 3D Scene
Configuration block. For more information on creating access tokens, see https://cesium.com/
learn/ion/cesium-ion-access-tokens/.

4 Click Create.

To create a model to visualize a simulation using Cesium ion, see “Create a Model for Visualization”
on page 2-41.

Create a Model for Visualization
1 Create a Simulink model and add these blocks:

• Simulation 3D Aircraft block
• Simulation 3D Scene Configuration block
• Two Constant blocks
• Two Terminator blocks

2 Open the Simulation 3D Aircraft block and set Color to Green.
3 Connect one Constant block to the Translation input port of the Simulation 3D Aircraft block.

Set Constant value to zeros(11,3).
4 Connect the second Constant block to the Rotation input port of the Simulation 3D Aircraft

block. Set Constant value to zeros(11,3).
5 Connect the Attitude and WoW ports of the Simulation 3D Aircraft block to the Terminator

blocks.
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6 Set the model Stop time to inf.

Configure the Geospatial Configuration Parameters and Run the
Simulation
1 In the model created from “Create a Model for Visualization” on page 2-41, open the Simulation

3D Scene Configuration block:

a In the Geospatial tab, select Enable geospatial configuration to enable the geospatial
configuration parameters.

To configure this block for geospatial configuration, click the Authentication Manager
button at the bottom of the pane. The Manage access tokens dialog box displays. Click
Create token.

The Create new token dialog box appears.
b In the Create new token dialog box, enter the unique token ID string and copy and paste

the access token created from the Cesium ion page.

Copy From Cesium ion Paste To Authentication Manager >
Create new token Dialog Box

Name Token ID
Token Token value

For example, for token ID MyNewUserToken, enter these values.
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c To store the token ID and value, click OK.
d In the Access token ID parameter of the Geospatial tab, enter the same unique token ID

string you specified in the Token ID parameter of the Authentication Manager > Create
new token dialog box.

e In the rest of the Geospatial tab, set these values.

Parameter Value
Origin height 3000
Origin latitude 41.892469
Origin longitude -87.643373
Map style Aerial
Additional asset IDs [96188]
Use advanced Sun Sky Selected
Solar time 8.25
Time zone -5
Day 21
Month 9
Year 2022
Use daylight saving time Selected
DST start day 10
DST start month 3
DST end day 3
DST end month 11
DST switch hour 2

2 Run the simulation.
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The simulation streams the aircraft with the 3D map and terrain data in an Unreal Engine
executable window.

3 To view the aircraft from a preset view, left-click in the executable window and select a number
from 1 to 9.

See Also
Simulation 3D Aircraft | Simulation 3D Scene Configuration

Related Examples
• “Install Cesium for Unreal Plugin” on page 4-12
• “Customize 3D Scenes for Aerospace Blockset Simulations” on page 4-2
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Projects Template for Flight Simulation Applications

Flight Simulation Applications
Use projects to help organize large flight simulation modeling projects and makes it easier to share
projects with others. This template provides a framework for the collaborative development of a flight
simulation application. You can customize this project structure for specific applications.

Note  To successfully run this example, install a C/C++ compiler.

The Aerospace Blockset software supplies a projects template that you can use to create your own
flight simulation application. This template uses variant subsystems, model variants, and referenced
models to implement flight simulation application components such as:

• An airframe that contains a 6DOF equation of motion environment model and actuator dynamics
• An inertial measurement unit (IMU) sensor model
• A visualization subsystem oriented for FlightGear
• A model of the nonlinear dynamics of the airframe
• A model of the linear dynamics of the airframe

Download the Flight Simulation Template

1 From the Simulink Start Page, select Flight Simulation.
2 In the Create Project window, in Name, enter a project name, for example FlightSimProj.
3 In Folder, enter a project folder or browse to the folder to contain the project, for example

FlightSimFolder.
4 Click OK.

If the folder does not exist, the dialog prompts you to create it. Click Yes.

The software compiles the project, populates the project folders, and opens the main model,
flightSimulation. All models and supporting files are in place for you to customize for your
flight simulation application.

Contents of the Project Template

The flight simulation project template contains these folders

• mainModels

Contains the top-level simulation model, flightSimulation.This model opens on startup. This
file contains the top-level blocks for the flight simulation environment. Simulink uses the Variant
Subsystem, Model Variants, and Model blocks at this level to adapt to the different simulation
conditions.

• The aircraft airframe can vary between a nonlinear an linear approach.
• The commands to the aircraft can vary between a Signal Editor block, a joystick or a variable

from the workspace.
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• Sensors can vary between models that include sensor dynamics or feedthrough (no associated
dynamics).

• Environment values can vary between state-dependent values (the values of temperature,
pressure and so on depend on local position, latitude, etc.) or constant values that do not
depend on state values.

• The Visualization subsystem provides hooks that let you work with the states. For example, you
can visualize the states using FlightGear or they can be recorded in a variable in the
workspace for further analysis. States can also be visualized using the Simulation Data
Inspector.

• libraries
• Contains the libraries used by the models.
• nonlinearAirframe

Contains a model of the nonlinear dynamics of the airframe.

• A specific subsystem (AC model) that contains a placeholder for the dynamics of your aircraft
model . The characteristics of this subsystem are:

• Actuators and environment inputs. Actuators refer to generic signals that may affect the
behavior of the aircraft (for example an electric signal in voltage that will change the
position of the hydraulic actuator connected to a control surface such as an aileron).

• Forces and moments outputs. Effective in the center of gravity of the aircraft in body axis.
• A 6DOF Body Quaternion block that solves the differential equations of forces and moments to

obtain the aircraft states.
• linearAirframe

Contains the linear dynamics of the airframe and the model to obtain these linear dynamics. The
example obtains these dynamics by linearizing the nonlinear model using the
trimLinearizeOpPoint function and trimNonlinearAirframe model. This function uses
“Simulink Control Design” software to perform the linearization. It performs linearization of the
nonlinear model for a given set of known inputs and conditions. For further information regarding
trim and linearization, see the Simulink Control Design™ documentation). The
trimLinearizeOpPoint function stores the output in a MAT-file.

• controller

Contains the models for the Flight Control System (FCS) and its design. These models contain
referenced models for different controller architectures needed for the design of aircraft
simulation.

• src

Contains source code such as C code. For simulation, it also has two folders that contain S-
functions for simulation. These S-functions map buses to vectors and vice versa for the linear
airframe model. This mapping can be changed depending on the linearization scheme, and the set
of inputs and outputs for the model. To edit the indices for the different signals, you can use the S-
Function Builder block

• tasks

Contains scripts to run the model. These scripts do not run continuously during the simulation
process.
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The folder also contains the non-virtual bus definitions for the states, environment, and sensor
buses. These definitions, set the signals and characteristics that different elements in the
simulation environment use. This folder also contains the definitions for the variables used in the
mask workspace for the Sensors, FlightGear, linearAirframe and nonlinearAirframe blocks. These
utilities store parameter values in data structures. For example, if the nonlinear model uses a
parameter for a Gain block, the stored variable in the structure is
Vehicle.Nonlinear.Gain.gainValue, which points to the parameter.

• tests

Contains a sample test harness:

• The linearTest file contains the actual test point. This file compares a subset of the outputs
of the linearized airframe model to the outputs of the nonlinear airframe for the specific trim
condition.

• The runProjectTests file runs all the available files classified as "Tests" in the project.
• utilities

Contains project-specific maintenance task utilities, such as:

• projectPaths - Lists the location of folders to be added to the MATLAB path.
• rebuildSFunction - Rebuilds S-functions for linearInputBus and linearOutputBus.
• startVars - Defines the variables that the simulation environment requires to be in the base

workspace. This utility also controls variants using the Variants structure. This structure lets
the example switch between the nonlinear and linear airframefrom the workspace by changing
VSS_VEHICLE from 1 (for the nonlinear model) to 0 (for the linear model). For more
information on subsystem variants see Model.

• work

Contains files generated from every run. These files derive from source files, such as the MEX-file
that you build from S-function C code.

In Shortcuts, projects creates shortcuts for common tasks:

• Initialize Variables — Runs the startVars script, which initializes the variables to the base
workspace.

• Rebuild S-functions —Rebuilds the S-functions in the src folder.
• Run Project Tests —Runs the test points, labeled Tests, for test files in the project.
• Top Level Simulation Model — Opens the flightSimulation model. It runs on project

startup.

Template Labels

Provides file classification labels for automatic and componentization sorting. This utility adds
template labels such as Tests, Airframe Design, Flight Controller Design, and Calibration Data.

Add Airframe Dynamics and Controller Algorithm to the Project

1 To open the linearAirframe model, in flightSimulation double-click the Airframe
subsystem.

2 Double-click the Nonlinear subsystem.
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3 In the AC model, add your airframe dynamics.
4 Save the model.

Add Controller Algorithm to the Project

1 To open the flightControlSystem model, in flightSimulation, double-click the FCS
subsystem.

2 In the Controller subsystem, add your controller algorithm.
3 Save the model.

Other things to try:

• Simulate your model.
• Explore the tests folder for sample tests for your application.

See Also

Related Examples
• “Create a New Project Using Templates”
• “Quadcopter Project” on page 9-65
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Flight Instrument Gauges
Use the blocks for flight instrument gauges to visualize navigation variables, such as altitude and
heading. These blocks, located in the Flight Instruments library, represent standard cockpit
instruments:

• Airspeed Indicator
• Altimeter
• Artificial Horizon
• Climb Rate Indicator
• Exhaust Gas Temperature (EGT) Indicator
• Heading Indicator
• Revolutions Per Minute (RPM) Indicator
• Turn Coordinator

See Also
Airspeed Indicator | Altimeter | Artificial Horizon | Climb Rate Indicator | Exhaust Gas Temperature
(EGT) Indicator | Heading Indicator | Revolutions Per Minute (RPM) Indicator | Turn Coordinator

Related Examples
• “Display Measurements with Cockpit Instruments” on page 2-50
• “Programmatically Interact with Gauge Band Colors” on page 2-52
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Display Measurements with Cockpit Instruments
You can view signal data using any of the flight instrument blocks. This example uses the “HL-20 with
Flight Instrumentation Blocks” on page 9-27 model. In this example, connect a gauge so that you
can view the aircraft heading.

1 To open the model, at the MATLAB command window, enter aeroblk_HL20_Gauges.
2 Open the Visualization subsystem.

There is an existing Airspeed Indicator block in the model.
3 Add a second Airspeed Indicator block from the Flight Instruments library to the subsystem.
4 Open the new Airspeed Indicator block.
5 Select the Extract Flight Instruments block.
6 In the new Airspeed Indicator block, observe that the block connection table is filled with signals

from the Extract Flight Instruments block that you can observe.

7 Select the option button next to Extract_Gauges:2 in the connection table.
8 To connect the Extract_Gauges:2 signal to the Airspeed Indicator block, click OK.

Tip To directly select the signal to connect, on the Extract Flight Instruments block, select the
third output port (Roll Flightpath).
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9 Simulate the model and observe the gauge as it registers the data.
10 To change the signal to connect to, you can:

• Select the same or another block and then select another signal in the updated block
connection table.

• Select another output port for the same or a different block.
11 Close the model without saving it.

To create a Simulink model with prewired connections to flight instrument blocks, see
flightControl3DOFAirframeTemplate.

See Also
Airspeed Indicator | Altimeter | Artificial Horizon | Climb Rate Indicator | Exhaust Gas Temperature
(EGT) Indicator | Heading Indicator | Revolutions Per Minute (RPM) Indicator | Turn Coordinator

More About
• “Flight Instrument Gauges” on page 2-49
• “Programmatically Interact with Gauge Band Colors” on page 2-52
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Programmatically Interact with Gauge Band Colors
You can programmatically change Airspeed Indicator, EGT Indicator, and RPM Indicator gauge band
colors using the ScaleColors property. When used with get_param, this property returns an n-by-1
structure containing these elements, where n is the number of colored bands on the gauge:

• Min — Minimum value range for a color band
• Max — Maximum value range for a color band
• Color — RGB color triplet for a band (range from 0 to 1)

This example describes how to change a color band of the EGT Indicator gauge. By default, the EGT
Indicator gauge looks like this.

This gauge has three bands, clockwise 1, 2, and 3.

1 Create a blank model and add an EGT Indicator block.
2 Select the EGT Indicator block.
3 To change the color bands for the EGT Indicator gauge, get the handle of the scale color objects.

sc=get_param(gcb,'ScaleColors')

sc = 

  3×1 struct array with fields:

    Min
    Max
    Color

4 To see the values of the Min, Max, and Color values, use the sc handle. For example, to see the
values of the first band, sc(1), type:

sc(1)

sc(1)

ans = 

  struct with fields:

      Min: 0
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      Max: 700
    Color: [0.2980 0.7333 0.0902]

5 To change the color and size of this band, define a structure with different Min, Max, and Color
values and set ScaleColors to that new structure. For example, to change the band range to 1
to 89 and the color to red:

sc(1) = struct('Min',1,'Max',89,'Color',[1 0 0]);
set_param(gcb,'ScaleColors',sc)

6 Observe the change in the EGT Indicator gauge.

7 You can add and change as many color bands as you need. For example, to add a fourth band and
set up the gauge with that band:

sc(4) = struct('Min',200,'Max',300,'Color',[0 1 .6]);
set_param(gcb,'ScaleColors',sc)

See Also
Airspeed Indicator | Exhaust Gas Temperature (EGT) Indicator | Revolutions Per Minute (RPM)
Indicator

More About
• “Flight Instrument Gauges” on page 2-49
• “Display Measurements with Cockpit Instruments” on page 2-50
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Calculate UT1 to UTC Values
Calculate the difference between principal Universal Time (UT1) and Coordinated Universal Time
(UTC) according to International Earth Rotation Service (IERS) by using the Delta UT1 block. Use the
Delta UT1 block with these axes transformation blocks:

• LLA to ECI Position
• ECI Position to LLA
• Direction Cosine Matrix ECI to ECEF
• ECI Position to AER

To calculate the difference between UT1 and UTC, the Delta UT1 block requires the modified Julian
date. This example uses the Julian Date Conversion block. However, you can calculate the modified
Julian data with other methods. For example, you can use the mjuliandatemjuliandate function
from the Aerospace Toolbox software to calculate the date and input the result to the Delta UT1
block.

Use the Delta UT1 Block to Create Difference Values for the Direction
Cosine Matrix ECI to ECEF Block

This model shows how a Direction Cosine Matrix ECI to ECEF block uses the output from the Delta
UT1 and Julian Data Conversion blocks to obtain the difference between UTC and Universal Time
(UT1).

1 Drag these blocks into a new model and connect them as shown:

• Julian Date Conversion
• Delta UT1
• Direction Cosine Matrix ECI to ECEF
• Display
• Three Constant blocks

2 Set up the Julian Date Conversion to convert the date December 28, 2015 to its modified Julian
date equivalent. This date must match the one specified in the Direction Cosine Matrix ECI to
ECEF.
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• For Year, enter 2015.
• For Month, enter 12.
• For Day, enter 28.
• To calculate the modified Julian date for December 28, 2015, select the Calculate modified

Julian date check box.
• For Time increment, select None.

3 Leave the default settings for Delta UT1. By default, the block calculates the difference between
Universal Time (UT1) and Coordinated Universal Time (UTC) to using the aeroiersdata.mat
file supplied with the Aerospace Blockset software.

4 Set up the Direction Cosine Matrix ECI to ECEF block to work with the Coordinated Universal
Time (UTC) December 28, 2015. This date must match the one specified in the Julian Date
Conversion block:

• For Year, enter 2015.
• For Month, enter 12.
• For Day, enter 28.
• For Time increment, select None.

5 Set up the ΔUT1, ΔAT, and polar displacement of the Earth inputs for the Direction Cosine Matrix
ECI to ECEF.

• Constant — Set Constant value to 1.
• Constant1 — Set Constant value to l.
• Constant2 — Set Constant value to [.05 .05].

6 Save and run the model. Observe the resulting direction cosine matrix in the Display block.

See Also
Delta UT1 | Direction Cosine Matrix ECI to ECEF | Julian Date Conversion
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Analyze Dynamic Response and Flying Qualities of Aerospace
Vehicles

Aerospace Blockset provides flight control analysis tools that you can use to analyze the dynamic
response and flying qualities of aerospace vehicles.

• “Flight Control Analysis Live Scripts” on page 2-56 — MATLAB live scripts demonstrate dynamic
response and flying quality analysis of Sky Hogg and de Havilland Beaver airframes.

• “Modify Flight Control Analysis Templates” on page 2-58 — You can use templates to analyze the
flying qualities of three degree-of-freedom and six degree-of-freedom airframe models. When you
are comfortable running the analysis on the default airframes, you can replace them with your
own airframe and analyze it.

• “Plot Short-Period Undamped Natural Frequency Results” on page 2-59 — After computing
lateral-directional handling qualities, use the Aerospace Toolbox short-period functions to plot the
short-period undamped natural frequency response.

Note Analyzing dynamic response and flying qualities of airframes requires a Simulink Control
Design license.

Flight Control Analysis Live Scripts
Each flight control analysis template has an associated MATLAB live script that guides you through a
flying quality analysis workflow for the default airframe. You can interact with the script and explore
the analysis workflow.

• DehavillandBeaverFlyingQualityAnalysis — Compute longitudinal and lateral-directional flying
qualities for a De Havilland Beaver airframe.

• SkyHoggLongitudinalFlyingQualityAnalysis — Compute longitudinal flying qualities for a Sky
Hogg airframe.

For more information on running live scripts, see “Create and Run Sections in Code”.

1 Open one of the templates, for example:

asbFlightControlAnalysis('6DOF')

Navigate to the Getting Started section and click the first link.

Alternatively, in the Command Window, type:

open('DehavillandBeaverFlyingQualityAnalysis')

2 The script describes how to use eigenvalue analysis to determine the longitudinal flying qualities
(long-period phugoid mode and short-period mode) and lateral-directional flying qualities (Dutch
roll mode, roll mode, and spiral mode) for an aircraft modeled in Simulink.

As you run the script, when applicable, the results of the runs display inline.
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Modify Flight Analysis Templates
Aerospace Blockset provides these templates:

• flightControl6DOFAirframeTemplate — This template uses a six degree-of-freedom airframe
configured for linearization and quality analysis. For initialization, the template uses the de
Havilland Beaver airframe parameters.

• flightControl3DOFAirframeTemplate — This template uses a three degree-of-freedom longitudinal
airframe configured for linearization and quality analysis. For initialization, the template uses Sky
Hogg airframe parameters.

When you are comfortable navigating the flight control analysis templates with the default airframes,
consider customizing the templates for your own airframe model.

Flight Control Analysis Templates

To familiarize yourself with Aerospace Blockset flight control analysis templates:

1 Open one of the templates. For example, to open a 3DOF template:

asbFlightControlAnalysis('3DOF')

To open a 6DOF template:

asbFlightControlAnalysis('6DOF')

The flight control analysis model opens.

2 The Analysis Workflow section contains a clickable guided workflow to compute longitudinal
and lateral-directional flying qualities and compare their values against MIL-F-8785C
requirements. Each step creates the necessary variables for this step. To perform the flying
quality analysis, sequentially click the links in the steps.
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a Create an operating point specification object in the base workspace for the airframe model
using the Model Linearizer. Alternatively, load the default object provided in step 2.

b To trim the airframe, click Trim the airframe in step 3. This action calls the trimAirframe
function.

c To linearize the airframe around a trimmed operating point, click Linearize the airframe in
step 4. This action calls the linearizeAirframe function.

d To compute the longitudinal flying qualities, click Compute longitudinal handling
qualities. This action calls the computeLongitudinalFlyingQualities function.

e To compute the lateral-directional handling qualities, click Compute lateral-directional
handling qualities in step 6. This action calls the
computeLateralDirectionalFlyingQualities function.

Modify Flight Control Analysis Templates

When you are comfortable using the 3DOF and 6DOF flight control analysis templates on page 2-57
to trim, linearize, and compute the longitudinal and lateral-directional handling qualities for the
default airframes, consider customizing the templates to include your own airframe.

1 Open a 3DOF or 6DOF template and change the airframe to one of your own. For example, to
change the template airframe to an external model:
asbFlightControlAnalysis('6DOF', 'sixDOFAirframeExample','DehavillandBeaver6DOFAirframe')

This command replaces the de Havilland Beaver subsystem with the
DehavillandBeaver6DOFAirframe model and includes it as a referenced model.

Alternatively, in the corresponding canvas, manually replace the default model airframe in the
blue area with your own airframe.

2 On the canvas, align the inputs and outputs of the airframe using the Input Mapping and Output
Mapping subsystems.
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3 Create a new operating point specification object. In the Analysis Workflow section, go to step 2
and click Launch to start the Model Linearizer.

4 To save your opCond.OperatingSpec object to the base workspace, click Export in the dialog
window.

5 To trim, linearize, and compute the longitudinal and lateral-directional handling qualities for the
airframe model, click the links in workflow steps 3, 4, 5, and 6.

Explore Flight Control Analysis Functions
The flight control analysis live scripts and template workflows use these functions:

• asbFlightControlAnalysis
• trimAirframe
• linearizeAirframe
• computeLongitudinalFlyingQualities
• computeLateralDirectionalFlyingQualities

To customize your own scripts to trim airframes around operating points, linearize airframes, and
calculate longitudinal and lateral-directional handling qualities, you can use these functions in a
workflow:

1 Create a flight control analysis template using the asbFlightControlAnalysis function.
2 Trim the airframe model around an operating point using the trimAirframe function.

This step creates a trimmed operating point, which the linearizeAirframe function requires.
3 Linearize the airframe model around the trimmed operating point using the

linearizeAirframe function.

This step creates a state space model that describes the linearized dynamics of the airframe
model at a trimmed operating point.

4 Compute the flying qualities for the airframe, including short- and long-period (phugoid) mode
characteristics of the specified state space model, using
computeLongitudinalFlyingQualities. Compute lateral-directional (Dutch roll, roll, and
spiral) mode characteristics, using computeLateralDirectionalFlyingQualities.

For example:
asbFlightControlAnalysis('6DOF', 'DehavillandBeaverAnalysisModel');
opSpecDefault = DehavillandBeaver6DOFOpSpec('DehavillandBeaverAnalysisModel');
opTrim = trimAirframe('DehavillandBeaverAnalysisModel', opSpecDefault);
linSys = linearizeAirframe('DehavillandBeaverAnalysisModel', opTrim);
lonFlyingQual = computeLongitudinalFlyingQualities('DehavillandBeaverAnalysisModel', linSys)
latFlyingQual = computeLateralDirectionalFlyingQualities('DehavillandBeaverAnalysisModel', linSys)

Plot Short-Period Undamped Natural Frequency Results
After computing the lateral-directional handling qualities, you can plot the short-period undamped
natural frequency response ωnSP using the shortPeriodCategoryAPlot function. To plot the
category B or category C flight phase, use the shortPeriodCategoryBPlot or
shortPeriodCategoryCPlot function. This example describes how to plot the short-period
undamped natural frequency response for the Sky Hogg model.
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1 Start the flight control analysis template for the 3DOF configuration.

asbFlightControlAnalysis('3DOF')

The 3DOF Sky Hogg Longitudinal Flying Quality Analysis project starts in the
Simulink Editor.

2 To compute longitudinal and lateral-directional flying qualities, in the Analysis Workflow
section, click through the guided workflow, click OK when prompted.

3 After computing longitudinal and lateral-directional flying qualities, find and double-click the
lonFQ structure in your workspace.

In the variables viewer, double-click the ShortPeriodMode variable.

4 Check that the wn variable exists. The wn variable is the short-period undamped natural
frequency response you want to plot.

5 Plot the short-period undamped natural frequency response. In the MATLAB Command Window,
use the shortPeriodCategoryAPlot function. For example, for a load factor per angle of
attack of 10, enter this command.

shortPeriodCategoryAPlot(10, lonFQ.ShortPeriodMode.wn, 'ro')

A figure window with the plotted short-period undamped natural frequency response displays.
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6 To evaluate if the results are within your tolerance limits, check that the red dot is within your
limits.

See Also
asbFlightControlAnalysis | computeLateralDirectionalFlyingQualities |
computeLongitudinalFlyingQualities | linearizeAirframe | trimAirframe |
shortPeriodCategoryAPlot | shortPeriodCategoryBPlot | shortPeriodCategoryCPlot |
Model Linearizer
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Model Spacecraft
To model, simulate, and visualize the motion and dynamics of spacecraft, use the Spacecraft library
blocks. Use the Spacecraft Dynamics sublibrary blocks to define spacecraft constellation dynamics,
orbit propagation, or attitude profile. Use the CubeSat Vehicles sublibrary blocks to define a single
CubeSat vehicle.

The Spacecraft Dynamics library contains:

• Spacecraft Dynamics block — Models translational and rotational dynamics of spacecraft using
numerical integration. It computes the position, velocity, attitude, and angular velocity of one or
more spacecraft over time.

You can define orbital states as a set of orbital elements or as position and velocity state vectors in
an inertial (ICRF) or fixed-frame (FF) coordinate system. To propagate orbital states, the block
uses the gravity model defined in the "Central Body" section. It also uses external accelerations
and forces provided as inputs to the block.

You can define attitude states using quaternions, direction cosine matrices (DCMs), or Euler
angles. To propagate attitude states, the block uses moments provided as inputs to the block and
mass properties defined in the "Mass" section.

• Orbit Propagator — Propagates the orbit of one or more spacecraft by a propagation method. The
library contains two versions of the Orbit Propagator block, each preconfigured for a different
propagation method, Kepler (unperturbed) or Numerical (high precision). The Kepler
(unperturbed) version of the block uses a universal variable formulation propagation method that
is considered faster. The Numerical (high precision) version of the block uses a numerical
integration propagation method, which is considered more accurate and therefore, slower.

To use, define orbital states as a set of orbital elements or as position and velocity state vectors in
an inertial (ICRF) or fixed-frame coordinate system.

• Attitude Profile — Calculate the shortest quaternion rotation that aligns the primary alignment
vector with the primary constraint vector.

Provide the primary constraint as either a pointing mode, or via a custom constraint vector. The
block then aligns secondary alignment and constraint vectors as much as possible without
breaking primary alignment.

The CubeSat Vehicles library contains the CubeSat Vehicle, which provides a high level mission
planning/rapid prototyping option to quickly model and propagate satellite orbits, one satellite at a
time. For more information on the CubeSat Vehicle block, see “Model and Simulate CubeSats” on
page 2-64. To propagate multiple satellites simultaneously, see the Orbit Propagator block.

See Also
Attitude Profile | CubeSat Vehicle | Orbit Propagator | Spacecraft Dynamics

Related Examples
• “Model and Simulate CubeSats” on page 2-64
• “Getting Started with the Spacecraft Dynamics Block” on page 9-104
• “Constellation Modeling with the Orbit Propagator Block” on page 9-81
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• “Developing the Apollo Lunar Module Digital Autopilot” on page 9-132
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Model and Simulate CubeSats
To create models, use the CubeSat Vehicle blocks, model template, and project. Explore the
spacecraft example modeling multiple spacecraft. The CubeSat Vehicle block propagates one satellite
at a time. To propagate multiple satellites simultaneously, use the Orbit Propagator block. To
calculate shortest quaternion rotation, use the Attitude Profile block.

To help you get started modeling and simulating spacecraft, Aerospace Blockset provides a project
and model on the Simulink Start Page.

• CubeSat Vehicle Model template — A model template (CubeSat Simulation Project) that
illustrates how to propagate and visualize CubeSat trajectories using the CubeSat Vehicle block.
The Spherical Harmonic Gravity Model block is used as the gravitational potential source for orbit
propagation. The preconfigured pointing modes set in the CubeSat Vehicle block control the
attitude.

• CubeSat Simulation Project — A ready-to-simulate project (CubeSat Simulation Project)
that illustrates how to create a detailed CubeSat system design in Simulink by adding in detailed
vehicle components to the provided framework.

• CubeSat Model-Based System Engineering Project — A ready-to-simulate project (CubeSat
Model-based System Engineering Project) that shows how to model a space mission
architecture in Simulink with System Composer™ and Aerospace Blockset for a 1U CubeSat in low
Earth orbit (LEO).

CubeSat Vehicle Model Template
The template model is a ready-to-simulate example that contains a CubeSat Vehicle block with
visualization using Simulink 3D Animation.

For a project that illustrates the use of the Vehicle Model block in place of the CubeSat Vehicle Model
block, see “CubeSat Simulation Project” on page 2-66.

1 Start the CubeSat Vehicle Model template.
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2 Click Create Model.

3 The CubeSat Vehicle block models a simple CubeSat vehicle that you can use as is, with the
CubeSat Vehicle block configured to use the initial orbital state as a set of Keplerian orbital
elements.

The model uses the Spherical Harmonic Gravity Model block to provide the vehicle gravity for
the CubeSat.

To familiarize yourself with CubeSats, experiment with the CubeSat Vehicle block settings.

• On the CubeSat Orbit tab of the block, you can optionally use the Input method parameter
to change the initial orbital state as a set of:
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• Position and velocity state vectors in Earth-centered inertial axes
• Position and velocity state vectors in Earth-centered Earth-fixed axes
• Latitude, longitude, altitude, and velocity of the body with respect to ECEF, expressed in

the NED frame
• On the CubeSat Attitude tab, you can specify the alignment and constraint vectors to define

the CubeSat attitude control.

• The CubeSat vehicle first aligns the primary alignment vector with the primary constraint
vector. The CubeSat vehicle then attempts to align the secondary alignment vector with
the secondary constraint vector as closely as possible without affecting primary alignment.

• The CubeSat Altitude tab also lets you choose between preconfigured Earth (Nadir) Earth
Pointing (default) and Sun Tracking attitude control modes.

• On the Earth Orientation Parameters tab, you can direct the block to include higher order
earth orientation parameters in transformations between the ECI and ECEF coordinate
systems.

4 Run and simulate the model.
5 To view the output signals from the CubeSat, double-click the Scopes subsystem and open the

multiple scopes.
6 If you have a valid Simulink 3D Animation license, you can also visualize the orbit in the CubeSat

Orbit Animation window.
7 Save a copy of the orbit propagation model. You can use this model for the mission analysis live

script.

The CubeSat Vehicle Model template CubeSat Vehicle block uses simple preconfigured orbit and
attitude control modes. To model and simulate CubeSat vehicles using your own detailed components,
consider the CubeSat Simulation Project from the Simulink Start Page. For more information, see
“CubeSat Simulation Project” on page 2-66

CubeSat Simulation Project
The project is a ready-to-simulate example with visualization using Simulink 3D Animation. This
example uses a Vehicle Model subsystem in place of a CubeSat Vehicle block.

For a model that also models a space mission architecture with System Composer, see “CubeSat
Model-Based System Engineering Project” on page 2-69.

1 Start the CubeSat Simulation Project.
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2 Click Create Project and follow the instructions.

3 The Vehicle Model subsystem models a CubeSat vehicle that you can use as is.

To create your own more sophisticated satellite models, experiment with the Vehicle Model
framework. For example, you can replace the perfect thruster model included by default in the
actuator subsystem with your own more realistic thruster or reaction wheel model.

4 To change the orbit trajectory and attitude of the CubeSat, in the Mission Configuration section,
double-click the Edit Initial Orbit and Attitude block. These parameters have the same intent as
the corresponding parameters as the CubeSat Vehicle block.

5 Run and simulate the model.
6 To view the output signals from the CubeSat, double-click the Scopes subsystem and open the

multiple scopes.
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7 If you have a license for Simulink 3D Animation, you can also visualize the orbit in an animation
window. Double-click the Visualization subsystem and click the Open Simulink 3D Animation
window button.

The CubeSat Orbit Animation window opens.
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CubeSat Model-Based System Engineering Project
The CubeSat Model-Based System Engineering (MBSE) Project is a simulation-ready example that
shows how to model a space mission architecture with System Composer and Aerospace Blockset.
The project references the “CubeSat Simulation Project” on page 2-66 to reuse subsystem models,
then adds a System Composer architecture layer, links system requirements to components in the
architecture, and verifies the top-level mission requirement with Simulink Test™. The project
visualizes results using Simulink 3D Animation, Aerospace Toolbox satellite scenarios, and Mapping
Toolbox™.

1 Open the CubeSat Model-Based System Engineering Project, click Create Project, and follow
the instructions.
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2 From the Projects Shortcut tab in the MATLAB Command Window, click MBSE Template
Overview.

The template overview describes the project and how to model a space mission architecture.
3 Use the overview to explore the asbCubeSatArchModel architecture and learn how to extend

the architecture using System Composer.

The project helps define an architecture within System Composer. The architecture in this
example is based on CubeSat Reference Model (CRM) developed by the International Council on
Systems Engineering (INCOSE) Space Systems Working Group (SSWG) (https://www.incose.org/
incose-member-resources/working-groups/Application/space-systems).

4 To view the underlying parts of a component, double-click the component. For example, to view
the architecture model for the mission, double-click CubeSat Mission Enterprise.
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This model consists of System Composer components that model the mission enterprise.
5 Use the MBSE Template Overview to navigate the project and learn how to use System

Composer elements to model the space mission architecture.

With System Composer:

a Extend architecture elements by adding domain-specific metadata to the element using
stereotypes. Apply stereotypes to components, connectors, ports, and other architecture
elements to provide these elements with a common set of properties. To view, edit, or add
new stereotypes to a profile, on the Modeling tab, click Profile Editor and select a
stereotype profile. For this example, open the CubeSatProfile.xml profile.
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You can modify a profile, add new profiles, and apply new profiles to a component.
b Define the kind of information that flows through a port using interfaces. To view, edit, or

add new interfaces to a port, on the Modeling tab, click Interface Editor and select an
interface. For example, select asbCubeSatModelData.sldd > ACSOutBus.

c Visualize the system with an Architecture view by clicking Views > Architecture Views and
selecting a view, for example, CubeSat MBSE Demo.
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d To establish traceability, link system requirements by allocating functional requirements to
components. In the Apps tab of the model, select Requirements Manager.
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e For more information on working with this project, such as connecting the architecture to
design models or simulating the architecture, see the MBSE Template Overview.

6 To validate the top-level mission requirement, use Simulink Test.
7 To understand how to perform a mission analysis of the CubeSat using the satellite scenario

tools, from the Projects Shortcut tab in the MATLAB Command Window, click Analyze with
Satellite Scenario.

Utility Functions
Aerospace Toolbox provides utility functions for coordinate transformations. You can use these
functions to go between the various initial condition modes of the CubeSat Vehicle block.

Action Function
Calculate position and velocity vectors in Earth-
centered inertial mean-equator mean-equinox

ecef2eci

Calculate position, velocity, and acceleration
vectors in Earth-centered Earth-fixed (ECEF)
coordinate system

eci2ecef

Calculate Greenwich mean and apparent sidereal
times

siderealTime

2 Aerospace Blockset Software

2-74



Action Function
Calculate Keplerian orbit elements using
geocentric equatorial position and velocity
vectors

ijk2keplerian

Calculate position and velocity vectors in
geocentric equatorial coordinate system using
Keplerian orbit elements

keplerian2ijk

References
[1] Vallado, D. A. Fundamentals of Astrodynamics and Applications. New York: McGraw-Hill, 1997.

See Also
Attitude Profile | CubeSat Vehicle | Orbit Propagator | ecef2eci | eci2ecef | ijk2keplerian |
keplerian2ijk | siderealTime

More About
• “Model-Based Systems Engineering for Space-Based Applications” on page 9-168

 Model and Simulate CubeSats

2-75





Case Studies

• “Ideal Airspeed Correction” on page 3-2
• “1903 Wright Flyer” on page 3-7
• “NASA HL-20 Lifting Body Airframe” on page 3-14
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Ideal Airspeed Correction
In this section...
“Introduction” on page 3-2
“Airspeed Correction Models” on page 3-2
“Measure Airspeed” on page 3-3
“Model Airspeed Correction” on page 3-4
“Simulate Airspeed Correction” on page 3-6

Introduction
This case study simulates indicated and true airspeed. It constitutes a fragment of a complete
aerodynamics problem, including only measurement and calibration.

Airspeed Correction Models
To view the airspeed correction models, enter the following at the MATLAB command line:

aeroblk_indicated
aeroblk_calibrated

aeroblk_indicated Model
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aeroblk_calibrated Model

Measure Airspeed
To measure airspeed, most light aircraft designs implement pitot-static airspeed indicators based on
Bernoulli's principle. Pitot-static airspeed indicators measure airspeed by an expandable capsule that
expands and contracts with increasing and decreasing dynamic pressure. This is known as calibrated
airspeed (CAS). It is what a pilot sees in the cockpit of an aircraft.

To compensate for measurement errors, it helps to distinguish three types of airspeed. These types
are explained more completely in the following.

Airspeed Type Description
Calibrated Indicated airspeed corrected for calibration error
Equivalent Calibrated airspeed corrected for compressibility error
True Equivalent airspeed corrected for density error

Calibration Error

An airspeed sensor features a static vent to maintain its internal pressure equal to atmospheric
pressure. Position and placement of the static vent with respect to the angle of attack and velocity of
the aircraft determines the pressure inside the airspeed sensor and therefore the calibration error.
Thus, a calibration error is specific to an aircraft's design.

An airspeed calibration table, which is usually included in the pilot operating handbook or other
aircraft documentation, helps pilots convert the indicated airspeed to the calibrated airspeed.

Compressibility Error

The density of air is not constant, and the compressibility of air increases with altitude and airspeed,
or when contained in a restricted volume. A pitot-static airspeed sensor contains a restricted volume
of air. At high altitudes and high airspeeds, calibrated airspeed is always higher than equivalent
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airspeed. Equivalent airspeed can be derived by adjusting the calibrated airspeed for compressibility
error.

Density Error

At high altitudes, airspeed indicators read lower than true airspeed because the air density is lower.
True airspeed represents the compensation of equivalent airspeed for the density error, the
difference in air density at altitude from the air density at sea level, in a standard atmosphere.

Model Airspeed Correction
The aeroblk_indicated and aeroblk_calibrated models show how to take true airspeed and
correct it to indicated airspeed for instrument display in a Cessna 150M Commuter light aircraft. The
aeroblk_indicated model implements a conversion to indicated airspeed. The
aeroblk_calibrated model implements a conversion to true airspeed.

Each model consists of two main components:

• “COESA Atmosphere Model Block” on page 3-4 calculates the change in atmospheric conditions
with changing altitude.

• “Ideal Airspeed Correction Block” on page 3-4 transforms true airspeed to calibrated airspeed
and vice versa.

COESA Atmosphere Model Block

The COESA Atmosphere Model block is a mathematical representation of the U.S. 1976 COESA
(Committee on Extension to the Standard Atmosphere) standard lower atmospheric values for
absolute temperature, pressure, density, and speed of sound for input geopotential altitude. Below
32,000 meters (104,987 feet), the U.S. Standard Atmosphere is identical with the Standard
Atmosphere of the ICAO (International Civil Aviation Organization).

The aeroblk_indicated and aeroblk_calibrated models use the COESA Atmosphere Model
block to supply the speed of sound and air pressure inputs for the Ideal Airspeed Correction block in
each model.

Ideal Airspeed Correction Block

The Ideal Airspeed Correction block compensates for airspeed measurement errors to convert
airspeed from one type to another type. The following table contains the Ideal Airspeed Correction
block's inputs and outputs.

Airspeed Input Airspeed Output
True Airspeed Equivalent airspeed

Calibrated airspeed
Equivalent Airspeed True airspeed

Calibrated airspeed
Calibrated Airspeed True airspeed

Equivalent airspeed

In the aeroblk_indicated model, the Ideal Airspeed Correction block transforms true to calibrated
airspeed. In the aeroblk_calibrated model, the Ideal Airspeed Correction block transforms
calibrated to true airspeed.
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The following sections explain how the Ideal Airspeed Correction block mathematically represents
airspeed transformations:

• “True Airspeed Implementation” on page 3-5
• “Calibrated Airspeed Implementation” on page 3-5
• “Equivalent Airspeed Implementation” on page 3-5

True Airspeed Implementation

True airspeed (TAS) is implemented as an input and as a function of equivalent airspeed (EAS),
expressible as

TAS = EAS × a
a0 δ

where

α Speed of sound at altitude in m/s
δ Relative pressure ratio at altitude
a0 Speed of sound at mean sea level in m/s

Calibrated Airspeed Implementation

Calibrated airspeed (CAS), derived using the compressible form of Bernoulli's equation and assuming
isentropic conditions, can be expressed as

CAS =
2γP0

γ− 1 ρ0
q
P0

+ 1
γ− 1 /γ

− 1

where

ρ0 Air density at mean sea level in kg/m3

P0 Static pressure at mean sea level in N/m2

γ Ratio of specific heats
q Dynamic pressure at mean sea level in N/m2

Equivalent Airspeed Implementation

Equivalent airspeed (EAS) is the same as CAS, except static pressure at sea level is replaced by static
pressure at altitude.

EAS = 2γP
γ− 1 ρ0

q
P + 1

γ− 1 /γ
− 1

The symbols are defined as follows:

ρ0 Air density at mean sea level in kg/m3

P Static pressure at altitude in N/m2

γ Ratio of specific heats
q Dynamic pressure at mean sea level in N/m2
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Simulate Airspeed Correction
In the aeroblk_indicated model, the aircraft is defined to be traveling at a constant speed of 72
knots (true airspeed) and altitude of 500 feet. The flaps are set to 40 degrees. The COESA
Atmosphere Model block takes the altitude as input and outputs the speed of sound and air pressure.
Taking the speed of sound, air pressure, and airspeed as inputs, the Ideal Airspeed Correction block
converts true airspeed to calibrated airspeed. Finally, the Calculate IAS subsystem uses the flap
setting and calibrated airspeed to calculate indicated airspeed.

The model's Display block shows both indicated and calibrated airspeeds.

In the aeroblk_calibrated model, the aircraft is defined to be traveling at a constant speed of 70
knots (indicated airspeed) and altitude of 500 feet. The flaps are set to 10 degrees. The COESA
Atmosphere Model block takes the altitude as input and outputs the speed of sound and air pressure.
The Calculate CAS subsystem uses the flap setting and indicated airspeed to calculate the
calibrated airspeed. Finally, using the speed of sound, air pressure, and true calibrated airspeed as
inputs, the Ideal Airspeed Correction block converts calibrated airspeed back to true airspeed.

The model's Display block shows both calibrated and true airspeeds.

See Also

Related Examples
• “Indicated Airspeed from True Airspeed Calculation” on page 9-45
• “True Airspeed from Indicated Airspeed Calculation” on page 9-53
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1903 Wright Flyer
In this section...
“Introduction” on page 3-7
“Wright Flyer Model” on page 3-7
“Airframe Subsystem” on page 3-8
“Environment Subsystem” on page 3-10
“Pilot Subsystem” on page 3-11
“Run the Simulation” on page 3-11
“References” on page 3-12

Introduction

Note The final section of this study requires the Simulink 3D Animation software.

This case study describes a model of the 1903 Wright Flyer. Built by Orville and Wilbur Wright, the
Wright Flyer took to the skies in December 1903 and opened the age of controlled flight. The Wright
brothers' flying machine achieved the following goals:

• Left the ground under its own power
• Moved forward and maintained its speed
• Landed at an elevation no lower than where it started

This model is based on an earlier simulation [1] that explored the longitudinal stability of the Wright
Flyer and therefore modeled only forward and vertical motion along with the pitch angle. The Wright
Flyer suffered from numerous engineering challenges, including dynamic and static instability.
Laterally, the Flyer tended to overturn in crosswinds and gusts, and longitudinally, its pitch angle
would undulate [2].

Under these constraints, the model recreates the longitudinal flight dynamics that pilots of the Wright
Flyer would have experienced. Because they were able to control lateral motion, Orville and Wilbur
Wright were able to maintain a relatively straight flight path.

Note, running this model generates information messages in the MATLAB Command Window and
assertion warning messages in the Diagnostic Viewer. This is because the model illustrates the use of
the Assertion block to indicate that the flyer is hitting the ground when landing.

Wright Flyer Model
Open the Wright Flyer model by entering aeroblk_wf_3dof at the MATLAB command line.
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Airframe Subsystem
The Airframe subsystem simulates the rigid body dynamics of the Wright Flyer airframe, including
elevator angle of attack, aerodynamic coefficients, forces and moments, and three-degrees-of-freedom
equations of motion.

The Airframe subsystem consists of the following parts:

• “Elevator Angle of Attack Subsystem” on page 3-8
• “Aerodynamic Coefficients Subsystem” on page 3-9
• “Forces and Moments Subsystem” on page 3-9
• “3DOF (Body Axes) Block” on page 3-9

Elevator Angle of Attack Subsystem

The Elevator Angle of Attack subsystem calculates the effective elevator angle for the Wright Flyer
airframe and feeds its output to the Pilot subsystem.
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Aerodynamic Coefficients Subsystem

The Aerodynamic Coefficients subsystem contains aerodynamic data and equations for calculating the
aerodynamic coefficients, which are summed and passed to the Forces and Moments subsystem.
Stored in data sets, the aerodynamic coefficients are determined by interpolation using Prelookup
blocks.

Forces and Moments Subsystem

The aerodynamic forces and moments acting on the airframe are generated from aerodynamic
coefficients. The Forces and Moments subsystem calculates the body forces and body moments acting
on the airframe about the center of gravity. These forces and moments depend on the aerodynamic
coefficients, thrust, dynamic pressure, and reference airframe parameters.

3DOF (Body Axes) Block

The 3DOF (Body Axes) block use equations of motion to define the linear and angular motion of the
Wright Flyer airframe. It also performs conversions from the original model's axis system and the
body axes.
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3DOF (Body Axes) Block Parameters

Environment Subsystem
The first and final flights of the Wright Flyer occurred on December 17, 1903. Orville and Wilbur
Wright chose an area near Kitty Hawk, North Carolina, situated near the Atlantic coast. Wind gusts of
more than 25 miles per hour were recorded that day. After the final flight on that blustery December
day, a wind gust caught and overturned the Wright Flyer, damaging it beyond repair.

The Environment subsystem of the Wright Flyer model contains a variety of blocks from the
Environment sublibrary of the Aerospace Blockset software, including wind, atmosphere, and gravity,
and calculates airspeed and dynamic pressure. The Discrete Wind Gust Model block provides wind
gusts to the simulated environment. The other blocks are

• The Incidence & Airspeed block calculates the angle of attack and airspeed.
• The COESA Atmosphere Model block calculates the air density.
• The Dynamic Pressure block computes the dynamic pressure from the air density and velocity.
• The WGS84 Gravity Model block produces the gravity at the Wright Flyer's latitude, longitude,

and height.
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Pilot Subsystem
The Pilot subsystem controls the aircraft by responding to both pitch angle (attitude) and angle of
attack. If the angle of attack differs from the set angle of attack by more than one degree, the Pilot
subsystem responds with a correction of the elevator (canard) angle. When the angular velocity
exceeds +/- 0.02 rad/s, angular velocity and angular acceleration are also taken into consideration
with additional corrections to the elevator angle.

Pilot reaction time largely determined the success of the flights [1]. Without an automatic controller,
a reaction time of 0.06 seconds is optimal for successful flight. The Delay of Pilot (Variable Transport
Delay) block recreates this effect by producing a delay of no more than 0.08 second.

Run the Simulation
The default values for this simulation allow the Wright Flyer model to take off and land successfully.
The pilot reaction time (wf_B3) is set to 0.06 seconds, the desired angle of attack (wf_alphaa) is
constant, and the altitude attained is low. The Wright Flyer model reacts similarly to the actual
Wright Flyer. It leaves the ground, moves forward, and lands on a point as high as that from which it
started. This model exhibits the longitudinal undulation in attitude of the original aircraft.
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Attitude Scope (Measured in Radians)

A pilot with quick reaction times and ideal flight conditions makes it possible to fly the Wright Flyer
successfully. The Wright Flyer model confirms that controlling its longitudinal motion was a serious
challenge. The longest recorded flight on that day lasted a mere 59 seconds and covered 852 feet.

Virtual Reality Visualization of the Wright Flyer

Note This section requires the Simulink 3D Animation.

The Wright Flyer model also provides a virtual world visualization, coded in Virtual Reality Modeling
Language (VRML) [3]. The VR Sink block in the main model allows you to view the flight motion in
three dimensions.

1903 Wright Flyer Virtual Reality World

References

[1] Hooven, Frederick J., “Longitudinal Dynamics of the Wright Brothers' Early Flyers: A Study in
Computer Simulation of Flight,” from The Wright Flyer: An Engineering Perspective, ed.
Howard S. Wolko, Smithsonian Institution Press, 1987.
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See Also
3DOF (Body Axes) | Incidence & Airspeed | COESA Atmosphere Model | Dynamic Pressure | WGS84
Gravity Model

External Websites
• https://www.wrightexperience.com
• https://wright.nasa.gov
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NASA HL-20 Lifting Body Airframe

In this section...
“Introduction” on page 3-14
“NASA HL-20 Lifting Body” on page 3-14
“The HL-20 Airframe and Controller Model” on page 3-15

Introduction
This case study models the airframe of a NASA HL-20 lifting body, a low-cost complement to the
Space Shuttle orbiter. The HL-20 is unpowered, but the model includes both airframe and controller.

For most flight control designs, the airframe, or plant model, needs to be modeled, simulated, and
analyzed. Ideally, this airframe should be modeled quickly, reusing blocks or model structure to
reduce validation time and leave more time available for control design. In this study, the Aerospace
Blockset software efficiently models portions of the HL-20 airframe. The remaining portions,
including calculation of the aerodynamic coefficients, are modeled with the Simulink software. This
case study examines the HL-20 airframe model and touches on how the aerodynamic data are used in
the model.

NASA HL-20 Lifting Body
The HL-20, also known as the Personnel Launch System (PLS), is a lifting body reentry vehicle
designed to complement the Space Shuttle orbiter. It was developed originally as a low-cost solution
for getting to and from low Earth orbit. It can carry up to 10 people and a limited cargo [1].

The HL-20 lifting body can be placed in orbit either by launching it vertically with booster rockets or
by transporting it in the payload bay of the Space Shuttle orbiter. The HL-20 lifting body deorbits
using a small onboard propulsion system. Its reentry profile is nose first, horizontal, and unpowered.

Top-Front View of the HL-20 Lifting Body (Photo: NASA Langley)

The HL-20 design has a number of benefits:
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• Rapid turnaround between landing and launch reduces operating costs.
• The HL-20 has exceptional flight safety.
• It can land conventionally on aircraft runways.

Potential uses for the HL-20 include

• Orbital rescue of stranded astronauts
• International Space Station crew exchanges
• Observation missions
• Satellite servicing missions

Although the HL-20 program is not currently active, the aerodynamic data from HL-20 tests are being
used in current NASA projects [2].

The HL-20 Airframe and Controller Model
Open the HL-20 airframe and controller model.

Modeling Assumptions and Limitations

Preliminary aerodynamic data for the HL-20 lifting body are taken from NASA document TM4302 [1].

The airframe model incorporates several key assumptions and limitations:

• The airframe is assumed to be rigid and have constant mass, center of gravity, and inertia, since
the model represents only the unpowered reentry portion of a mission.

• HL-20 is assumed to be a laterally symmetric vehicle.
• Compressibility (Mach) effects are assumed to be negligible.
• Control effectiveness is assumed to vary nonlinearly with angle of attack and linearly with angle of
deflection. Control effectiveness is not dependent on sideslip angle.

• The nonlinear six-degrees-of-freedom aerodynamic model is a representation of an early version of
the HL-20. Therefore, the model is not intended for realistic performance simulation of later
versions of the HL-20.

The typical airframe model consists of a number of components, such as
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• Equations of motion
• Environmental models
• Calculation of aerodynamic coefficients, forces, and moments

The airframe subsystem of the HL-20 model contains five subsystems, which model the typical
airframe components:

• “6DOF (Euler Angles) Subsystem” on page 3-16
• “Environmental Models Subsystem” on page 3-16
• “Alpha, Beta, Mach Subsystem” on page 3-18
• “Aerodynamic Coefficients Subsystem” on page 3-19
• “Forces and Moments Subsystem” on page 3-21

HL-20 Airframe Subsystem

6DOF (Euler Angles) Subsystem

The 6DOF (Euler Angles) subsystem contains the six-degrees-of-freedom equations of motion for the
airframe. In the 6DOF (Euler Angles) subsystem, the body attitude is propagated in time using an
Euler angle representation. This subsystem is one of the equations of motion blocks from the
Aerospace Blockset library. A quaternion representation is also available. See the 6DOF (Euler
Angles) and 6DOF (Quaternion) block reference pages for more information on these blocks.

Environmental Models Subsystem

The Environmental Models subsystem contains the following subsystems and blocks:

• The WGS84 Gravity Model block implements the mathematical representation of the geocentric
equipotential ellipsoid of the World Geodetic System (WGS84).

See the WGS84 Gravity Model block reference page for more information on this block.
• The COESA Atmosphere Model block implements the mathematical representation of the 1976

Committee on Extension to the Standard Atmosphere (COESA) standard lower atmospheric values
for absolute temperature, pressure, density, and speed of sound, given the input geopotential
altitude.
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See the COESA Atmosphere Model block reference page for more information on this block.
• The Wind Models subsystem contains the following blocks:

• The Wind Shear Model block adds wind shear to the model.

See the Wind Shear Model block reference page for more information on this block.
• The Discrete Wind Gust Model block implements a wind gust of the standard “1 - cosine”

shape.

See the Discrete Wind Gust Model block reference page for more information on this block.
• The Dryden Wind Turbulence Model (Continuous) block uses the Dryden spectral

representation to add turbulence to the aerospace model by passing band-limited white noise
through appropriate forming filters.

See the Dryden Wind Turbulence Model (Continuous) block reference page for more
information on this block.

The environmental models implement mathematical representations within standard references, such
as U.S. Standard Atmosphere, 1976.

Environmental Models in HL-20 Airframe Model
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Wind Models in HL-20 Airframe Model

Alpha, Beta, Mach Subsystem

The Alpha, Beta, Mach subsystem calculates additional parameters needed for the aerodynamic
coefficient computation and lookup. These additional parameters include

• Mach number
• Incidence angles ( )
• Airspeed
• Dynamic pressure

The Alpha, Beta, Mach subsystem corrects the body velocity for wind velocity and corrects the body
rates for wind angular acceleration.

Additional Computed Parameters for HL-20 Airframe Model (Alpha, Beta, Mach Subsystem)
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Aerodynamic Coefficients Subsystem

The Aerodynamic Coefficients subsystem contains aerodynamic data and equations for calculating the
six aerodynamic coefficients, which are implemented as in reference [1]. The six aerodynamic
coefficients follow.

Cx Axial-force coefficient
Cy Side-force coefficient
Cz Normal-force coefficient
Cl Rolling-moment coefficient
Cm Pitching-moment coefficient
Cn Yawing-moment coefficient

Ground and landing gear effects are not included in this model.

The contribution of each of these coefficients is calculated in the subsystems (body rate, actuator
increment, and datum), and then summed and passed to the Forces and Moments subsystem.

Aerodynamic Coefficients in HL-20 Airframe Model

The aerodynamic data was gathered from wind tunnel tests, mainly on scaled models of a preliminary
subsonic aerodynamic model of the HL-20. The data was curve fitted, and most of the aerodynamic
coefficients are described by polynomial functions of angle of attack and sideslip angle. In-depth
details about the aerodynamic data and the data reduction can be found in reference [1].

The polynomial functions contained in the aeroblk_init_hl20.m file are used to calculate lookup
tables used by the model's preload function. Lookup tables substitute for polynomial functions.
Depending on the order and implementation of the function, using lookup tables can be more efficient
than recalculating values at each time step with functions. To further improve efficiency, most tables
are implemented as PreLook-up Index Search and Interpolation (n-D) using PreLook-up blocks. These
blocks improve performance most when the model has a number of tables with identical breakpoints.
These blocks reduce the number of times the model has to search for a breakpoint in a given time
step. Once the tables are populated by the preload function, the aerodynamic coefficient can be
computed.

The equations for calculating the six aerodynamic coefficients are divided among three subsystems:
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• “Datum Coefficients Subsystem” on page 3-20
• “Body Rate Damping Subsystem” on page 3-20
• “Actuator Increment Subsystem” on page 3-20

Summing the Datum Coefficients, Body Rate Damping, and Actuator Increments subsystem outputs
generates the six aerodynamic coefficients used to calculate the airframe forces and moments [1].

Datum Coefficients Subsystem

The Datum Coefficients subsystem calculates coefficients for the basic configuration without control
surface deflection. These datum coefficients depend only on the incidence angles of the body.

Body Rate Damping Subsystem

Dynamic motion derivatives are computed in the Body Rate Damping subsystem.

Actuator Increment Subsystem

Lookup tables determine the incremental changes to the coefficients due to the control surface
deflections in the Actuator Increment subsystem. Available control surfaces include symmetric wing
flaps (elevator), differential wing flaps (ailerons), positive body flaps, negative body flaps, differential
body flaps, and an all-movable rudder.
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Forces and Moments Subsystem

The Forces and Moments subsystem calculates the body forces and body moments acting on the
airframe about the center of gravity. These forces and moments depend on the aerodynamic
coefficients, thrust, dynamic pressure, and reference airframe parameters.

Complete the Model

These subsystems that you have examined complete the HL-20 airframe. The next step in the flight
control design process is to analyze, trim, and linearize the HL-20 airframe so that a flight control
system can be designed for it. You can see an example of an auto-land flight control for the HL-20
airframe in the aeroblk_HL20 example.

References
[1] Jackson, E. B., and C. L. Cruz, “Preliminary Subsonic Aerodynamic Model for Simulation Studies

of the HL-20 Lifting Body,” NASA TM4302 (August 1992)..

[2] Morring, F., Jr., “ISS `Lifeboat' Study Includes ELVs,” Aviation Week & Space Technology (May 20,
2002).

See Also

External Websites
• http://www.astronautix.com/h/hl-20.html
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Customize 3D Scenes for Aerospace Blockset Simulations
Aerospace Blockset contains a prebuilt airport scene in which to simulate and visualize the
performance of aerospace vehicles modeled in Simulink. This scene is visualized using a standalone
Unreal executable within the toolbox. If you have Unreal from Epic Games and the Aerospace
Blockset Interface for Unreal Engine Projects installed, you can customize this scene as well as an
additional Griffiss International Airport scene. You can also use the support package to simulate
within your scenes from your own custom project.

With custom scenes, you can co-simulate in both Simulink and the Unreal Editor so that you can
modify your scenes between simulation runs. To customize scenes, you should be familiar with
creating and modifying scenes in the Unreal Editor.

To customize 3D scenes, follow these steps:

1 “Install Support Package and Configure Environment” on page 4-3
2 “Migrate Projects Developed Using Prior Support Packages” on page 4-5
3 “Customize Scenes Using Simulink and Unreal Editor” on page 4-6
4 “Package Custom Scenes into Executable” on page 4-13

See Also
Simulation 3D Scene Configuration

Related Examples
• Using Unreal Engine with Simulink Video Tutorial
• “Get Started Communicating with the Unreal Engine Visualization Environment” on page 4-16
• “Create Empty Project in Unreal Engine” on page 4-51
• “Unreal Engine Simulation Environment Requirements and Limitations” on page 2-36

External Websites
• Unreal Engine
• Unreal Engine 5 Documentation
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Install Support Package and Configure Environment
To customize scenes in your installation of the Unreal Editor and simulate within these scenes in
Simulink, you must first install and configure the Aerospace Blockset Interface for Unreal Engine
Projects support package.

Verify Software and Hardware Requirements
Before installing the support package, make sure that your installed version of Unreal and your
environment meets the requirements described in “Unreal Engine Simulation Environment
Requirements and Limitations” on page 2-36. This topic also lists the supported Unreal Engine
version.

Note These installation instructions apply to R2022b. If you are using a previous release, see the
documentation for Other Releases.

Verify Software and Hardware Requirements
Before installing the support package, make sure that your environment meets the minimum software
and hardware requirements described in “Unreal Engine Simulation Environment Requirements and
Limitations” on page 2-36.

Install Support Package
To install the Aerospace Blockset Interface for Unreal Engine Projects support package, follow these
steps:

1 On the MATLAB Home tab, in the Environment section, select Add-Ons > Get Add-Ons.

2 In the Add-On Explorer window, search for the Aerospace Blockset Interface for Unreal Engine
Projects support package. Click Install.

Note You must have write permission for the installation folder.
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Configure Environment
The Aerospace Blockset Interface for Unreal Engine Projects support package includes these
components:

• An Unreal project, AutoVrtlEnv.uproject, and its associated files. The project includes
editable versions of the prebuilt 3D scenes that you can select from the Scene description
parameter of the Simulation 3D Scene Configuration block. To use this project, you must copy the
file to a folder on your local machine.

• A plugin, MathWorkInterface (with a folder name of MathWorkSimulation). This plugin
establishes the connection between MATLAB and the Unreal Editor and is required for co-
simulation. It also includes some shared automotive-oriented assets. You must copy this plugin to
your local installation of the editor.

• A second plugin, MathWorksAerospaceContent. This plugin contains the aerospace components
and connects them to MATLAB using the MathWorksSimulation plugin. You must also copy this
plugin to your local installation of the editor.

• A third plugin, RoadRunnerMaterials. This plugin is required for scenes created by the
RoadRunner scene editing software, and for packaging the project into an executable.

To configure your environment so that you can customize scenes, use copyExampleSim3dProject
to copy the support package components to a folder on your local machine. For example, this code
copies the files to C:\project.

sim3d.utils.copyExampleSim3dProject("C:\project");

If you want to use a project developed using a prior release of the Aerospace Blockset Interface for
Unreal Engine Projects support package, you must migrate the project to make it compatible with
Unreal Editor 4.26. See “Migrate Projects Developed Using Prior Support Packages” on page 4-5.
Otherwise, you can “Customize Scenes Using Simulink and Unreal Editor” on page 4-6.

Note If you want to use the plugins to co-simulate with more than one Unreal project, see Unreal
Engine 4.26 Plugins.

See Also
Simulation 3D Scene Configuration | copyExampleSim3dProject

More About
• “Customize 3D Scenes for Aerospace Blockset Simulations” on page 4-2
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Migrate Projects Developed Using Prior Support Packages
After you install the Aerospace Blockset Interface for Unreal Engine Projects support package as
described in “Install Support Package and Configure Environment” on page 4-3, you may need to
migrate your project. If your Simulink model uses an Unreal Engine executable or project developed
using a prior release of the support package, you must migrate the project to make it compatible with
Unreal Editor 4.26. Follow these steps:

1 Open Unreal Engine 4.26. For example, navigate to C:\Program Files\Epic Games
\UE_4.26\Engine\Binaries\Win64 and open UE4Editor.exe.

2 Use the Unreal Project Browser to open the project that you want to migrate.
3 Follow the prompts to open a copy of the project. The editor creates a new project folder in the

same location as the original, appended with 4.26. Close the editor.
4 In a file explorer, remove any spaces in the migrated project folder name. For example, rename

MyProject 4.26 to MyProject4.26.
5 Use MATLAB to open the migrated project in Unreal Editor 4.26. For example, if you have a

migrated project saved to the C:/Local folder, use this MATLAB code:

path = fullfile('C:','Local','MyProject4.26','MyProject.uproject');
editor = sim3d.Editor(path);
open(editor);

Note The support package may includes changes in the implementation of some actors.
Therefore, if the original project contains actors that are placed in the scene, some of them might
not fully migrate to Unreal Editor 4.26. To check, examine the Output Log.

The log might contain error messages. For more information, see the Unreal Engine 4
Documentation or contact MathWorks Technical Support.

6 Optionally, after you migrate the project, you can use the project to create an Unreal Engine
executable. See “Package Custom Scenes into Executable” on page 4-13.

After you migrate the project, you can create custom scenes. See “Customize Scenes Using Simulink
and Unreal Editor” on page 4-6.

Tip If your project cannot locate the support package plugins, you may need to copy the plugins to
the Unreal plugin folder or the Unreal project folder.

See Also
Simulation 3D Scene Configuration

More About
• “Customize Scenes Using Simulink and Unreal Editor” on page 4-6
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Customize Scenes Using Simulink and Unreal Editor
After you install the Aerospace Blockset Interface for Unreal Engine Projects support package as
described in “Install Support Package and Configure Environment” on page 4-3, you can simulate in
custom scenes simultaneously from both the Unreal Editor and Simulink. By using this co-simulation
framework, you can add aircraft and sensors to a Simulink model and then run this simulation in your
custom scene.

To use a project that you developed using a prior release of the support package, first migrate the
project to the currently supported Unreal Engine. See “Migrate Projects Developed Using Prior
Support Packages” on page 4-5.

Open Unreal Editor
Simulink cannot establish a connection with the editor if you open the Unreal Editor outside MATLAB
or Simulink.

To establish this connection, you must open your project from a Simulink model or use a MATLAB
function.

Open Unreal Editor from Simulink

1 Open a Simulink model configured to simulate in the 3D environment. At a minimum, the model
must contain a Simulation 3D Scene Configuration block.

2 In the Simulation 3D Scene Configuration block of this model, set the Scene source parameter
to Unreal Editor.

3 In the Project parameter, browse for the project file that contains the scenes that you want to
customize.

For example, this sample path specifies the AutoVrtlEnv project that comes installed with the
Aerospace Blockset Interface for Unreal Engine Projects support package.

C:\Local\AutoVrtlEnv\AutoVrtlEnv.uproject

This sample path specifies a custom project.

Z:\UnrealProjects\myProject\myProject.uproject
4 Click Open Unreal Editor. The Unreal Editor opens and loads a scene from your project.

Open Unreal Editor Using Command-Line Function

To open the AutoVrtlEnv.uproject file that was copied from the Aerospace Blockset Interface for
Unreal Engine Projects support package, specify the path to where you copied this project. For
example, if you copied the AutoVrtlEnv.uproject to C:/Local/AutoVrtlEnv, use this code:

path = fullfile('C:','Local','AutoVrtlEnv','AutoVrtlEnv.uproject');
editor = sim3d.Editor(path);
open(editor);

The editor opens the AutoVrtlEnv.uproject file. By default, the project displays the Straight
Highway scene whenever you open the editor from the AutoVrtlEnv.uproject.
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To open your own project, use the same commands used to open the AutoVrtlEnv.uproject file.
Update the path variable with the path to your .uproject file. For example, if you have a project
saved to the C:/Local folder, use this code:

path = fullfile('C:','Local','myProject','myProject.uproject');
editor = sim3d.Editor(path);
open(editor);

Create or Modify Scenes in Unreal Editor
After you open the editor, you can modify the scenes in your project or create new scenes.

Open Scene

In the Unreal Editor, scenes within a project are referred to as levels. Levels come in several types,
and scenes have a level type of map.

To open a prebuilt scene from the AutoVrtlEnv.uproject file, in the Content Browser pane
below the editor window, navigate to the MathWorksAerospaceContent > Maps folder. Then,
double-click the map that corresponds to the scene you want to modify.

Unreal Editor Map Aerospace Blockset Scene
Airport Airport
GriffissAirport Griffiss International Airport

To open a scene within your own project, in the Content Browser pane, navigate to the folder that
contains your scenes.

Send Data to Scene

The Simulation 3D Message Get block retrieves data from the Unreal Engine 3D visualization
environment. To use the block, you must configure scenes in the Unreal Engine environment to send
data to the Simulink model.

Receive Data from Scene

The Simulation 3D Message Set block sends data to the Unreal Engine 3D visualization environment.
To use the block, you must configure scenes in the Unreal Engine environment to receive data from
the Simulink model.

Create New Scene

To create a new scene in your project, from the top-left menu of the editor, select File > New Level.

Alternatively, you can create a new scene from an existing one. This technique is useful if you want to
use one of the prebuilt scenes in the AutoVtrlEnv project as a starting point for creating your own
scene. To save a version of the currently opened scene to your project, from the top-left menu of the
editor, select File > Save Current As. The new scene is saved to the same location as the existing
scene.
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Add Assets to Scene

In the Unreal Editor, elements within a scene are referred to as assets. To add assets to a scene, you
can browse or search for them in the Content Browser pane at the bottom and drag them into the
editor window.

When adding assets to a scene it is helpful to understand the origin and orientation of that scene’s
coordinate system.

Map Coordinate Direction Origin and Orientation
Airport X Aligned with the runway, X =

3532.5 meters at the start of the
runway.

Y Y = 0 at runway center.
Z Z = 0 at ground level.

Griffiss Airport X Aligned with true North, X =
200.1 meters at the threshold of
runway 33.

Y Aligned with true East, Y =
-194.7 meters at the threshold
of runway 33.

Z Z matches actual elevation data,
Z = 147.4 meters at ground
level at the threshold of runway
33.

The Unreal Editor uses a left-hand Z-up coordinate system, where the Y-axis points to the right. The
aerospace aircraft blocks in Aerospace Blockset use a right-hand Z-down coordinate system, where
the Y-axis points to the right. When positioning objects in a scene, keep this coordinate system
difference in mind.

When adding assets to a scene that is in the AutoVrtlEnv project, you can choose from a library of
aerospace-related assets. These assets are built as static meshes and begin with the prefix SM_.
Search for these objects in the Content Browser pane.

For example, to add a hangar to a scene in the AutoVrtlEnv project:

1 In the Content Browser pane at the bottom of the editor, navigate to the
MathWorksAerospaceContent folder.

2 Expand the Environment > Hangar > Mesh folder, or search for SM_Hangar. Drag the hangar
from the Content Browser into the editing window. You can then change the position of the
hangar in the editing window or on the Details pane on the right, in the Transform section.

If you want to override the default weather or use enhanced fog conditions in the scene, add the
Exponential Height Fog actor.
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For more information on modifying scenes and adding assets, see Unreal Engine 5 Documentation.

To migrate assets from the AutoVrtlEnv project into your own project file, see the Unreal Engine
documentation.

Use AutoVrtlEnv Project Lighting in Custom Scene

To use the lighting that comes installed with the AutoVrtlEnv project in Aerospace Blockset, follow
these steps.

1 On the World Settings tab, clear Force no precomputed lighting.

2 Under Build, select Lighting Quality > Production to rebuild the maps with production
quality. Rebuilding large maps can take time.

Run Simulation
Verify that the Simulink model and Unreal Editor are configured to co-simulate by running a test
simulation.

1 In the Simulink model, click Run.

Clicking Run starts the Simulink side of the simulation but not Unreal Editor. Continue with the
next two steps to start Unreal Editor cosimulating.

2 Verify that the Diagnostic Viewer window in Simulink displays this message:
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In the Simulation 3D Scene Configuration block, you set the scene source
to 'Unreal Editor'. In Unreal Editor, select 'Play' to view the scene.

This message confirms that Simulink has instantiated aircraft and other assets in the Unreal
Engine 3D environment.

3 In the Unreal Editor, click Play. The simulation runs in the scene currently open in the Unreal
Editor. If your Simulink model contains aircraft, these aircraft can move around in the scene that
is open in the editor.

To control the view of the scene during simulation, in the Simulation 3D Scene Configuration block,
select the aircraft name from the Scene view parameter. To change the scene view as the simulation
runs, first left-click inside the editor view window, then use the numeric keypad in the editor. The
table shows the position of the camera displaying the scene, relative to the aircraft selected in the
Scene view parameter.

To smoothly change the camera views, use these key commands.

Key Camera View
1 Back left
2 Back
3 Back right
4 Left
5 Internal

m
6 Right
7 Front left
8 Front
9 Front right
0 Overhead

To stop a simulation, always use the stop button in Simulink and not the one in Unreal Editor.

For additional camera controls, use these key commands.

Key Camera Control
Tab Cycle the view between all aircraft in the scene.
Mouse scroll wheel Control the camera distance from the aircraft.
L Toggle a camera lag effect on or off. When you enable the lag effect, the

camera view includes:

• Position lag, based on the aircraft translational acceleration
• Rotation lag, based on the aircraft rotational velocity

This lag enables improved visualization of overall aircraft acceleration and
rotation.
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Key Camera Control
F Toggle the free camera mode on or off. When you enable the free camera

mode, you can use the mouse to change the pitch and yaw of the camera.
This mode enables you to orbit the camera around the aircraft.

To restart a simulation, click Run in the Simulink model, wait until the Diagnostic Viewer displays the
confirmation message, and then click Play in the editor. If you click Play before starting the
simulation in your model, the connection between Simulink and the Unreal Editor is not established,
and the editor displays an empty scene.

If you are co-simulating a custom project, to enable the numeric keypad, copy the
DefaultInput.ini file from the support package installation folder to your custom project folder.
For example, copy DefaultInput.ini from:

C:\ProgramData\MATLAB\SupportPackages\<MATLABRelease>\toolbox\shared\sim3dprojects\driving\AutoVrtlEnv\Config

to:

C:\<yourproject>.project\Config

After tuning your custom scene based on simulation results, you can then package the scene into an
executable. For more details, see “Package Custom Scenes into Executable” on page 4-13.

Reparent Actor Blueprint

Note If you are using a scene from the AutoVtrlEnv project that comes installed with the
Aerospace Blockset Interface for Unreal Engine Projects support package, skip this section. However,
if you create a new scene based off of one of the scenes in this project, then you must complete this
section.

The first time that you open a custom scene from Simulink, you need to associate, or reparent, this
project with the Sim3dLevelScriptActor level blueprint used in Aerospace Blockset. The level
blueprint controls how objects interact with the 3D environment once they are placed in it. Simulink
returns an error at the start of simulation if the project is not reparented. You must reparent each
scene in a custom project separately.

To reparent the level blueprint, follow these steps:

1 In the Unreal Editor toolbar, select Blueprints > Open Level Blueprint.
2 In the Level Blueprint window, select File > Reparent Blueprint.
3 Click the Sim3dLevelScriptActor blueprint. If you do not see the Sim3dLevelScriptActor

blueprint listed, use these steps to check that you have the MathWorks Simulation plugin
installed and enabled:

a In the Unreal Editor toolbar, select Settings > Plugins.
b In the Plugins window, verify that the MathWorks Interface plugin is listed in the installed

window. If the plugin is not already enabled, select the Enabled check box.

If you do not see the MathWorks Interface plugin in this window, repeat step 3 in
“Configure Environment” on page 4-4 and reopen the editor from Simulink.
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c Close the editor and reopen it from Simulink.
4 Close the Level Blueprint window.

Install Cesium for Unreal Plugin
To customize Cesium scenes, install the Cesium for Unreal Plugin and enable the MathWorks
Geospatial plugin.

1 Install the Cesium for Unreal plugin from https://cesium.com/unreal-marketplace/. Follow the
directions to download the plugin.

2 Enable the MathWorks Geospatial plugin in the Unreal Editor. In the Unreal Editor toolbar,
select Settings > Plugins.

3 In the Plugins window, verify that the MathWorks Geospatial plugin is listed in the installed
window. If the plugin is not already enabled, select the Enabled check box.

4 Close the editor and reopen it from Simulink.

See Also
Simulation 3D Scene Configuration | sim3d.Editor

Related Examples
• Using Unreal Engine with Simulink Video Tutorial

External Websites
• Unreal Engine 5 Documentation
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Package Custom Scenes into Executable
When you finish modifying a custom scene as described in “Customize Scenes Using Simulink and
Unreal Editor” on page 4-6, you can package the project file containing this scene into an executable.
You can then configure your model to simulate from this executable by using the Simulation 3D Scene
Configuration block. Executable files can improve simulation performance and do not require opening
the Unreal Editor to simulate your scene. Instead, the scene runs by using the Unreal Engine that
comes installed with Aerospace Blockset.

Package Scene into Executable Using Unreal Editor
Before packaging the custom scenes into an executable, make sure that the plugins are:

• Located in the Unreal Engine installation area, for example, C:\Program Files\Epic Games
\UE_4.26\Engine\Plugins\Marketplace\Mathworks.

• Deleted from your project area, for example, C:\project\AutoVrtlEnv\Plugins.

Then, follow these steps.

1 Open the project containing the scene in the Unreal Editor. You must open the project from a
Simulink model that is configured to co-simulate with the Unreal Editor.

2 In the Unreal Editor toolbar, select Settings > Project Settings to open the Project Settings
window.

3 In the left pane, in the Project section, click Packaging.
4 In the Packaging section, set or verify the options in the table. If you do not see all these

options, at the bottom of the Packaging section, click the Show Advanced expander

.

Packaging Option Enable or Disable
Use Pak File Enable
Cook everything in the project content
directory (ignore list of maps below)

Disable

Cook only maps (this only affects
cookall)

Enable

Create compressed cooked packages Enable
Exclude editor content while cooking Enable

5 If you create a new scene outside the scenes provided in the support package, specify the scene
from the project that you want to package into an executable. Also specify the GriffissAirport
scene.

a In the List of maps to include in a packaged build option, click the Adds Element
button .

b Specify the path to the scene that you want to include in the executable. By default the
Unreal Editor saves maps to the /Game/Maps folder. For example, if the /Game/Maps folder
has a scene named myScene that you want to include in the executable, enter /Game/Maps/
myScene. Scenes inside the plugins replace the /Game folder with the plugin folder.
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To include the GriffissAirport map, enter /MathWorksAerospaceContent/Maps/
GriffissAirport.

c Add or remove additional scenes as needed.
6 If you have any required asset directories to include in the executable which are not in the

MathWorks plugins, then specify them under Additional Asset Directories to Cook.
7 In the left pane, in the Game section, click Asset Manager.
8 Expand Primary Asset Types to Scan, and under it expand elements 0 and 1. For both array

elements, clear the Is Editor Only check box
9 Close the Project Settings window.
10 Rebuild the lighting in your scenes. If you do not rebuild the lighting, the shadows from the light

source in your executable file are incorrect and a warning about rebuilding the lighting displays
during simulation. In the Unreal Editor toolbar, select Build > Build Lighting Only.

11 In the top-left menu of the editor, select File > Package Project > Windows (64-bit). Select a
local folder in which to save the executable, such as to the root of the project file (for example,
C:/Local/myProject).

Note Packaging a project into an executable can take several minutes. The more scenes that you
include in the executable, the longer the packaging takes.

Once packaging is complete, the folder where you saved the package contains a
WindowsNoEditor folder that includes the executable file. This file has the same name as the
project file.

Note If you repackage a project into the same folder, the new executable folder overwrites the
old one.

Suppose you package a scene that is from the myProject.uproject file and save the
executable to the C:/Local/myProject folder. The editor creates a file named
myProject.exe with this path:

C:/Local/myProject/WindowsNoEditor/myProject.exe

Simulate Scene from Executable in Simulink
To improve co-simulation performance, consider configuring the Simulation 3D Scene Configuration
block to co-simulate with the project executable.

1 In the Simulation 3D Scene Configuration block of your Simulink model, set the Scene source
parameter to Unreal Executable.

2 Set the File name parameter to the name of your Unreal Editor executable file. You can either
browse for the file or specify the full path to the file by using backslashes. For example:

C:\Local\myProject\WindowsNoEditor\myProject.exe
3 Set the Scene parameter to the name of a scene from within the executable file. For example:

/MathWorksAerospaceContent/Maps/GriffissAirport
4 Run the simulation. The model simulates in the custom scene that you created.
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If you are simulating a scene from a project that is not based on the AutoVtrlEnv project, then the
scene simulates in full screen mode. To use the same window size as the default scenes, copy the
DefaultGameUserSettings.ini file from the support package installation folder to your custom
project folder. For example, copy DefaultGameUserSettings.ini from:

C:\ProgramData\MATLAB\SupportPackages\<MATLABrelease>\toolbox\shared\sim3dprojects\automotive\AutoVrtlEnv\Config

to:

C:\<yourproject>.project\Config

Then, package scenes from the project into an executable again and retry the simulation.

See Also
Simulation 3D Scene Configuration

More About
• “Customize 3D Scenes for Aerospace Blockset Simulations” on page 4-2
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Get Started Communicating with the Unreal Engine
Visualization Environment

You can set up communication with Unreal Engine by using the Simulation 3D Message Get and
Simulation 3D Message Set blocks:

• Simulation 3D Message Get receives data from the Unreal Engine environment.
• Simulation 3D Message Set sends data to the Unreal Engine environment.

To use the blocks and communicate with Unreal Engine, make sure you install the Aerospace Blockset
Interface for Unreal Engine Projects support package. For more information, see “Customize 3D
Scenes for Aerospace Blockset Simulations” on page 4-2.

Next, follow these workflow steps to set up the Simulink model and the Unreal Engine environment
and run a simulation.

Workflow Description
“Set Up Simulink Model to Send and
Receive Data” on page 4-17

Configure the Simulation 3D Message Get and
Simulation 3D Message Set blocks in Simulink to send
and receive the cone location from Unreal Editor. The
steps provides the general workflow for communicating
with the editor.

The Simulation 3D Message Get and Simulation 3D
Message Set blocks can send and receive these data
types: double, single, int8, uint8, int16, uint16,
int32, uint32, and Boolean. The Simulation 3D Actor
Transform Set and Simulation 3D Actor Transform Get
blocks can send and receive only the single data type.

Set Up Unreal
Engine to Send
and Receive Data

“C++ Workflow: Set
Up Unreal Engine to
Send and Receive
Data” on page 4-18

Specific Unreal C++ workflow to send and receive
Simulink cone location data.

• Simulation 3D Message Get receives data from an
Unreal Engine environment C++ actor class. In this
example workflow, you use the block to receive the
cone location from Unreal Editor.

• Simulation 3D Message Set sends data to an Unreal
Engine C++ actor class. In this example, you use the
block to set the initial cone location in the Unreal
Editor.

To follow this workflow, you should be comfortable
coding with C++ in Unreal Engine. Make sure that your
environment meets the minimum software requirements
described in “Unreal Engine Simulation Environment
Requirements and Limitations” on page 2-36.

“Blueprint Workflow:
Set Up Unreal Engine
to Send and Receive
Data” on page 4-26

Generalized Unreal Editor blueprint workflow to send
and receive Simulink data.
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Workflow Description
“Run Simulation” on page 4-31 After you set up the Simulink model and Unreal Editor

environment, run a simulation.

Set Up Simulink Model to Send and Receive Data
Step 1: Install Support Package

If you have already downloaded and installed Unreal Engine and the Aerospace Blockset Interface for
Unreal Engine Projects support package, go to the next step.

To install and configure the support package, see “Customize 3D Scenes for Aerospace Blockset
Simulations” on page 4-2.

Before installing the support package, make sure that your environment meets the minimum software
and hardware requirements described in “Unreal Engine Simulation Environment Requirements and
Limitations” on page 2-36.

Step 2: Set Up Simulink Model

Open a new Simulink model. Connect the blocks as shown.

Step 3: Configure Blocks

Use these block settings to configure blocks to send and receive cone data from the Unreal Editor.
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Block Parameter Settings
Constant • Constant value — [100,10,50]

Sets the initial cone location in the Unreal Editor coordinate
system (in cm, left-handed, in Z-up coordinate system)

• Interpret vector parameters as 1-D — off
• Output data type — single

Data Type Conversion • Output data type — single
Simulation 3D Scene
Configuration

• Scene Source — Unreal Editor
• Project — Your_Project_Path

\TestSim3dGetSet.uproject
• Open Unreal Editor — Select to open the editor

Simulation 3D Message Get • Signal name, SigName — ConeLocGet
• Data type, DataType — single
• Message size, MsgSize — [1 3]
• Sample time — -1

Simulation 3D Message Set • Signal name, SigName — ConeLocSet
• Sample time — -1

C++ Workflow: Set Up Unreal Engine to Send and Receive Data
Step 4: Open Unreal Editor in Editor Mode

1 Use the Simulation 3D Scene Configuration block to open the Unreal Editor.
2 Create an Unreal Engine C++ project. Name it TestSim3dGetSet. For steps on how to create C

++ project, see the Unreal Engine 5 Documentation.
3 In the Unreal Editor, click the Edit tab in the top left corner. Select Plugins and make sure that

the MathWorks Interface plugin is enabled. If the MathWorks Interface plugin is disabled,
enable it and restart Unreal Editor, if prompted.

4 Close the Unreal.
5 If Visual Studio is not open, open it.
6 Add the MathWorksSimulation dependency to the TestSim3dGetSet project build file.

• The project build file, TestSim3dGetSet.Build.cs, is located in this
folder: ...\TestSim3dGetSet\Source\TestSim3dGetSet.

• In the build file, TestSim3dGetSet.Build.cs, edit the line 11 to add the
“MathWorksSimulation” dependency:
 PublicDependencyModuleNames.AddRange(new string[] { "Core", "CoreUObject", 
"Engine", "InputCore", "MathWorksSimulation"}); 

7 Save the change. In Visual Studio, rebuild the TestSim3dGetSet project. Close Visual Studio.

Tip Before rebuilding the project in Visual Studio, make sure that Unreal is not open.
8 Start MATLAB. Change the current folder to the location of the Unreal Engine

TestSim3dGetSet project.
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9 In MATLAB, open the project:

editor = sim3d.Editor('TestSim3dGetSet.uproject'); 
editor.open();

Step 5: Create Actor Class

1 In the Unreal Editor, from the MathWorksSimulation C++ classes directory, select Sim3dActor.

Right-click and select Create C++ class derived from Sim3dActor.

2 Name the new Sim3dActor SetGetActorLocation. Select Public. Click Create Class.
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3 Close the Unreal Editor.

Step 6: Open SetGetActorLocation.h

Visual Studio opens with new C++ files in the project folder:

• SetGetActorLocation.h
• SetGetActorLocation.cpp

Make sure you close the Unreal Editor.

In Visual Studio, build the solution TestSim3dGetSet:

1 In the Solution Explorer, right-click Solution 'TestSim3dGetSet' (2 projects).
2 Select Build Solution.
3 After the solution builds, open SetGetActorLocation.h. Edit the file as shown.

Replacement Code: SetGetActorLocation.h

This is the replacement code for SetGetActorLocation.h.
// Copyright 2019 The MathWorks, Inc.

#pragma once

#include "Sim3dActor.h"
#include "SetGetActorLocation.generated.h"

UCLASS()
class TESTSIM3DGETSET_API ASetGetActorLocation : public ASim3dActor
{
    GENERATED_BODY()
    
    void *SignalReader;
    void *SignalWriter;

public:    
    // Sets default values for this actor's properties
    ASetGetActorLocation();

    virtual void Sim3dSetup() override;
    virtual void Sim3dRelease() override;
    virtual void Sim3dStep(float DeltaSeconds) override;
};

Step 7: Open SetGetActorLocation.cpp

Open SetGetActorLocation.cpp and replace the block of code.

Replacement Code: Set Pointer to Parameter

This code allows you to set a pointer to the parameter Signal Name parameter for the Simulink
blocks Simulation 3D Message Set and Simulation 3D Message Get, respectively.
// Sets default values
ASetGetActorLocation::ASetGetActorLocation():SignalReader(nullptr), SignalWriter(nullptr)
{
}

Replacement Code: Access Actor Tag Name

The following code allows you to access the tag name of this actor after it is instantiated in the scene
with an assigned tag name. The code also initializes the pointers SignalReader and
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SignalWriter, to initiate a link between Unreal Editor and Simulink. The variables represent these
block Signal Name parameter values:

• SignalReaderTag — Simulation 3D Message Set
• SignalWriterTag — Simulation 3D Message Get

void ASetGetActorLocation::Sim3dSetup()
{
Super::Sim3dSetup();
       if (Tags.Num() != 0) {
              unsigned int numElements = 3;
              FString tagName = Tags.Top().ToString();

              FString SignalReaderTag = tagName;
              SignalReaderTag.Append(TEXT("Set"));
              SignalReader = StartSimulation3DMessageReader(TCHAR_TO_ANSI(*SignalReaderTag), sizeof(float)*numElements);

              FString SignalWriterTag = tagName;
              SignalWriterTag.Append(TEXT("Get"));
              SignalWriter = StartSimulation3DMessageWriter(TCHAR_TO_ANSI(*SignalWriterTag), sizeof(float)*numElements);
              }
}

Additional Code: Read and Write Data During Run Time

Add this code to allow Unreal Engine to read the data value set by Simulation 3D Message Set and
then write back to Simulation 3D Message Get during run time. Unreal Engine uses this data to set
the location value of the actor.
void ASetGetActorLocation::Sim3dStep(float DeltaSeconds)
{
       unsigned int numElements = 3;
       float array[3];
       int statusR = ReadSimulation3DMessage(SignalReader, sizeof(float)*numElements, array);
       FVector NewLocation;
       NewLocation.X = array[0];
       NewLocation.Y = array[1];
       NewLocation.Z = array[2];
       SetActorLocation(NewLocation);
       float fvector[3] = { NewLocation.X, NewLocation.Y, NewLocation.Z };
       int statusW = WriteSimulation3DMessage(SignalWriter, sizeof(float)*numElements ,fvector);
}

Additional Code: Stop Simulation

Add this code so that Unreal Engine stops when you press the Simulink stop button. The code
destroys the pointer SignalReader and SignalWriter.
void ASetGetActorLocation::Sim3dRelease()
{
       Super::Sim3dRelease();
       if (SignalReader) {
              StopSimulation3DMessageReader(SignalReader);
       }
       SignalReader = nullptr;     

       if (SignalWriter) {
              StopSimulation3DMessageWriter(SignalWriter);
       }
       SignalWriter = nullptr;
}

Entire Replacement Code: SetGetActorLocation.cpp

This is the entire replacement code for SetGetActorLocation.cpp.
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// Copyright 2019 The MathWorks, Inc.
#include "SetGetActorLocation.h"

// Sets default values
ASetGetActorLocation::ASetGetActorLocation():SignalReader(nullptr), SignalWriter(nullptr)
{
}

void ASetGetActorLocation::Sim3dSetup()
{
Super::Sim3dSetup();
       if (Tags.Num() != 0) {
              unsigned int numElements = 3;
              FString tagName = Tags.Top().ToString();

              FString SignalReaderTag = tagName;
              SignalReaderTag.Append(TEXT("Set"));
              SignalReader = StartSimulation3DMessageReader(TCHAR_TO_ANSI(*SignalReaderTag), sizeof(float)*numElements);

              FString SignalWriterTag = tagName;
              SignalWriterTag.Append(TEXT("Get"));
              SignalWriter = StartSimulation3DMessageWriter(TCHAR_TO_ANSI(*SignalWriterTag), sizeof(float)*numElements);
              }
}

void ASetGetActorLocation::Sim3dStep(float DeltaSeconds)
{
       unsigned int numElements = 3;
       float array[3];
       int statusR = ReadSimulation3DMessage(SignalReader, sizeof(float)*numElements, array);
       FVector NewLocation;
       NewLocation.X = array[0];
       NewLocation.Y = array[1];
       NewLocation.Z = array[2];
       SetActorLocation(NewLocation);
       float fvector[3] = { NewLocation.X, NewLocation.Y, NewLocation.Z };
       int statusW = WriteSimulation3DMessage(SignalWriter, sizeof(float)*numElements ,fvector);
}

void ASetGetActorLocation::Sim3dRelease()
{
       Super::Sim3dRelease();
       if (SignalReader) {
              StopSimulation3DMessageReader(SignalReader);
       }
       SignalReader = nullptr;     

       if (SignalWriter) {
              StopSimulation3DMessageWriter(SignalWriter);
       }
       SignalWriter = nullptr;
}

Step 8: Build the Visual Studio Project and Open Unreal Editor Using the Block

Press F5 on the keyboard to run the Visual Studio solution TestSim3dGetSet. The Unreal Editor
opens.

Note In the Unreal Editor, save the current level by clicking Save Current (located in the top left)
and name it TestMap. Add this level as default to Project Settings by clicking on Edit > Project
Settings > Maps&Modes. Then select TestMap as the default value for the Editor Startup Map and
Game Default Map. Close Project Settings to save the default values.
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Step 9: Check Actor

On the World Outliner tab, check that the new instantiated actor, SetGetActorLocation1, is
listed.
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Step 10: Add Mesh

Click on the actor that you created in “Step 9: Check Actor” on page 4-23.

1 In the Details panel, click on Add Component to add a mesh to the actor SetConeLocation1.
Choose Cone as the default mesh.

2 Find the property tags for actor SetConeLocation1. Add a tag by clicking on the plus sign next
to 0 Array elements. Name it ConeLoc.

Step 11: Set Cone Location

On the Details tab, click Cone. Set the cone to X = 0.0, Y = 0.0, and Z = 0.0. Also set the actor
Mobility property to Movable.

4 Supporting Data

4-24



Step 12: Set Parent Class and Save Scene

Set the parent class.

1 Under Blueprints, click Open Level Blueprint, and select Class Settings.

2 In the Class Options, set Parent Class to Sim 3d Level Script Actor.
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Save the Unreal Editor scene.

Step 13: Run Simulation

Run the simulation. Go to “Run Simulation” on page 4-31.

Reference: C++ Functions for Sending and Receiving Simulink Data

Call these C++ functions from Sim3dSetup, Sim3dStep, and Sim3dRelease to send and receive
Simulink data.

To C++ Functions
Receive data StartSimulation3DMessageReader

ReadSimulation3DMessage
StopSimulation3DMessageReader

Send data StartSimulation3DMessageWriter
WriteSimulation3DMessage
StopSimulation3DMessageWriter

Blueprint Workflow: Set Up Unreal Engine to Send and Receive Data
Step 4: Configure Scenes to Receive Data

To use the Simulation 3D Message Set block, you must configure scenes in the Unreal Engine
environment to receive data from the Simulink model:

1 In the Unreal Editor, instantiate the Sim3DGet actor that corresponds to the data type you want
to receive from the Simulink model. This example shows the Unreal Editor Sim3DGet data types.
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2 Specify an actor tag name that matches the Simulation 3D Message Set block Signal name
parameter.

3 Navigate to the Level Blueprint.
4 Find the blueprint method for the Sim3DGet actor class based on the data type and size that you

want to receive from the Simulink model.

For example, in Unreal Editor, this diagram shows that Read Scalar Integer is the method
for Sim3DGetInteger actor class to receive int32 data type of size scalar.

5 Compile and save the scene.

Step 5: Configure Scenes to Send Data

To configure scenes in the Unreal Engine environment to send data to the Simulink model:

1 In the Unreal Editor, instantiate the Sim3DSet actor that corresponds to the data type you want
to send to the Simulink model. This example shows the Unreal Editor Sim3DSet data types.
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2 Specify an actor tag name that matches the Simulation 3D Message Get block Signal name
parameter.

3 Navigate to the Level Blueprint.
4 Find the blueprint method for the Sim3DSet actor class based on the data type and size specified

by the Simulation 3D Message Get block Data type and Message size parameters.

For this example, the array size is 3. The Unreal Editor diagram shows that Write Array
Float is the method for the Sim3DSetFloat3 actor class that sends float data type of array size
3.

5 Compile and save the scene.

Note Optionally, for better performance, set Read Array Float Max Num Elements to Num El in
the Actor Blueprint.
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Step 6: Create Blueprint

In the Unreal Editor, create a level blueprint connecting the Get and Set actors.

1 Set the actor tag values.

• Sim3dGetFloat1 — Simulation 3D Message Set block Signal name, SigName parameter
value, for example ConeLocSet

• Sim3dSetFloat1 — Simulation 3D Message Get block Signal name, SigName parameter
value, for example ConeLocGet

2 Set the parent class.

a Under Blueprints, click Open Level Blueprint, and select Class Settings.
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b In the Class Options, set Parent Class to Sim 3d Level Script Actor.

3 In the level blueprint, make the connections, for example:

Step 7: Run Simulation

Run the simulation. Go to “Run Simulation” on page 4-31.
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Run Simulation
After you configure the Simulink model and Unreal Editor environment, you can run the simulation.

Note At the BeginPlay event, Simulink does not receive data from the Unreal Editor. Simulink
receives data at Tick events.

Run the simulation.

1 In the Simulink model, click Run.

Because the source of the scenes is the project opened in the Unreal Editor, the simulation does
not start.

2 Verify that the Diagnostic Viewer window in Simulink displays this message:

In the Simulation 3D Scene Configuration block, you set the scene source
to 'Unreal Editor'. In Unreal Editor, select 'Play' to view the scene.

This message confirms that Simulink has instantiated the vehicles and other assets in the Unreal
Engine 3D environment.

3 In the Unreal Editor, click Play. The simulation runs in the scene currently open in the Unreal
Editor.

You can send and receive these data types: double, single, int8, uint8, int16, uint16, int32,
uint32, boolean. The code in “Step 7: Open SetGetActorLocation.cpp” on page 4-20 reads single
data type values (or float values) from Simulink.

See Also
ASim3dActor | Sim3dSetup | Sim3dStep | Sim3dRelease | Simulation 3D Scene Configuration |
Simulation 3D Message Get | Simulation 3D Message Set

External Websites
• Unreal Engine
• Unreal Engine 5 Documentation
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Griffiss Airport Lighting
To help you visualize your flightpath workflows, the Aerospace Blockset Interface for Unreal Engine
Projects support package provides a map of the Griffiss International Airport in Rome, New York. The
airport map includes static mesh models of every taxiway and runway light, Medium Intensity
Approach Light System with Runway Alignment Indicator Lights (MALSR), and building lights.

Turn Airport Lights On and Off
To turn on and off the lights for the runway, taxiway, threshold, and MALSR, use the Lights On
switch.

1 Load the Griffiss Airport map in the Unreal Editor by double-clicking GriffissAirport in the
Maps folder.

2 At the top center of the view, click Blueprints > Open Level Blueprint.

The Griffiss Airport > Event Graph tab of the level blueprint appears.
3 In the Details panel on the right, see the Defaults section.

Tip If the Details panel is not visible, enable it by clicking Windows > Details in the top left
menu.

4 To turn on lights, select the Details > Defaults > Lights On check box.

To turn off lights, clear the Details > Defaults > Lights On check box.
5 Save your changes and exit the level blueprint.
6 Run the simulation.

Niagara lights are created in the level blueprint at the start of the simulation. They are not visible if
the simulation is not running.

See Also
Simulation 3D Scene Configuration

More About
• “How 3D Simulation for Aerospace Blockset Works” on page 2-39
• “Unreal Engine Simulation Environment Requirements and Limitations” on page 2-36

External Websites
• Unreal Engine
• Unreal Engine 5 Documentation
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Prepare Custom Aircraft Mesh for the Unreal Editor
This example shows you how to create an aircraft mesh that is compatible with the project in the
Aerospace Blockset Interface for Unreal Engine Projects support package. For illustration purposes,
it uses Blender®.You can specify the mesh in the Simulation 3D Aircraft block to visualize the aircraft
in the Unreal Editor when you run a simulation.

Before you start, install the Aerospace Blockset Interface for Unreal Engine Projects support
package. See “Customize 3D Scenes for Aerospace Blockset Simulations” on page 4-2.

To create a compatible custom aircraft mesh, follow these workflow steps.

Step Description
“Step 1: Check Units and
Axes” on page 4-33

In a 3-D creation environment, set up the units and axes for the mesh.

“Step 2: Set Up Bone
Hierarchy” on page 4-34

Set up the aircraft mesh bone hierarchy and specify part names.

“Step 3: Connect Mesh to
Skeleton” on page 4-36

Parent the entire mesh to the armature.

“Step 4: Assign Materials”
on page 4-36

Optionally, assign materials to the aircraft parts.

“Step 5: Export Mesh and
Armature” on page 4-36

Export the aircraft mesh and armature in .fbx file format.

“Step 6: Import Mesh to
Unreal Editor” on page 4-
36

Import the aircraft mesh into the Unreal Editor.

“Step 7: Set Block
Parameters” on page 4-
37

Set up the block parameters.

Note To create the mesh, this example uses the 3-D creation software Blender Version 2.93.

Step 1: Check Units and Axes
1 Create or import an aircraft mesh into a 3-D modeling tool, for example, Blender.
2 Check that the Length unit is set to Centimeters and the Rotation unit is set to Degrees.

If the units are not correctly set, then correct them. For example, in Blender, use steps like these:

a Change Unit scale from 1.0 to 0.01, and Length from Meters to Centimeters.
b Check the dimensions of some mesh objects.

Units should be centimeters and the sizes should be 100 times too small.
c Select the entire mesh and scale it by 100 in all three dimensions.
d Position the mesh so that the global axes origin is near the center of mass, with X pointing

forward and Z pointing upward.
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e To complete the transformation, click Object > Apply > Location and Object > Apply >
Scale.

Step 2: Set Up Bone Hierarchy
1 Create an armature, if necessary, and use the following naming convention for the bones to

ensure compatibility with the animation components in the support package. Make sure to follow
the bone hierarchy shown.

Note You can omit or add bones and still maintain compatibility with the custom aircraft
skeleton in the support package, as long as the rules for sharing skeleton assets are met.

2 Most bones share the vertical, global-z-axis-aligned orientation of the root bone.

• Align wheel bones with the global y-axis.
• Align a control surface (such as an aileron) bone perpendicular to its surface and rotate it to

align with the surface hinge line.
3 Check that no mesh elements have the same names as any of the bones. Rename them as

necessary.

4 Supporting Data

4-34



 Prepare Custom Aircraft Mesh for the Unreal Editor

4-35



Step 3: Connect Mesh to Skeleton
1 Parent the entire mesh to the armature, for example, Blender, in Object Mode:

a Select the entire mesh.
b Click Shift+Left on one of the bones in the viewport.
c To display the parenting menu, press Ctrl+P, and choose Armature Deform with Empty

Groups to create an empty mesh Vertex Group for every bone.
2 For each mesh object:

a Assign weight to the appropriate Vertex Group.
b Add an Armature modifier for that Vertex Group.

Step 4: Assign Materials
Optionally, assign material slots to the aircraft parts. The first material slot should correspond to the
aircraft body. The Simulation 3D Aircraft block sets only the first slot material (i.e. color) assignment.

Step 5: Export Mesh and Armature
Export the mesh and armature in the .fbx file format, for example, in Blender:

1 On the Object Types pane, select Armature and Mesh.
2 On the Transform pane, set:

• Scale to 1.00
• Apply Scalings to All Local
• Forward to X Forward
• Up to Z Up

Select Apply Unit.

Select Use Space Transform.
3 On the Geometry pane:

• Set Smoothing to Face.
• Select Apply Modifiers.

4 On the Armature pane, set:

• Primary Bone Axis to X Axis.
• Secondary Bone Axis to Z Axis.
• Armature FBXNode Type to Null.

5 Clear Bake Animation, then select Export FBX.

Step 6: Import Mesh to Unreal Editor
1 Open the Unreal Engine AutoVrtlEnv.uproject project in the Unreal Engine Editor.
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2 In the editor, import the FBX® file as a skeletal mesh. Assign the Skeleton to the
SK_PassengenerVehicle_Skeleton asset.

3 Open the imported mesh and assign materials to each material slot.

Step 7: Set Block Parameters
In your Simulink model, set these Simulation 3D Aircraft block parameters:

• Type to Custom.
• Path to the path in the Unreal Engine project that contains the imported mesh. For example, if a

mesh named SK_X15 is imported into the Vehicles/Aircraft/Custom/Mesh folder, then the
full path is /MathWorksAerospaceContent/Vehicles/Aircraft/Custom/Mesh/
SK_X15.SK_X15.

See Also
Simulation 3D Scene Configuration | Simulation 3D Aircraft

More About
• “How 3D Simulation for Aerospace Blockset Works” on page 2-39
• “Unreal Engine Simulation Environment Requirements and Limitations” on page 2-36
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External Websites
• Blender
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Place Cameras on Actors in the Unreal Editor
To visualize objects in an Unreal Editor scene, you can place cameras on static or custom actors in
the scene. To start, you need the Aerospace Blockset Interface for Unreal Engine Projects support
package. See “Install Support Package and Configure Environment” on page 4-3.

To follow this workflow, you should be comfortable using Unreal Engine. Make sure that you have
Visual Studio 2019 installed on your computer.

Place Camera on Static Actor
Follow these steps to place a Simulation 3D Camera Get block that is offset from a cone in the Unreal
Editor. Although this example uses the To Video Display block from Computer Vision Toolbox™, you
can use a different visualization block to display the image.

1 In a Simulink model, add the Simulation 3D Scene Configuration, Simulation 3D Camera Get, and
To Video Display blocks.

Set these block parameters. In the Simulation 3D Scene Configuration block, select Open
Unreal Editor.

Block Parameter Settings
Simulation 3D Scene
Configuration

• Scene Source — Unreal Editor
• Project — Specify the path and name of the support

package project file. For example, C:\Local
\AutoVrtlEnv\AutoVrtlEnv.uproject
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Block Parameter Settings
Simulation 3D Camera Get • Sensor identifier — 1

• Vehicle name — Scene Origin
• Vehicle mounting location — Origin
• Specify offset — on
• Relative translation [X, Y, Z] — [-6, 0, 2]

This offsets the camera location from the cone mounting
location, 6 m behind, and 2 m up.

• Relative rotation [Roll, Pitch, Yaw] — [0, 15, 0]
2 In the Unreal Editor, from the Place Actors tab, add a Sim 3d Scene Cap to the world, scene,

or map.

3 In the Unreal Editor, from the Place Actors tab, add a Cone to the world, scene, or map.

4 On the World Outliner tab, right-click the Sim3DSceneCap1 and attach it to the Cone.

5 On the Details tab, under Transform, add a location offset of -500,0,100 in the X, Y, and Z
world coordinate system, respectively. This attaches the camera 500 cm behind the cone and 100
cm above it. The values match the Simulation 3D Camera Get block parameter Relative
translation [X, Y, Z] value.
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6 On the Details tab, under Actor, tag the Sim3DSceneCap1 with the name Camera1.

7 Run the simulation.

a In the Simulink model, click Run.

Because the source of the scenes is the project opened in the Unreal Editor, the simulation
does not start.

b Verify that the Diagnostic Viewer window in Simulink displays this message:
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In the Simulation 3D Scene Configuration block, you set the scene
source to 'Unreal Editor'. In Unreal Editor, select 'Play' to view the
scene.

This message confirms that Simulink has instantiated the vehicles and other assets in the
Unreal Engine 3D environment.

c In the Unreal Editor, click Play. The simulation runs in the scene currently open in the
Unreal Editor.

Observe the results in the To Video display window. The window displays the image from the
camera.

Place Camera on Vehicle in Custom Project
Follow these steps to create a custom Unreal Engine project and place a camera on a vehicle in the
project. Although the example uses the To Video Display block from Computer Vision Toolbox, you can
use a different visualization block to display the image.

To start, you need the Aerospace Blockset Interface for Unreal Engine Projects support package. See
“Install Support Package and Configure Environment” on page 4-3.

1 In a Simulink model, add the Simulation 3D Scene Configuration, Simulation 3D Camera Get, To
Video Display, Simulation 3D Actor Transform Set, and three Constant blocks.

4 Supporting Data

4-42



Save the model.
2 Create a new project using the Flying template from the Epic Games Launcher by Epic Games.

a In the Epic Games Launcher, launch Unreal Engine 4.26.

For more information about the Epic Games Launcher, see Unreal Engine.
b In the Unreal Project Browser, select Games and Next.
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c In Select Template, select the Flying template and click Next.

d In Project Settings, create a Blueprint or C++ project, and select a project name and
location. Click Create Project.
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The Epic Games Launcher creates a new project and opens the Unreal Editor.
e Enable the MathWorks Interface and Aerospace Content plugins.

i Select Edit > Plugins.
ii On the Plugins tab, navigate to MathWorks Interface and Aerospace Content. Select

Enabled.

f Save the project. Close the Unreal Editor.
3 Open the Simulink model that you saved in step 1. Set these block parameters.

 Place Cameras on Actors in the Unreal Editor

4-45



Block Parameter Settings
Simulation 3D Scene
Configuration

• Scene Source — Unreal Editor
• Project — Specify the path an project that you saved in

step 2. For example, myProjectPath
\myProject.uproject

Simulation 3D Camera Get • Sensor identifier — 1
• Vehicle name — Scene Origin
• Vehicle mounting location — Origin

Simulation 3D Actor
Transform Set

• Tag for actor in 3D scene — Camera1

ActTranslation • Constant value — [-400, -50, 50]/100
• Interpret vector parameters as 1-D — off

ActRotation • Constant value — [0 0 0]
• Interpret vector parameters as 1-D — off

ActScale • Constant value — [1 1 1]
• Interpret vector parameters as 1-D — off

4 In the Simulation 3D Scene Configuration block, select Open Unreal Editor.
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5 In the Unreal Editor, in the Content Browser navigate to Sim3DCamera under the
MathWorksSimulation C++ folder. Add it to the map by dragging it into the viewport.

6 In World Outliner, drag and drop the camera onto the FlyingPawn blueprint.
7 On the Details tab, tag the Sim3dCamera1 with the name Camera1.
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8 Set the parent class.

a Under Blueprints, click Open Level Blueprint, and select Class Settings.

b In the Class Options, set Parent Class to Sim 3d Level Script Actor.
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9 Save the project.
10 Run the simulation.

a In the Simulink model, click Run.

Because the source of the scenes is the project opened in the Unreal Editor, the simulation
does not start.

b Verify that the Diagnostic Viewer window in Simulink displays this message:

In the Simulation 3D Scene Configuration block, you set the scene
source to 'Unreal Editor'. In Unreal Editor, select 'Play' to view the
scene.

This message confirms that Simulink has instantiated the vehicles and other assets in the
Unreal Engine 3D environment.

c In the Unreal Editor, click Play. The simulation runs in the scene currently open in the
Unreal Editor.

Observe the results in the To Video Display window.
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See Also
Simulation 3D Camera Get | Simulation 3D Scene Configuration

More About
• “Create Empty Project in Unreal Engine” on page 4-51
• “Get Started Communicating with the Unreal Engine Visualization Environment” on page 4-16

External Websites
• Unreal Engine
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Create Empty Project in Unreal Engine
If you do not have an existing Unreal Engine project, you can create an empty project by following
these steps.

1 In Unreal Engine, select File > New Project.
2 Create a project. For example, select the Games template category. Click Next.

3 Select a Blank template. Click Next.

4 In Project Settings, create a Blueprint or C++ project, and select a project name and location.
Click Create Project.
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The Epic Games Launcher creates a new project and opens the Unreal Editor.
5 Enable the MathWorks Interface plugin.

a Select Edit > Plugins.
b On the Plugins tab, navigate to MathWorks Interface. Select Enabled.

6 Save the project. Close the Unreal Editor.
7 Launch Simulink. In the Simulation 3D Scene Configuration block, select Open Unreal Editor.
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See Also
Simulation 3D Scene Configuration

More About
• “Build Light in Unreal Editor” on page 4-54
• “Unreal Engine Simulation Environment Requirements and Limitations” on page 2-36

External Websites
• Unreal Engine
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Build Light in Unreal Editor
Follow these steps to build light in the Unreal Editor. You can also use the AutoVrtlEnv project
lighting in a custom scene.

1 In the editor, from the Main Toolbar, click the down-arrow next to Build to expand the options.

2 Under Build, select Lighting Quality > Production to rebuild production quality maps.
Rebuilding complex maps can be time-intensive.

3 Click the Build icon to build the game. Production-quality lighting takes the a long time to build.

Use AutoVrtlEnv Project Lighting in Custom Scene
To use the lighting that comes installed with the AutoVrtlEnv project in Aerospace Blockset
Interface for Unreal Engine Projects, follow these steps.

1 On the World Settings tab, clear Force no precomputed lighting.

2 Under Build, select Lighting Quality > Production to rebuild the maps with production
quality. Rebuilding complex maps can be time-intensive.
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See Also
Simulation 3D Scene Configuration

More About
• “Create Empty Project in Unreal Engine” on page 4-51
• “Unreal Engine Simulation Environment Requirements and Limitations” on page 2-36

External Websites
• Unreal Engine
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1D Controller [A(v),B(v),C(v),D(v)]
Implement gain-scheduled state-space controller depending on one scheduling parameter
Library: Aerospace Blockset / GNC / Control

Description
The 1D Controller [A(v),B(v),C(v),D(v)] block implements a gain-scheduled state-space controller, as
described in “Algorithms” on page 5-4.

The output from this block is the actuator demand, which you can input to an actuator block.

Limitations
If the scheduling parameter inputs to the block go out of range, they are clipped. The state-space
matrices are not interpolated out of range.

Ports
Input

y — Aircraft measurements
vector

Aircraft measurements, specified as a vector.
Data Types: double

v — Scheduling variable
vector

Scheduling variable, specified as a vector, that conforms to the dimensions of the state-space
matrices.
Data Types: double

Output

u — Actuator demands
vector

Actuator demands, specified as a vector.
Data Types: double

Parameters
A-matrix(v) — A matrix of the state-space implementation
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A1 (default) | array

A-matrix of the state-space implementation, specified as a array. In the case of 1-D scheduling, the A-
matrix should have three dimensions, the last one corresponding to the scheduling variable v. For
example, if the A-matrix corresponding to the first entry of v is the identity matrix, then A(:,:,1) =
[1 0;0 1];.

Programmatic Use
Block Parameter: A
Type: character vector
Values: vector
Default: 'A1'

B-matrix(v) — B matrix of the state-space implementation

B1 (default) | array

B-matrix of the state-space implementation, specified as a array. In the case of 1-D scheduling, the B-
matrix should have three dimensions, the last one corresponding to the scheduling variable v. For
example, if the B-matrix corresponding to the first entry of v is the identity matrix, then B(:,:,1) =
[1 0;0 1];.

Programmatic Use
Block Parameter: B
Type: character vector
Values: vector
Default: 'B1'

C-matrix(v) — C matrix of the state-space implementation

C1 (default) | array

C-matrix of the state-space implementation, specified as a vector. In the case of 1-D scheduling, the C-
matrix should have three dimensions, the last one corresponding to the scheduling variable v. For
example, if the C-matrix corresponding to the first entry of v is the identity matrix, then C(:,:,1) =
[1 0;0 1];.

Programmatic Use
Block Parameter: C
Type: character vector
Values: vector
Default: 'C1'

D-matrix(v) — D

D1 (default) | array

D-matrix of the state-space implementation, specified as a array. In the case of 1-D scheduling, the D-
matrix should have three dimensions, the last one corresponding to the scheduling variable v. For
example, if the D-matrix corresponding to the first entry of v is the identity matrix, then D(:,:,1) =
[1 0;0 1];.

Programmatic Use
Block Parameter: D
Type: character vector
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Values: vector
Default: 'D1'

Scheduling variable breakpoints — Breakpoints for scheduling variable

v_vec (default) | vector

Breakpoints for the scheduling variable, specified as a vector. The length of v must be the same as the
size of the third dimension of A, B, C, and D.

Programmatic Use
Block Parameter: AoA_vec
Type: character vector
Values: vector
Default: 'v_vec'

Initial state, x_initial — Initial states

0 (default) | vector

Initial states for the controller, such as initial values for the state vector, x, specified as a vector. The
length of the vector must equal the size of the first dimension of A.

Programmatic Use
Block Parameter: x_initial
Type: character vector
Values: vector
Default: '0'

Algorithms
The block implements a gain-scheduled state-space controller as defined by this equation:

ẋ = A(v)x + B(v)y
u = C(v)x + D(v)y

where v is a parameter over which A, B, C, and D are defined. This type of controller scheduling
assumes that the matrices A, B, C, and D vary smoothly as a function of v, which is often the case in
aerospace applications.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.
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See Also
1D Controller [A(v),B(v),C(v),D(v)] | 1D Observer Form [A(v),B(v),C(v),F(v),H(v)] | 1D Self-Conditioned
[A(v),B(v),C(v),D(v)] | 2D Controller [A(v),B(v),C(v),D(v)] | 3D Controller [A(v),B(v),C(v),D(v)] | Linear
Second-Order Actuator | Nonlinear Second-Order Actuator
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1D Controller Blend: u=(1-L).K1.y+L.K2.y
Implement 1-D vector of state-space controllers by linear interpolation of their outputs
Library: Aerospace Blockset / GNC / Control

Description
The 1D Controller Blend u=(1-L).K1.y+L.K2.y block implements an array of state-space controller
designs. The model runs the controllers in parallel and interpolates their outputs according to the
current flight condition or operating point. The advantage of this implementation approach is that the
state-space matrices A, B, C, and D for the individual controller designs do not need to vary smoothly
from one design point to the next. The output from this block is the actuator demand, which you can
input to an actuator block.

Limitations
This block requires the Control System Toolbox™ license.

Ports
Input

y — Aircraft measurements
vector

Aircraft measurements, specified as a vector.
Data Types: double

v — Scheduling variable
vector

Scheduling variable, specified as a vector, that conforms to the dimensions of the state-space
matrices.
Data Types: double

Output

u — Actuator demands
vector

Actuator demands, specified as a vector.
Data Types: double
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Parameters
A-matrix(v) — A-matrix of the state-space implementation

A1 (default) | array

A-matrix of the state-space implementation, specified as a array. In the case of 1-D blending, the A-
matrix should have three dimensions, the last one corresponding to scheduling variable v. For
example, if the A-matrix corresponding to the first entry of v is the identity matrix, then A(:,:,1) =
[1 0;0 1];.
Programmatic Use
Block Parameter: A
Type: character vector
Values: vector
Default: 'A1'

B-matrix(v) — B-matrix of the state-space implementation

B1 (default) | array

B-matrix of the state-space implementation, specified as a array. In the case of 1-D scheduling, the B-
matrix should have three dimensions, the last one corresponding to the scheduling variable v. For
example, if the B-matrix corresponding to the first entry of v is the identity matrix, then B(:,:,1) =
[1 0;0 1];.
Programmatic Use
Block Parameter: B
Type: character vector
Values: vector
Default: 'B1'

C-matrix(v) — C-matrix of the state-space implementation

C1 (default) | array

C-matrix of the state-space implementation, specified as a array. In the case of 1-D scheduling, the C-
matrix should have three dimensions, the last one corresponding to the scheduling variable v. For
example, if the C-matrix corresponding to the first entry of v is the identity matrix, then C(:,:,1) =
[1 0;0 1];.
Programmatic Use
Block Parameter: C
Type: character vector
Values: vector
Default: 'C1'

D-matrix(v) — D-matrix of the state-space implementation

D1 (default) | array

D-matrix of the state-space implementation, specified as a array. In the case of 1-D scheduling, the D-
matrix should have three dimensions, the last one corresponding to the scheduling variable v. For
example, if the D-matrix corresponding to the first entry of v is the identity matrix, then D(:,:,1) =
[1 0;0 1];.
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Programmatic Use
Block Parameter: D
Type: character vector
Values: vector
Default: 'D1'

Scheduling variable breakpoints — Breakpoints for scheduling variable

[1 1.5 2] (default) | vector

Breakpoints for the scheduling variable, specified as a vector. The length of v must be same as the
size of the third dimension of A, B, C, and D.

Programmatic Use
Block Parameter: breakpoints_v
Type: character vector
Values: vector
Default: '[1 1.5 2]'

Initial state, x_initial — Initial states

0 (default) | vector

Initial states for the controller, such as initial values for the state vector, x, specified as a vector. The
length must equal the size of the first dimension of A.

Programmatic Use
Block Parameter: x_initial
Type: character vector
Values: vector
Default: '0'

Poles of A(v)-H(v)*C(v) = [w1 ... wn]) — Poles of observer

[-5 -2] (default) | vector

Poles of observer, specified as a vector. For incoming controllers, the block uses an observer-like
structure to ensure that the controller output tracks the current block output, u. The number of poles
must equal the dimension of the A-matrix. Poles that are too fast result in sensor noise propagation;
poles that are too slow result in the failure of the controller output to track u.

Programmatic Use
Block Parameter: vec_w
Type: character vector
Values: vector
Default: '[-5 -2]'

Algorithms
The block implements
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ẋ1 = A1x1 + B1y
u1 = C1x1 + D1y
ẋ2 = A2x2 + B2y
u2 = C2x2 + D2y
u = (1− λ)u1 + λu2

λ =

0 v < vmin
v− vmin

vmax− vmin
vmin ≤ v ≤ vmax

1 v > vmax

For example, suppose two controllers are designed at two operating points v=vmin and v=vmax. For
longer arrays of design points, the block only implements nearest neighbor designs. At any given
instant in time, the block updates three controller designs, reducing computational requirements.

As the value of the scheduling parameter varies and the index of the controllers that need to be run
changes, the block initializes the states of the oncoming controller using the self-conditioned form as
defined for the Self-Conditioned [A,B,C,D] block.

Version History
Introduced before R2006a

References
[1] Hyde, R. A., "H-infinity Aerospace Control Design — A VSTOL Flight Application." , Advances in

Industrial Control Series, Springer Verlag, 1995.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
1D Controller [A(v),B(v),C(v),D(v)] | 1D Observer Form [A(v),B(v),C(v),F(v),H(v)] | 1D Self-Conditioned
[A(v),B(v),C(v),D(v)] | 2D Controller Blend | Self-Conditioned [A,B,C,D] | Linear Second-Order
Actuator | Nonlinear Second-Order Actuator
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1D Observer Form [A(v),B(v),C(v),F(v),H(v)]
Implement gain-scheduled state-space controller in observer form depending on one scheduling
parameter
Library: Aerospace Blockset / GNC / Control

Description
The 1D Observer Form [A(v),B(v),C(v),F(v),H(v)] block implements a gain-scheduled state-space
controller as defined in “Algorithms” on page 5-12.

The output from this block is the actuator demand, which you can input to an actuator block. Use this
block to implement a controller designed using H-infinity loop-shaping, one of the design methods
supported by Robust Control Toolbox.

Limitations
If the scheduling parameter inputs to the block go out of range, they are clipped. The state-space
matrices are not interpolated out of range.

Ports
Input

y-y_dem — Set-point error
vector

Set-point error, specified as a vector, that conforms to the dimensions of the state-space matrices.
Data Types: double

v — Scheduling variable
vector

Scheduling variable, specified as a vector, that conforms to the dimensions of the state-space
matrices.
Data Types: double

u_meas — Measured actuator position
vector

Measured actuator position, specified as a vector.
Data Types: double
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Output

u_dem — Actuator demands
vector

Actuator demands, specified as a vector.
Data Types: double

Parameters
A-matrix(v) — A-matrix of the state-space implementation

A (default) | array

A-matrix of the state-space implementation. The A-matrix should have three dimensions, the last one
corresponding to the scheduling variable v. For example, if the A-matrix corresponding to the first
entry of v is the identity matrix, then A(:,:,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: A
Type: character vector
Values: vector
Default: 'A'

B-matrix(v) — B-matrix of the state-space implementation

B (default) | array

B-matrix of the state-space implementation. The B-matrix should have three dimensions, the last one
corresponding to the scheduling variable v. For example, if the B-matrix corresponding to the first
entry of v is the identity matrix, then B(:,:,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: B
Type: character vector
Values: vector
Default: 'B'

C-matrix(v) — C-matrix of the state-space implementation

C (default) | array

C-matrix of the state-space implementation. The C-matrix should have three dimensions, the last one
corresponding to the scheduling variable v. Hence, for example, if the C-matrix corresponding to the
first entry of v is the identity matrix, then C(:,:,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: C
Type: character vector
Values: vector
Default: 'C'

F-matrix(v) — F-matrix of the state-space implementation
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F (default) | array

State-feedback matrix. The F-matrix should have three dimensions, the last one corresponding to the
scheduling variable v. Hence, for example, if the F-matrix corresponding to the first entry of v is the
identity matrix, then F(:,:,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: F
Type: character vector
Values: vector
Default: 'F'

H-matrix(v) — H-matrix of the state-space implementation

H (default) | array

Observer (output injection) matrix. The H-matrix should have three dimensions, the last one
corresponding to the scheduling variable v. Hence, for example, if the H-matrix corresponding to the
first entry of v is the identity matrix, then H(:,:,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: H
Type: character vector
Values: vector
Default: 'H'

Scheduling variable breakpoints — Breakpoints for scheduling variable

v_vec (default) | vector

Breakpoints for the scheduling variable, specified as a vector. The length of v should be same as the
size of the third dimension of A, B, C, F, and H.

Programmatic Use
Block Parameter: AoA_vec
Type: character vector
Values: vector
Default: 'v_vec'

Initial state, x_initial — Initial states

0 (default) | vector

Initial states for the controller, i.e., initial values for the state vector, x, specified as a vector. It should
have length equal to the size of the first dimension of A.

Programmatic Use
Block Parameter: x_initial
Type: character vector
Values: vector
Default: '0'

Algorithms
The block implements a gain-scheduled state-space controller defined in the following observer form:
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ẋ = (A(v) + H(v)C(v))x + B(v)umeas + H(v)(y − ydem)
udem = F(v)x

Version History
Introduced before R2006a

References
[1] Hyde, R. A., "H-infinity Aerospace Control Design — A VSTOL Flight Application," Springer Verlag,

Advances in Industrial Control Series, 1995.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
1D Controller [A(v),B(v),C(v),D(v)] | 1D Controller Blend: u=(1-L).K1.y+L.K2.y | 1D Self-Conditioned
[A(v),B(v),C(v),D(v)] | 2D Observer Form [A(v),B(v),C(v),F(v),H(v)] | 3D Observer Form
[A(v),B(v),C(v),F(v),H(v)] | Linear Second-Order Actuator | Nonlinear Second-Order Actuator
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1D Self-Conditioned [A(v),B(v),C(v),D(v)]
Implement gain-scheduled state-space controller in self-conditioned form depending on one
scheduling parameter
Library: Aerospace Blockset / GNC / Control

Description
The 1D Self-Conditioned [A(v),B(v),C(v),D(v)] block implements a gain-scheduled state-space
controller as defined in “Algorithms” on page 5-16.

The output from this block is the actuator demand, which you can input to an actuator block.

Limitations
• If the scheduling parameter inputs to the block go out of range, they are clipped. The state-space

matrices are not interpolated out of range.
• This block requires the Control System Toolbox license.

Ports
Input

y — Aircraft measurements
vector

Aircraft measurements, specified as a vector.
Data Types: double

v — Scheduling variable
vector

Scheduling variable, specified as a vector, ordered according to the dimensions of the state-space
matrices.
Data Types: double

u_meas — Measured actuator position
vector

Measured actuator position, specified as a vector.
Data Types: double

Output

u_dem — Actuator demands
vector
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Actuator demands, specified as a vector.
Data Types: double

Parameters
A-matrix(v) — A-matrix of the state-space implementation

A (default) | array

A-matrix of the state-space implementation. The A-matrix should have three dimensions, the last one
corresponding to the scheduling variable v. For example, if the A-matrix corresponding to the first
entry of v is the identity matrix, then A(:,:,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: A
Type: character vector
Values: vector
Default: 'A'

B-matrix(v) — B-matrix of the state-space implementation

B (default) | array

B-matrix of the state-space implementation. The B-matrix should have three dimensions, the last one
corresponding to the scheduling variable v. For example, if the B-matrix corresponding to the first
entry of v is the identity matrix, then B(:,:,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: B
Type: character vector
Values: vector
Default: 'B'

C-matrix(v) — C-matrix of the state-space implementation

C (default) | array

C-matrix of the state-space implementation. The C-matrix should have three dimensions, the last one
corresponding to the scheduling variable v. For example, if the C-matrix corresponding to the first
entry of v is the identity matrix, then C(:,:,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: C
Type: character vector
Values: vector
Default: 'C'

D-matrix(v) — D-matrix of the state-space implementation

D (default) | array

D-matrix of the state-space implementation. The D-matrix should have three dimensions, the last one
corresponding to the scheduling variable v. For example, if the D-matrix corresponding to the first
entry of v is the identity matrix, then D(:,:,1) = [1 0;0 1];.
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Programmatic Use
Block Parameter: D
Type: character vector
Values: vector
Default: 'D'

Scheduling variable breakpoints — Breakpoints for scheduling variable

v_vec (default) | vector

Vector of the breakpoints for the first scheduling variable. The length of v should be same as the size
of the third dimension of A, B, C, and D.

Programmatic Use
Block Parameter: breakpoints_v
Type: character vector
Values: vector
Default: 'v_vec'

Initial state, x_initial — Initial states

0 (default) | vector

Vector of initial states for the controller, that is, initial values for the state vector, x. It should have
length equal to the size of the first dimension of A.

Programmatic Use
Block Parameter: x_initial
Type: character vector
Values: vector
Default: '0'

Poles of A(v)-H(v)*C(v) — Desired poles

[-5 -2] (default) | vector

Desired poles of A-HC, specified as a vector. The poles are assigned to the same locations for all
values of the scheduling parameter v. Hence, the number of pole locations defined should be equal to
the length of the first dimension of the A-matrix.

Programmatic Use
Block Parameter: vec_w
Type: character vector
Values: vector
Default: '[-5 -2]'

Algorithms
The block implements a gain-scheduled state-space controller as defined by the equations:

ẋ = A(v)x + B(v)y
u = C(v)x + D(v)y

in the self-conditioned form
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ż = (A(v)− H(v)C(v))z + (B(v)− H(v)D(V))e + H(v)umeas
udem = C(v)z + D(v)e

This block implements a gain-scheduled version of the Self-Conditioned [A,B,C,D] block, where v is
the parameter over which A, B, C, and D are defined. This type of controller scheduling assumes that
the matrices A, B, C, and D vary smoothly as a function of v, which is often the case in aerospace
applications.

Version History
Introduced before R2006a

References
[1] Kautsky, Nichols, and Van Dooren. "Robust Pole Assignment in Linear State Feedback."

International Journal of Control, Vol. 41, Number 5, 1985, pp. 1129-1155.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
1D Controller [A(v),B(v),C(v),D(v)] | 1D Controller Blend: u=(1-L).K1.y+L.K2.y | 1D Observer Form
[A(v),B(v),C(v),F(v),H(v)] | 2D Self-Conditioned [A(v),B(v),C(v),D(v)] | 3D Self-Conditioned
[A(v),B(v),C(v),D(v)] | Self-Conditioned [A,B,C,D] | Self-Conditioned [A,B,C,D] | Linear Second-Order
Actuator | Nonlinear Second-Order Actuator
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2D Controller [A(v),B(v),C(v),D(v)]
Implement gain-scheduled state-space controller depending on two scheduling parameters
Library: Aerospace Blockset / GNC / Control

Description
The 2D Controller [A(v),B(v),C(v),D(v)] block implements a gain-scheduled state-space controller, as
described in “Algorithms” on page 5-20.

The output from this block is the actuator demand, which you can input to an actuator block.

Limitations
If the scheduling parameter inputs to the block go out of range, they are clipped. The state-space
matrices are not interpolated out of range.

Ports
Input

y — Aircraft measurements
vector

Aircraft measurements, specified as a vector.
Data Types: double

v1 — Scheduling variable
vector

Scheduling variable, specified as a vector, that conforms to the dimensions of the state-space
matrices.
Data Types: double

v2 — Scheduling variable
vector

Scheduling variable, specified as a vector, that conforms to the dimensions of the state-space
matrices.
Data Types: double

Output

u — Actuator demands
vector
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Actuator demands, specified as a vector.
Data Types: double

Parameters
A-matrix(v1,v2) — A-matrix of the state-space implementation

A (default) | array

A-matrix of the state-space implementation. In the case of 2-D scheduling, the A-matrix should have
four dimensions, the last two corresponding to scheduling variables v1 and v2. For example, if the A-
matrix corresponding to the first entry of v1 and first entry of v2 is the identity matrix, then
A(:,:,1,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: A
Type: character vector
Values: vector
Default: 'A'

B-matrix(v1,v2) — B-matrix of the state-space implementation

B (default) | array

B-matrix of the state-space implementation. In the case of 2-D scheduling, the B-matrix should have
four dimensions, the last two corresponding to scheduling variables v1 and v2. For example, if the B-
matrix corresponding to the first entry of v1 and first entry of v2 is the identity matrix, then
B(:,:,1,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: B
Type: character vector
Values: vector
Default: 'B'

C-matrix(v1,v2) — -matrix of the state-space implementation

C (default) | array

C-matrix of the state-space implementation. In the case of 2-D scheduling, the C-matrix should have
four dimensions, the last two corresponding to scheduling variables v1 and v2. For example, if the C-
matrix corresponding to the first entry of v1 and first entry of v2 is the identity matrix, then
C(:,:,1,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: C
Type: character vector
Values: vector
Default: 'C'

D-matrix(v1,v2) — D-matrix of the state-space implementation

D (default) | array
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D-matrix of the state-space implementation. In the case of 2-D scheduling, the D-matrix should have
four dimensions, the last two corresponding to scheduling variables v1 and v2. For example, if the D-
matrix corresponding to the first entry of v1 and first entry of v2 is the identity matrix, then
D(:,:,1,1) = [1 0;0 1];.
Programmatic Use
Block Parameter: D
Type: character vector
Values: vector
Default: 'D'

First scheduling variable (v1) breakpoints — Breakpoints for first scheduling
variable

v1_vec (default) | vector

Vector of the breakpoints for the first scheduling variable. The length of v1 should be same as the size
of the third dimension of A, B, C, and D.
Programmatic Use
Block Parameter: AoA_vec
Type: character vector
Values: vector
Default: 'v1_vec'

Second scheduling variable (v2) breakpoints — Breakpoints for second scheduling
variable

v2_vec (default) | vector

Vector of the breakpoints for the second scheduling variable. The length of v2 should be same as the
size of the fourth dimension of A, B, C, and D.
Programmatic Use
Block Parameter: Mach_vec
Type: character vector
Values: vector
Default: 'v2_vec'

Initial state, x_initial — Initial states

0 (default) | vector

Vector of initial states for the controller, that is, initial values for the state vector, x. It should have
length equal to the size of the first dimension of A.
Programmatic Use
Block Parameter: x_initial
Type: character vector
Values: vector
Default: '0'

Algorithms
The block implements a gain-scheduled state-space controller as defined by this equation:
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ẋ = A(v)x + B(v)y
u = C(v)x + D(v)y

where v is a vector of parameters over which A, B, C, and D are defined. This type of controller
scheduling assumes that the matrices A, B, C, and D vary smoothly as a function of v, which is often
the case in aerospace applications.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
1D Controller [A(v),B(v),C(v),D(v)] | 2D Controller Blend | 2D Observer Form [A(v),B(v),C(v),F(v),H(v)]
| 2D Self-Conditioned [A(v),B(v),C(v),D(v)] | 3D Controller [A(v),B(v),C(v),D(v)] | Linear Second-Order
Actuator | Nonlinear Second-Order Actuator
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2D Controller Blend
Implement 2-D vector of state-space controllers by linear interpolation of their outputs
Library: Aerospace Blockset / GNC / Control

Description
The 2D Controller Blend block implements an array of state-space controller designs. The controllers
are run in parallel, and their outputs interpolated according to the current flight condition or
operating point. The advantage of this implementation approach is that the state-space matrices A, B,
C, and D for the individual controller designs do not need to vary smoothly from one design point to
the next. The output from this block is the actuator demand, which you can input to an actuator
block.

For the 2D Controller Blend block, at any given instant in time, nine controller designs are updated.

As the value of the scheduling parameter varies and the index of the controllers that need to be run
changes, the states of the oncoming controller are initialized by using the self-conditioned form as
defined for the Self-Conditioned [A,B,C,D] block.

Limitations
This block requires the Control System Toolbox license.

Ports
Input

y — Aircraft measurements
vector

Aircraft measurements, specified as a vector.
Data Types: double

v1 — Scheduling variable
vector

Scheduling variable, specified as a vector, that conforms to the dimensions of the state-space
matrices.
Data Types: double

v2 — Scheduling variable
vector

Scheduling variable, specified as a vector, that conforms to the dimensions of the state-space
matrices.
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Data Types: double

Output

u — Actuator demands
vector

Actuator demands, specified as a vector.
Data Types: double

Parameters
A-matrix(v1,v2) — A-matrix of the state-space implementation

A (default) | array

A-matrix of the state-space implementation. In the case of 2-D blending, the A-matrix should have
four dimensions, the last two corresponding to scheduling variables v1 and v2. For example, if the A-
matrix corresponding to the first entry of v1 and first entry of v2 is the identity matrix, then
A(:,:,1,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: A
Type: character vector
Values: vector
Default: 'A'

B-matrix(v1,v2) — B-matrix of the state-space implementation

A (default) | array

B-matrix of the state-space implementation. The B-matrix should have three dimensions, the last one
corresponding to the scheduling variable v. For example, if the B-matrix corresponding to the first
entry of v is the identity matrix, then B(:,:,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: B
Type: character vector
Values: vector
Default: 'B'

C-matrix(v1,v2) — C-matrix of the state-space implementation

C (default) | array

C-matrix of the state-space implementation. The C-matrix should have three dimensions, the last one
corresponding to the scheduling variable v. For example, if the C-matrix corresponding to the first
entry of v is the identity matrix, then C(:,:,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: C
Type: character vector
Values: vector
Default: 'C'
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D-matrix(v1,v2) — D-matrix of the state-space implementation

C (default) | array

D-matrix of the state-space implementation. The D-matrix should have three dimensions, the last one
corresponding to the scheduling variable v. For example, if the D-matrix corresponding to the first
entry of v is the identity matrix, then D(:,:,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: D
Type: character vector
Values: vector
Default: 'D'

First scheduling variable (v1) breakpoints — Breakpoints for first scheduling
variable

v1_vec (default) | vector

Breakpoints for the first scheduling variable, specified as a vector. The length of v1 should be same as
the size of the third dimension of A, B, C, and D.

Programmatic Use
Block Parameter: breakpoints_v1
Type: character vector
Values: vector
Default: 'v1_vec'

Second scheduling variable (v2) breakpoints — Breakpoints for second scheduling
variable

v2_vec (default) | vector

Breakpoints for the second scheduling variable, specified as a vector. The length of v2 should be same
as the size of the fourth dimension of A, B, C, and D.

Programmatic Use
Block Parameter: breakpoints_v2
Type: character vector
Values: vector
Default: 'v2_vec'

Initial state, x_initial — Initial states

0 (default) | vector

Vector of initial states for the controller, that is, initial values for the state vector, x. It should have
length equal to the size of the first dimension of A.

Programmatic Use
Block Parameter: x_initial
Type: character vector
Values: vector
Default: '0'
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Poles of A(v)-H(v)*C(v) — Desired poles

[-5 -2] (default)

For oncoming controllers, an observer-like structure is used to ensure that the controller output
tracks the current block output, u. The poles of the observer are defined in this dialog box as a vector,
the number of poles being equal to the dimension of the A-matrix. Poles that are too fast result in
sensor noise propagation, and poles that are too slow result in the failure of the controller output to
track u.

Programmatic Use
Block Parameter: vec_w
Type: character vector
Values: vector
Default: '[-5 -2]'

Version History
Introduced before R2006a

References
[1] Hyde, R. A. “H-infinity Aerospace Control Design - A VSTOL Flight Application.” Springer Verlag:

Advances in Industrial Control Series, 1995.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
1D Controller Blend: u=(1-L).K1.y+L.K2.y | 2D Controller [A(v),B(v),C(v),D(v)] | 2D Observer Form
[A(v),B(v),C(v),F(v),H(v)] | 2D Self-Conditioned [A(v),B(v),C(v),D(v)] | Self-Conditioned [A,B,C,D] |
Linear Second-Order Actuator | Nonlinear Second-Order Actuator
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2D Observer Form [A(v),B(v),C(v),F(v),H(v)]
Implement gain-scheduled state-space controller in observer form depending on two scheduling
parameters
Library: Aerospace Blockset / GNC / Control

Description
The 2D Observer Form [A(v),B(v),C(v),F(v),H(v)] block implements a gain-scheduled state-space
controller as defined in “Algorithms” on page 5-29.

The output from this block is the actuator demand, which you can input to an actuator block. Use this
block to implement a controller designed using H-infinity loop-shaping, one of the design methods
supported by Robust Control Toolbox.

Limitations
If the scheduling parameter inputs to the block go out of range, they are clipped. The state-space
matrices are not interpolated out of range.

Ports
Input

y-y_dem — Set-point error
vector

Set-point error, specified as a vector.
Data Types: double

v1 — First scheduling variable
vector

First scheduling variable, specified as a vector, that conforms to the dimensions of the state-space
matrices.
Data Types: double

v2 — Second scheduling variable
vector

Second scheduling variable, specified as a vector, that conforms to the dimensions of the state-space
matrices.
Data Types: double
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u_meas — Measured actuator position
vector

Measured actuator position, specified as a vector.
Data Types: double

Output

u_dem — Actuator demands
vector

Actuator demands, specified as a vector.
Data Types: double

Parameters
A-matrix(v1,v2) — A-matrix of the state-space implementation

A (default) | array

A-matrix of the state-space implementation. In the case of 2-D scheduling, the A-matrix should have
four dimensions, the last two corresponding to scheduling variables v1 and v2. For example, if the A-
matrix corresponding to the first entry of v1 and first entry of v2 is the identity matrix, then
A(:,:,1,1) = [1 0;0 1];.
Programmatic Use
Block Parameter: A
Type: character vector
Values: vector
Default: 'A'

B-matrix(v1,v2) — B-matrix of the state-space implementation

B (default) | array

B-matrix of the state-space implementation. In the case of 2-D scheduling, the B-matrix should have
four dimensions, the last two corresponding to scheduling variables v1 and v2. For example, if the B-
matrix corresponding to the first entry of v1 and first entry of v2 is the identity matrix, then
B(:,:,1,1) = [1 0;0 1];.
Programmatic Use
Block Parameter: B
Type: character vector
Values: vector
Default: 'B'

C-matrix(v1,v2) — C-matrix of the state-space implementation

C (default) | array

C-matrix of the state-space implementation. In the case of 2-D scheduling, the C-matrix should have
four dimensions, the last two corresponding to scheduling variables v1 and v2. For example, if the C-
matrix corresponding to the first entry of v1 and first entry of v2 is the identity matrix, then
C(:,:,1,1) = [1 0;0 1];.
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Programmatic Use
Block Parameter: C
Type: character vector
Values: vector
Default: 'C'

F-matrix(v1,v2) — F-matrix of the state-space implementation

F (default) | array

State-feedback matrix. In the case of 2-D scheduling, the F-matrix should have four dimensions, the
last two corresponding to scheduling variables v1 and v2. For example, if the F-matrix corresponding
to the first entry of v1 and first entry of v2 is the identity matrix, then F(:,:,1,1) = [1 0;0 1];.
Programmatic Use
Block Parameter: F
Type: character vector
Values: vector
Default: 'F'

H-matrix(v1,v2) — H-matrix of the state-space implementation

H (default) | array

Observer (output injection) matrix. In the case of 2-D scheduling, the H-matrix should have four
dimensions, the last two corresponding to scheduling variables v1 and v2. For example, if the H-
matrix corresponding to the first entry of v1 and first entry of v2 is the identity matrix, then
H(:,:,1,1) = [1 0;0 1];.
Programmatic Use
Block Parameter: H
Type: character vector
Values: vector
Default: 'H'

First scheduling variable (v1) breakpoints — Breakpoints for first scheduling
variable

v1_vec (default)

Vector of the breakpoints for the first scheduling variable. The length of v1 should be same as the size
of the third dimension of A, B, C, F, and H.
Programmatic Use
Block Parameter: AoA_vec
Type: character vector
Values: vector
Default: 'v1_vec'

Second scheduling variable (v2) breakpoints — Breakpoints for second scheduling
variable

v2_vec (default)

Vector of the breakpoints for the second scheduling variable. The length of v2 should be same as the
size of the fourth dimension of A, B, C, F, and H.
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Programmatic Use
Block Parameter: Mach_vec
Type: character vector
Values: vector
Default: 'v2_vec'

Initial state, x_initial — Initial states

0 (default)

Vector of initial states for the controller,that is, initial values for the state vector, x. It should have
length equal to the size of the first dimension of A.

Programmatic Use
Block Parameter: x_initial
Type: character vector
Values: vector
Default: '0'

Algorithms
The block implements a gain-scheduled state-space controller defined in the following observer form:

ẋ = (A(v) + H(v)C(v))x + B(v)umeas + H(v) y − ydem
udem = F(v)x

Version History
Introduced before R2006a

References
[1] Hyde, R. A.. "H-infinity Aerospace Control Design — A VSTOL Flight Application." Advances in

Industrial Control Series, Springer Verlag, 1995.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
1D Controller [A(v),B(v),C(v),D(v)] | 2D Controller [A(v),B(v),C(v),D(v)] | 2D Controller Blend | 2D Self-
Conditioned [A(v),B(v),C(v),D(v)] | 3D Observer Form [A(v),B(v),C(v),F(v),H(v)] | Linear Second-Order
Actuator | Nonlinear Second-Order Actuator
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2D Self-Conditioned [A(v),B(v),C(v),D(v)]
Implement gain-scheduled state-space controller in self-conditioned form depending on two
scheduling parameters
Library: Aerospace Blockset / GNC / Control

Description
The 2D Self-Conditioned [A(v),B(v),C(v),D(v)] block implements a gain-scheduled state-space
controller as defined in “Algorithms” on page 5-33.

The output from this block is the actuator demand, which you can input to an actuator block.

Limitations
• If the scheduling parameter inputs to the block go out of range, they are clipped. The state-space

matrices are not interpolated out of range.
• This block requires the Control System Toolbox license.

Ports
Input

y — Aircraft measurements
vector

Aircraft measurements, specified as a vector.
Data Types: double

v1 — First scheduling variable
vector

First scheduling variable, specified as a vector, ordered according to the dimensions of the state-
space matrices.
Data Types: double

v2 — Second scheduling variable
vector

Second scheduling variable, specified as a vector, ordered according to the dimensions of the state-
space matrices.
Data Types: double

u_meas — Measured actuator position
vector
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Measured actuator position, specified as a vector.
Data Types: double

Output

u_dem — Actuator demands
vector

Actuator demands, specified as a vector.
Data Types: double

Parameters
A-matrix(v1,v2) — A-matrix of the state-space implementation

A (default) | array

A-matrix of the state-space implementation. In the case of 2-D scheduling, the A-matrix should have
four dimensions, the last two corresponding to scheduling variables v1 and v2. For example, if the A-
matrix corresponding to the first entry of v1 and first entry of v2 is the identity matrix, then
A(:,:,1,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: A
Type: character vector
Values: vector
Default: 'A'

B-matrix(v1,v2) — B-matrix of the state-space implementation

B (default) | array

B-matrix of the state-space implementation. In the case of 2-D scheduling, the B-matrix should have
four dimensions, the last two corresponding to scheduling variables v1 and v2. For example, if the B-
matrix corresponding to the first entry of v1 and first entry of v2 is the identity matrix, then
B(:,:,1,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: B
Type: character vector
Values: vector
Default: 'B'

C-matrix(v1,v2) — C-matrix of the state-space implementation

C (default) | array

C-matrix of the state-space implementation. In the case of 2-D scheduling, the C-matrix should have
four dimensions, the last two corresponding to scheduling variables v1 and v2. For example, if the C-
matrix corresponding to the first entry of v1 and first entry of v2 is the identity matrix, then
C(:,:,1,1) = [1 0;0 1];.
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Programmatic Use
Block Parameter: C
Type: character vector
Values: vector
Default: 'C'

D-matrix(v1,v2) — D-matrix of the state-space implementation

D (default) | array

D-matrix of the state-space implementation. In the case of 2-D scheduling, the D-matrix should have
four dimensions, the last two corresponding to scheduling variables v1 and v2. For example, if the D-
matrix corresponding to the first entry of v1 and first entry of v2 is the identity matrix, then
D(:,:,1,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: D
Type: character vector
Values: vector
Default: 'D'

First scheduling variable (v1) breakpoints — Breakpoints for first scheduling
variable

v1_vec (default) | vector

Vector of the breakpoints for the first scheduling variable. The length of v1 should be same as the size
of the third dimension of A, B, C, and D.

Programmatic Use
Block Parameter: breakpoints_v1
Type: character vector
Values: vector
Default: 'v1_vec'

Second scheduling variable (v2) breakpoints — Breakpoints for second scheduling
variable

v2_vec (default) | vector

Vector of the breakpoints for the second scheduling variable. The length of v2 should be same as the
size of the fourth dimension of A, B, C, and D.

Programmatic Use
Block Parameter: breakpoints_v2
Type: character vector
Values: vector
Default: 'v2_vec'

Initial state, x_initial — Initial states

0 (default) | vector

Vector of initial states for the controller, that is, initial values for the state vector, x. It should have
length equal to the size of the first dimension of A.
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Programmatic Use
Block Parameter: x_initial
Type: character vector
Values: vector
Default: '0'

Poles of A(v)-H(v)*C(v) — Desired poles

[-5 -2] (default) | vector

Vector of the desired poles of A-HC. Note that the poles are assigned to the same locations for all
values of the scheduling parameter, v. Hence, the number of pole locations defined should be equal to
the length of the first dimension of the A-matrix.

Programmatic Use
Block Parameter: vec_w
Type: character vector
Values: vector
Default: '[-5 -2]'

Algorithms
The block implements a gain-scheduled state-space controller as defined by the equations:

ẋ = A(v)x + B(v)y
u = C(v)x + D(v)y

in the self-conditioned form

ż = A(v)− H(v)C(v) z + B(v)− H(v)D(v) e + H(v)umeas
udem = C(v)z + D(v)e

For the rationale behind this self-conditioned implementation, refer to the Self-Conditioned [A,B,C,D]
block reference. This block implements a gain-scheduled version of the Self-Conditioned [A,B,C,D]
block, v being the vector of parameters over which A, B, C, and D are defined. This type of controller
scheduling assumes that the matrices A, B, C, and D vary smoothly as a function of v, which is often
the case in aerospace applications.

Version History
Introduced before R2006a

References
[1] Kautsky, Nichols, and Van Dooren. "Robust Pole Assignment in Linear State Feedback,"

International Journal of Control, Vol. 41, Number 5, 1985, pp 1129-1155.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.
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See Also
1D Self-Conditioned [A(v),B(v),C(v),D(v)] | 2D Controller [A(v),B(v),C(v),D(v)] | 2D Controller Blend |
2D Observer Form [A(v),B(v),C(v),F(v),H(v)] | 3D Self-Conditioned [A(v),B(v),C(v),D(v)] | Linear
Second-Order Actuator | Nonlinear Second-Order Actuator
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3D Controller [A(v),B(v),C(v),D(v)]
Implement gain-scheduled state-space controller depending on three scheduling parameters
Library: Aerospace Blockset / GNC / Control

Description
The 3D Controller [A(v),B(v),C(v),D(v)] block implements a gain-scheduled state-space controller as
described in “Algorithms” on page 5-38.

The output from this block is the actuator demand, which you can input to an actuator block.

Limitations
If the scheduling parameter inputs to the block go out of range, they are clipped. The state-space
matrices are not interpolated out of range.

Ports
Input

y — Aircraft measurements
vector

Aircraft measurements, specified as a vector.
Data Types: double

v1 — First scheduling variable
vector

First scheduling variable, specified as a vector, that conforms to the dimensions of the state-space
matrices.
Data Types: double

v2 — Second scheduling variable
vector

Second scheduling variable, specified as a vector, that conforms to the dimensions of the state-space
matrices.
Data Types: double

v3 — Third scheduling variable
vector

 3D Controller [A(v),B(v),C(v),D(v)]

5-35



Second scheduling variable, specified as a vector, that conforms to the dimensions of the state-space
matrices.
Data Types: double

Output

u — Actuator demands
vector

Actuator demands, specified as a vector.
Data Types: double

Parameters
A-matrix(v1,v2,v3) — A matrix of the state-space implementation

A (default) | array

A-matrix of the state-space implementation. In the case of 3-D scheduling, the A-matrix should have
five dimensions, the last three corresponding to scheduling variables v1, v2, and v3. For example, if
the A-matrix corresponding to the first entry of v1, the first entry of v2, and the first entry of v3 is the
identity matrix, then A(:,:,1,1,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: A
Type: character vector
Values: vector
Default: 'A'

B-matrix(v1,v2,v3) — B matrix of the state-space implementation

B (default) | array

B-matrix of the state-space implementation. In the case of 3-D scheduling, the B-matrix should have
five dimensions, the last three corresponding to scheduling variables v1, v2, and v3. For example, if
the B-matrix corresponding to the first entry of v1, the first entry of v2, and the first entry of v3 is the
identity matrix, then B(:,:,1,1,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: B
Type: character vector
Values: vector
Default: 'B'

C-matrix(v1,v2,v3) — C matrix of the state-space implementation

C (default) | array

C-matrix of the state-space implementation. In the case of 3-D scheduling, the C-matrix should have
five dimensions, the last three corresponding to scheduling variables v1, v2, and v3. For example, if
the C-matrix corresponding to the first entry of v1, the first entry of v2, and the first entry of v3 is the
identity matrix, then C(:,:,1,1,1) = [1 0;0 1];.
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Programmatic Use
Block Parameter: C
Type: character vector
Values: vector
Default: 'C'

D-matrix(v1,v2,v3) — D matrix of the state-space implementation

D (default) | array

D-matrix of the state-space implementation. In the case of 3-D scheduling, the D-matrix should have
five dimensions, the last three corresponding to scheduling variables v1, v2, and v3. For example, if
the D-matrix corresponding to the first entry of v1, the first entry of v2, and the first entry of v3 is the
identity matrix, then D(:,:,1,1,1) = [1 0;0 1];.
Programmatic Use
Block Parameter: D
Type: character vector
Values: vector
Default: 'D'

First scheduling variable (v1) breakpoints — Breakpoints for first scheduling
variable

v1_vec (default) | vector

Vector of the breakpoints for the first scheduling variable. The length of v1 should be same as the size
of the third dimension of A, B, C, and D.
Programmatic Use
Block Parameter: AoA_vec
Type: character vector
Values: vector
Default: 'v1_vec'

Second scheduling variable (v2) breakpoints — Breakpoints for second scheduling
variable

v2_vec (default) | vector

Vector of the breakpoints for the second scheduling variable. The length of v2 should be same as the
size of the fourth dimension of A, B, C, and D.
Programmatic Use
Block Parameter: AoS_vec
Type: character vector
Values: vector
Default: 'v2_vec'

Third scheduling variable (v3) breakpoints — Breakpoints for third scheduling
variable

v3_vec (default) | vector

Vector of the breakpoints for the third scheduling variable. The length of v3 should be same as the
size of the fifth dimension of A, B, C, and D.
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Programmatic Use
Block Parameter: Mach_vec
Type: character vector
Values: vector
Default: 'v3_vec'

Initial state, x_initial — Initial states

0 (default) | vector

Vector of initial states for the controller, i.e., initial values for the state vector, x. It should have length
equal to the size of the first dimension of A.

Programmatic Use
Block Parameter: x_initial
Type: character vector
Values: vector
Default: '0'

Algorithms
The block implements a gain-scheduled state-space controller as defined by this equation:

ẋ = A(v)x + B(v)y
u = C(v)x + D(v)y

where v is a vector of parameters over which A, B, C, and D are defined. This type of controller
scheduling assumes that the matrices A, B, C, and D vary smoothly as a function of v, which is often
the case in aerospace applications.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
1D Controller [A(v),B(v),C(v),D(v)] | 2D Controller [A(v),B(v),C(v),D(v)] | 3D Observer Form
[A(v),B(v),C(v),F(v),H(v)] | 3D Self-Conditioned [A(v),B(v),C(v),D(v)] | Linear Second-Order Actuator |
Nonlinear Second-Order Actuator

5 Blocks

5-38



3D Observer Form [A(v),B(v),C(v),F(v),H(v)]
Implement gain-scheduled state-space controller in observer form depending on three scheduling
parameters
Library: Aerospace Blockset / GNC / Control

Description
The 3D Observer Form [A(v),B(v),C(v),F(v),H(v)] block implements a gain-scheduled state-space
controller defined in “Algorithms” on page 5-29.

The main application of this block is to implement a controller designed using H-infinity loop-shaping.
Use this block to implement a controller designed using H-infinity loop-shaping, one of the design
methods supported by Robust Control Toolbox.

Limitations
If the scheduling parameter inputs to the block go out of range, they are clipped. The state-space
matrices are not interpolated out of range.

Ports
Input

y-y_dem — Set-point error
vector

Set-point error, specified as a vector.
Data Types: double

v1 — First scheduling variable
vector

First scheduling variable, specified as a vector, that conforms to the dimensions of the state-space
matrices.
Data Types: double

v2 — Second scheduling variable
vector

Second scheduling variable, specified as a vector, that conforms to the dimensions of the state-space
matrices.
Data Types: double
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v3 — Third scheduling variable
vector

Third scheduling variable, specified as a vector, that conforms to the dimensions of the state-space
matrices.
Data Types: double

u_meas — Measured actuator position
vector

Measured actuator position, specified as a vector.
Data Types: double

Output

u_dem — Actuator demands
vector

Actuator demands, specified as a vector.
Data Types: double

Parameters
A-matrix(v1,v2,v3) — A-matrix of the state-space implementation

A (default) | array

A-matrix of the state-space implementation. In the case of 3-D scheduling, the A-matrix should have
five dimensions, the last three corresponding to scheduling variables v1, v2, and v3. For example, if
the A-matrix corresponding to the first entry of v1, the first entry of v2, and the first entry of v3 is the
identity matrix, then A(:,:,1,1,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: A
Type: character vector
Values: vector
Default: 'A'

B-matrix(v1,v2,v3) — B-matrix of the state-space implementation

B (default) | array

B-matrix of the state-space implementation. In the case of 3-D scheduling, the B-matrix should have
five dimensions, the last three corresponding to scheduling variables v1, v2, and v3. For example, if
the B-matrix corresponding to the first entry of v1, the first entry of v2, and the first entry of v3 is the
identity matrix, then B(:,:,1,1,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: B
Type: character vector
Values: vector
Default: 'B'
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C-matrix(v1,v2,v3) — C-matrix of the state-space implementation

C (default) | array

C-matrix of the state-space implementation. In the case of 3-D scheduling, the C-matrix should have
five dimensions, the last three corresponding to scheduling variables v1, v2, and v3. For example, if
the C-matrix corresponding to the first entry of v1, the first entry of v2, and the first entry of v3 is the
identity matrix, then C(:,:,1,1,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: C
Type: character vector
Values: vector
Default: 'C'

F-matrix(v1,v2,v3) — F-matrix of the state-space implementation

F (default) | array

State-feedback matrix. In the case of 3-D scheduling, the F-matrix should have five dimensions, the
last three corresponding to scheduling variables v1, v2, and v3. For example, if the F-matrix
corresponding to the first entry of v1, the first entry of v2, and the first entry of v3 is the identity
matrix, then F(:,:,1,1,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: F
Type: character vector
Values: vector
Default: 'F'

H-matrix(v1,v2,v3) — H-matrix of the state-space implementation

H (default) | array

Observer (output injection) matrix. In the case of 3-D scheduling, the H-matrix should have five
dimensions, the last three corresponding to scheduling variables v1, v2, and v3. For example, if the
H-matrix corresponding to the first entry of v1, the first entry of v2, and the first entry of v3 is the
identity matrix, then H(:,:,1,1,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: H
Type: character vector
Values: vector
Default: 'H'

First scheduling variable (v1) breakpoints — Breakpoints for first scheduling
variable

v1_vec (default)

Vector of the breakpoints for the first scheduling variable. The length of v1 should be same as the size
of the third dimension of A, B, C, F, and H.

Programmatic Use
Block Parameter: AoA_vec
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Type: character vector
Values: vector
Default: 'v1_vec'

Second scheduling variable (v2) breakpoints — Breakpoints for second scheduling
variable

v2_vec (default)

Vector of the breakpoints for the second scheduling variable. The length of v2 should be same as the
size of the fourth dimension of A, B, C, F, and H.

Programmatic Use
Block Parameter: AoS_vec
Type: character vector
Values: vector
Default: 'v2_vec'

Third scheduling variable (v3) breakpoints — Breakpoints for third scheduling
variable

v3_vec (default)

Vector of the breakpoints for the third scheduling variable. The length of v3 should be same as the
size of the fifth dimension of A, B, C, F, and H.

Programmatic Use
Block Parameter: Mach_vec
Type: character vector
Values: vector
Default: 'v3_vec'

Initial state, x_initial — Initial states

0 (default)

Vector of initial states for the controller, that is, initial values for the state vector, x. It should have
length equal to the size of the first dimension of A.

Programmatic Use
Block Parameter: x_initial
Type: character vector
Values: vector
Default: '0'

Algorithms
The block implements gain-scheduled state-space controller as defined by these equations:

ẋ = (A(v) + H(v)C(v))x + B(v)umeas + H(v)(y − ydem)
udem = F(v)x
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Version History
Introduced before R2006a

References
[1] Hyde, R. A. "H-infinity Aerospace Control Design — A VSTOL Flight Application." Advances in

Industrial Control Series, Springer Verlag, 1995.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
1D Controller [A(v),B(v),C(v),D(v)] | 2D Observer Form [A(v),B(v),C(v),F(v),H(v)] | 3D Controller
[A(v),B(v),C(v),D(v)] | 3D Self-Conditioned [A(v),B(v),C(v),D(v)] | Linear Second-Order Actuator |
Nonlinear Second-Order Actuator
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3D Self-Conditioned [A(v),B(v),C(v),D(v)]
Implement gain-scheduled state-space controller in self-conditioned form depending on two
scheduling parameters
Library: Aerospace Blockset / GNC / Control

Description
The 3D Self-Conditioned [A(v),B(v),C(v),D(v)] block implements a gain-scheduled state-space
controller as defined in “Algorithms” on page 5-47.

If the scheduling parameter inputs to the block go out of range, then they are clipped. The state-
space matrices are not interpolated out of range.

The output from this block is the actuator demand, which you can input to an actuator block.

Limitations
This block requires the Control System Toolbox license.

Ports
Input

y — Aircraft measurements
vector

Aircraft measurements, specified as a vector.
Data Types: double

v1 — First scheduling variable
vector

First scheduling variable, specified as a vector, ordered according to the dimensions of the state-
space matrices.
Data Types: double

v2 — Second scheduling variable
vector

Second scheduling variable, specified as a vector, ordered according to the dimensions of the state-
space matrices.
Data Types: double
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v3 — Third scheduling variable
vector

Third scheduling variable, specified as a vector, ordered according to the dimensions of the state-
space matrices.
Data Types: double

u_meas — Measured actuator position
vector

Measured actuator position, specified as a vector.
Data Types: double

Output

Port_1 — Actuator demands
vector

Actuator demands, specified as a vector.
Data Types: double

Parameters
A-matrix(v1,v2,v3) — A-matrix of the state-space implementation

A (default) | array

A-matrix of the state-space implementation. In the case of 3-D scheduling, the A-matrix should have
five dimensions, the last three corresponding to scheduling variables v1, v2, and v3. For example, if
the A-matrix corresponding to the first entry of v1, the first entry of v2, and the first entry of v3 is the
identity matrix, then A(:,:,1,1,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: A
Type: character vector
Values: vector
Default: 'A'

B-matrix(v1,v2,v3) — B-matrix of the state-space implementation

B (default) | array

B-matrix of the state-space implementation. In the case of 3-D scheduling, the B-matrix should have
five dimensions, the last three corresponding to scheduling variables v1, v2, and v3. For example, if
the B-matrix corresponding to the first entry of v1, the first entry of v2, and the first entry of v3 is the
identity matrix, then B(:,:,1,1,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: B
Type: character vector
Values: vector
Default: 'B'
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C-matrix(v1,v2,v3) — C-matrix of the state-space implementation

C (default) | array

C-matrix of the state-space implementation. In the case of 3-D scheduling, the C-matrix should have
five dimensions, the last three corresponding to scheduling variables v1, v2, and v3. For example, if
the C-matrix corresponding to the first entry of v1, the first entry of v2, and the first entry of v3 is the
identity matrix, then C(:,:,1,1,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: C
Type: character vector
Values: vector
Default: 'C'

D-matrix(v1,v2,v3) — D-matrix of the state-space implementation

D (default) | array

D-matrix of the state-space implementation. In the case of 3-D scheduling, the D-matrix should have
five dimensions, the last three corresponding to scheduling variables v1, v2, and v3. For example, if
the D-matrix corresponding to the first entry of v1, the first entry of v2, and the first entry of v3 is the
identity matrix, then D(:,:,1,1,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: D
Type: character vector
Values: vector
Default: 'D'

First scheduling variable (v1) breakpoints — Breakpoints for first scheduling
variable

v1_vec (default) | vector

Vector of the breakpoints for the first scheduling variable. The length of v1 should be same as the size
of the third dimension of A, B, C, and D.

Programmatic Use
Block Parameter: breakpoints_v1
Type: character vector
Values: vector
Default: 'v1_vec'

Second scheduling variable (v2) breakpoints — Breakpoints for second scheduling
variable

v2_vec (default) | vector

Vector of the breakpoints for the second scheduling variable. The length of v2 should be same as the
size of the fourth dimension of A, B, C, and D.

Programmatic Use
Block Parameter: breakpoints_v2
Type: character vector
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Values: vector
Default: 'v2_vec'

Third scheduling variable (v3) breakpoints — Breakpoints for third scheduling
variable

v3_vec (default) | vector

Vector of the breakpoints for the third scheduling variable. The length of v3 should be same as the
size of the fifth dimension of A, B, C, and D.
Programmatic Use
Block Parameter: breakpoints_v3
Type: character vector
Values: vector
Default: 'v3_vec'

Initial state, x_initial — Initial states

0 (default) | vector

Vector of initial states for the controller, that is, initial values for the state vector, x. It should have
length equal to the size of the first dimension of A.
Programmatic Use
Block Parameter: x_initial
Type: character vector
Values: vector
Default: '0'

Poles of A(v)-H(v)*C(v) — Desired poles

[-5 -2] (default) | vector

Vector of the desired poles of A-HC. Note that the poles are assigned to the same locations for all
values of the scheduling parameter v. Hence the number of pole locations defined should be equal to
the length of the first dimension of the A-matrix.
Programmatic Use
Block Parameter: vec_w
Type: character vector
Values: vector
Default: '[-5 -2]'

Algorithms
The block implements a gain-scheduled state-space controller as defined by the equations:

ẋ = A(v)x + B(v)y
u = C(v)x + D(v)y

in the self-conditioned form

ż = A(v)− H(v)C(v) z + B(v)− H(v)D(v) e + H(v)umeas
udem = C(v)z + D(v)e
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For the rationale behind this self-conditioned implementation, refer to the Self-Conditioned [A,B,C,D]
block reference. These blocks implement a gain-scheduled version of the Self-Conditioned [A,B,C,D]
block, v being the vector of parameters over which A, B, C, and D are defined. This type of controller
scheduling assumes that the matrices A, B, C, and D vary smoothly as a function of v, which is often
the case in aerospace applications.

Version History
Introduced before R2006a

References
[1] Kautsky, Nichols, and Van Dooren. "Robust Pole Assignment in Linear State Feedback."

International Journal of Control, Vol. 41, Number 5, 1985, pp. 1129-1155.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
1D Self-Conditioned [A(v),B(v),C(v),D(v)] | 2D Self-Conditioned [A(v),B(v),C(v),D(v)] | 3D Controller
[A(v),B(v),C(v),D(v)] | 3D Observer Form [A(v),B(v),C(v),F(v),H(v)] | Linear Second-Order Actuator |
Nonlinear Second-Order Actuator
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3DoF Animation
Create 3-D MATLAB Graphics animation of three-degrees-of-freedom object
Library: Aerospace Blockset / Animation / MATLAB-Based Animation

Description
The 3DoF Animation block displays a 3-D animated view of a three-degrees-of-freedom (3DoF) craft,
its trajectory, and its target using MATLAB Graphics.

The 3DoF Animation block uses input values and dialog parameters to create and display the
animation.

This block does not produce deployable code, but you can use it with Simulink Coder external mode
as a SimViewingDevice.

Ports
Input

xtzt — Target downrange position and altitude (positive down)
two-element vector

Downrange position and altitude (positive down) of the target, specified as a two-element vector.
Data Types: double

xeze — Craft downrange position and altitude (positive down)
two-element vector

Downrange position and altitude (positive down) of the craft, specified as a two-element vector.
Data Types: double

θ — Attitude of craft
1-by-1 scalar

Attitude of the craft, specified as 1-by-1 scalar, in radians.
Data Types: double

Parameters
Axes limits [xmin xmax ymin ymax zmin zmax] — Axes limits

[0 5000 -2000 2000 -5050 -3050] (default) | six-element vector

 3DoF Animation

5-49



Three-dimensional space to be viewed, specified as a six-element vector.

Programmatic Use
Block Parameter: u1
Type: character vector
Values: six-element vector
Default: '[0 5000 -2000 2000 -5050 -3050]'

Time interval between updates — Time interval

0.05 (default) | scalar

Time interval at which the animation is redrawn, specified as a double scalar.

Programmatic Use
Block Parameter: u2
Type: character vector
Values: double scalar
Default: '0.05'

Size of craft displayed — Scale factor

1.0 (default) | scalar

Scale factor to adjust the size of the craft and target, specified as a double scalar.

Programmatic Use
Block Parameter: u3
Type: character vector
Values: double scalar
Default: '1.0'

Enter view — Entrance view

Fixed position (default) | Cockpit | Fly alongside

Preset entrance views, specified as:

• Fixed position
• Cockpit
• Fly alongside

These preset views are specified by MATLAB Graphics parameters CameraTarget and
CameraUpVector for the figure axes.

Tip To customize the position and field of view for the selected view, use the Position of camera and
View angle parameters.

Programmatic Use
Block Parameter: u5
Type: character vector
Values: Fixed position | Cockpit | Fly alongside
Default: 'Fixed position'
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Position of camera [xc yc zc] — Camera position

[2000 500 -3150] (default) | three-element vector

Camera position, specified using the MATLAB Graphics parameter CameraPosition for the figure axes
as a three-element vector. Used in all cases except for the Cockpit view.

Programmatic Use
Block Parameter: u6
Type: character vector
Values: three-element vector
Default: '[2000 500 -3150]'

View angle — View angle

10 (default) | scalar

View angle, specified as MATLAB Graphics parameter CameraViewAngle for the figure axes in
degrees as a double scalar.

Programmatic Use
Block Parameter: u7
Type: character vector
Values: double scalar
Default: '10'

Enable animation — Display animation

on (default) | off

To display the animation during the simulation, select this check box. If not selected, the animation is
not displayed.

Programmatic Use
Block Parameter: u8
Type: character vector
Values: on | off
Default: 'on'

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
6DoF Animation | FlightGear Preconfigured 6DoF Animation | CameraPosition | CameraViewAngle

Topics
“Designing a Guidance System in MATLAB and Simulink”
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3DOF (Body Axes)
Implement three-degrees-of-freedom equations of motion with respect to body axes
Library: Aerospace Blockset / Equations of Motion / 3DOF

Description
The 3DOF (Body Axes) block implements three-degrees-of-freedom equations of motion with respect
to body axes. It considers the rotation in the vertical plane of a body-fixed coordinate frame about a
flat Earth reference frame. For more information about the rotation and equations of motion, see
“Algorithms” on page 5-59.

Ports
Input

Fx — Applied force along x-axis
scalar

Applied force along the body x-axis, specified as a scalar, in the units selected in Units.
Data Types: double

Fz — Applied force along z-axis
scalar

Applied force along the body z-axis, specified as a scalar.
Data Types: double

M — Applied pitching moment
scalar

Applied pitching moment, specified as a scalar.
Data Types: double

g — Gravity
scalar

Gravity, specified as a scalar.

Dependencies

To enable this port, set Gravity source to External.
Data Types: double
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Output

θ — Pitch altitude
scalar

Pitch attitude, within ±pi, returned as a scalar, in radians.
Data Types: double

q — Pitch angular rate
scalar

Pitch angular rate, returned as a scalar, in radians per second.
Data Types: double

dq/dt — Pitch angular acceleration
scalar

Pitch angular acceleration, returned as a scalar, in radians per second squared.
Data Types: double

XeZe — Location of body
two-element vector

Location of the body in the flat Earth reference frame, (Xe, Ze), returned as a two-element vector.
Data Types: double

U w — Velocity of body
two-element vector

Velocity of the body resolved into the body-fixed coordinate frame, (u, w), returned as a two-element
vector.
Data Types: double

AxbAzb — Acceleration of body
two-element vector

Acceleration of the body with respect to the body-fixed coordinate frame, (Ax, Az), returned as a two-
element vector.
Data Types: double

AxeAze — Acceleration of body
two-element vector

Accelerations of the body with respect to the inertial (flat Earth) coordinate frame, returned as a two-
element vector. You typically connect this signal to the accelerometer.

Dependencies

To enable this port, select the Include inertial acceleration check box.
Data Types: double
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Parameters
Main

Units — Input and output units

Metric (MKS) (default) | English (Velocity in ft/s) | English (Velocity in kts)

Input and output units, specified as Metric (MKS), English (Velocity in ft/s), or English
(Velocity in kts).

Units Forces Moment Acceleration Velocity Position Mass Inertia
Metric
(MKS)

Newton Newton-
meter

Meters per second
squared

Meters per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in ft/s)

Pound Foot-pound Feet per second
squared

Feet per
second

Feet Slug Slug foot
squared

English
(Velocity
in kts)

Pound Foot-pound Feet per second
squared

Knots Feet Slug Slug foot
squared

Programmatic Use
Block Parameter: units
Type: character vector
Values: Metric (MKS) | English (Velocity in ft/s) | English (Velocity in kts)
Default: Metric (MKS)

Axes — Body or wind axes

Body (default) | Wind

Body or wind axes, specified as Wind or Body

Programmatic Use
Block Parameter: axes
Type: character vector
Values: Wind | Body
Default: Body

Mass Type — Mass type
Fixed (default) | Simple Variable | Custom Variable

Mass type, specified according to the following table.

Mass Type Description Default for
Fixed Mass is constant throughout the

simulation.
• 3DOF (Body Axes)
• 3DOF (Wind Axes)
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Mass Type Description Default for
Simple Variable Mass and inertia vary linearly as

a function of mass rate.
• Simple Variable Mass 3DOF

(Body Axes)
• Simple Variable Mass 3DOF

(Wind Axes)
Custom Variable Mass and inertia variations are

customizable.
• Custom Variable Mass 3DOF

(Body Axes)
• Custom Variable Mass 3DOF

(Wind Axes)

The Fixed selection conforms to the previously described equations of motion.

Programmatic Use
Block Parameter: mtype
Type: character vector
Values: Fixed | Simple Variable | Custom Variable
Default: 'Fixed'

Initial velocity — Initial velocity of body

100 (default) | scalar

Initial velocity of the body, (V0), specified as a scalar.

Programmatic Use
Block Parameter: v_ini
Type: character vector
Values: '100' | scalar
Default: '100'

Initial body attitude — Initial pitch altitude

0 (default) | scalar

Initial pitch attitude of the body, (θ0), specified as a scalar.

Programmatic Use
Block Parameter: theta_ini
Type: character vector
Values: '0' | scalar
Default: '0'

Initial body rotation rate — Initial pitch rotation rate

0 (default) | scalar

Initial pitch rotation rate, (q0), specified as a scalar.

Programmatic Use
Block Parameter: q_ini
Type: character vector
Values: '0' | scalar
Default: '0'
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Initial incidence — Initial angle

0 (default) | scalar

Initial angle between the velocity vector and the body, (α0), specified as a scalar.
Programmatic Use
Block Parameter: alpha_ini
Type: character vector
Values: '0' | scalar
Default: '0'

Initial position (x,z) — Initial location

[0 0] (default) | two-element vector

Initial location of the body in the flat Earth reference frame, specified as a two-element vector.
Programmatic Use
Block Parameter: pos_ini
Type: character vector
Values: '[0 0]' | two-element vector
Default: '[0 0]'

Initial mass — Initial mass

1.0 (default) | scalar

Initial mass of the rigid body, specified as a scalar.
Programmatic Use
Block Parameter: mass
Type: character vector
Values: '1.0' | scalar
Default: '1.0'

Inertia — Inertia

1.0 (default) | scalar

Inertia of the body, specified as a scalar.
Dependencies

To enable this parameter, set Mass type to Fixed.
Programmatic Use
Block Parameter: Iyy
Type: character vector
Values: '1.0' | scalar
Default: '1.0'

Gravity Source — Gravity source

Internal (default) | External

Gravity source, specified as:
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External Variable gravity input to block
Internal Constant gravity specified in mask

Programmatic Use
Block Parameter: g_in
Type: character vector
Values: 'Internal' | 'External'
Default: 'Internal'

Acceleration due to gravity — Gravity source

9.81 (default) | scalar

Acceleration due to gravity, specified as a double scalar and used if internal gravity source is
selected. If gravity is to be neglected in the simulation, this value can be set to 0.

Dependencies

• To enable this parameter, set Gravity Source to Internal.

Programmatic Use
Block Parameter: g
Type: character vector
Values: '9.81' | scalar
Default: '9.81'

Include inertial acceleration — Include inertial acceleration port

off (default) | on

Select this check box to add an inertial acceleration in flat Earth frame output port. You typically
connect this signal to the accelerometer.

Dependencies

To enable the AxeAze port, select this parameter.

Programmatic Use
Block Parameter: abi_flag
Type: character vector
Values: 'off' | 'on'
Default: 'off'

State Attributes

Assign a unique name to each state. You can use state names instead of block paths during
linearization.

• The number of names must match the number of states, as shown for each item, or be empty. Set
all or none of the block states.

• To assign names to single-variable states, enter unique names between quotes, for example, 'q'
or "q".

• To assign names to two-variable states, enter a comma-separated list surrounded by braces, for
example, {'Xe','Ze'}.
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• If a state parameter is empty (' '), no name is assigned.
• To assign state names with a variable in the MATLAB workspace, enter the variable without

quotes. A variable can be a character vector, cell array of character vectors, or string.

Velocity: e.g., {'u, 'w'} — Velocity state name

'' (default) | comma-separated list surrounded by braces

Velocity state names, specified as a comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: vel_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Position: e.g., {'Xe', 'Ze'} — Position state name

'' (default) | comma-separated list surrounded by braces

Position state names, specified as a comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: pos_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Pitch angular rate e.g., 'q' — Pitch angular rate state name

'' (default)

Pitch angular rate state name, specified as a character vector or string.

Programmatic Use
Block Parameter: q_statename
Type: character vector | string
Values: '' | scalar
Default: ''

Pitch attitude: e.g., 'theta' — Pitch attitude state name

'' (default)

Pitch attitude state name, specified as a character vector or string.

Programmatic Use
Block Parameter: theta_statename
Type: character vector | string
Values: ''
Default: ''
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Algorithms
The block considers the rotation in the vertical plane of a body-fixed coordinate frame about a flat
Earth reference frame.

The equations of motion are

Axb = u̇ = Axe− qw
Azb = ẇ = Aze + qu

Axe =
Fx
m − gsinθ

Aze =
Fz
m + gcosθ

Ẋe = ucosθ + wsinθ

Że = − usinθ + wcosθ

q̇ =
My
Iyy

θ̇ = q

where the applied forces are assumed to act at the center of gravity of the body. Input variables are
Fx, Fz, My. g is an optional input variable.

Version History
Introduced in R2006a

3DOF (Body Axes) Block Changes
Behavior changed in R2021b

The 3DOF equations of motion have been updated. Existing models created prior to R2021b that
contain 3DOF equations of motion blocks continue to run. If you replace a pre-R2021b version of a
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3DOF equation of motion block with an R2021b or later version, your updated model might have a
higher tendency for algebraic loops. For an example of how to remove algebraic loops using unit
delays, see “Remove Algebraic Loops”. For further information about algebraic loops, see “Identify
Algebraic Loops in Your Model”.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
3DOF (Wind Axes) | 4th Order Point Mass (Longitudinal) | Custom Variable Mass 3DOF (Body Axes) |
Custom Variable Mass 3DOF (Wind Axes) | Simple Variable Mass 3DOF (Body Axes) | Simple Variable
Mass 3DOF (Wind Axes)

Topics
“Designing a Guidance System in MATLAB and Simulink”
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3DOF (Wind Axes)
Implement three-degrees-of-freedom equations of motion with respect to wind axes
Library: Aerospace Blockset / Equations of Motion / 3DOF

Description
The 3DOF (Wind Axes) block implements three-degrees-of-freedom equations of motion with respect
to wind axes. It considers the rotation in the vertical plane of a wind-fixed coordinate frame about a
flat Earth reference frame. For more information about the rotation and equations of motion, see
“Algorithms” on page 5-68.

Limitations
The block assumes that the applied forces act at the center of gravity of the body, and that the mass
and inertia are constant.

Ports
Input

Fx — Applied force along wind x-axis
scalar

Applied force along the wind x-axis, specified as a scalar, in the units selected in Units.
Data Types: double

Fz — Applied force along wind z-axis
scalar

Applied force along the wind z-axis, specified as a scalar.
Data Types: double

M — Applied pitching moment
scalar

Applied pitching moment, specified as a scalar.
Data Types: double

g — Gravity
scalar

Gravity, specified as a scalar.
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Dependencies

To enable this port, set Gravity source to External.
Data Types: double

Output

γ — Flight path angle
scalar

Flight path angle, within ±pi, returned as a scalar, in radians.
Data Types: double

q — Pitch angular rate
scalar

Pitch angular rate, returned as a scalar, in radians per second.
Data Types: double

dq/dt — Pitch angular acceleration
scalar

Pitch angular acceleration, returned as a scalar, in radians per second squared.
Data Types: double

XeZe — Location of body
two-element vector

Location of the body in the flat Earth reference frame, (Xe, Ze), returned as a two-element vector.
Data Types: double

Vw — Velocity in wind-fixed frame
two-element vector

Velocity of the body resolved into the wind-fixed coordinate frame, (V, 0), returned as a two-element
vector.
Data Types: double

AxbAzb — Acceleration of body
two-element vector

Acceleration of the body with respect to the body-fixed coordinate frame, (Ax, Az), returned as a two-
element vector.
Data Types: double

α — Angle of attack
scalar

Angle of attack, returned as a scalar, in radians.
Data Types: double
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AxeAze — Acceleration of body
two-element vector

Accelerations of the body with respect to the inertial (flat Earth) coordinate frame, returned as a two-
element vector. You typically connect this signal to the accelerometer.
Dependencies

To enable this port, select the Include inertial acceleration check box.
Data Types: double

Parameters
Main

Units — Input and output units

Metric (MKS) (default) | English (Velocity in ft/s) | English (Velocity in kts)

Input and output units, specified as Metric (MKS), English (Velocity in ft/s), or English
(Velocity in kts).

Units Forces Moment Acceleration Velocity Position Mass Inertia
Metric
(MKS)

Newton Newton-
meter

Meters per second
squared

Meters per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in ft/s)

Pound Foot-pound Feet per second
squared

Feet per
second

Feet Slug Slug foot
squared

English
(Velocity
in kts)

Pound Foot-pound Feet per second
squared

Knots Feet Slug Slug foot
squared

Programmatic Use
Block Parameter: units
Type: character vector
Values: Metric (MKS) | English (Velocity in ft/s) | English (Velocity in kts)
Default: Metric (MKS)

Axes — Body or wind axes

Wind (default) | Body

Body or wind axes, specified as Wind or Body
Programmatic Use
Block Parameter: axes
Type: character vector
Values: Wind | Body
Default: Wind

Mass type — Mass type
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Fixed (default) | Simple Variable | Custom Variable

Mass type, specified according to the following table.

Mass Type Description Default for
Fixed Mass is constant throughout the

simulation.
• 3DOF (Body Axes)
• 3DOF (Wind Axes)

Simple Variable Mass and inertia vary linearly as
a function of mass rate.

• Simple Variable Mass 3DOF
(Body Axes)

• Simple Variable Mass 3DOF
(Wind Axes)

Custom Variable Mass and inertia variations are
customizable.

• Custom Variable Mass 3DOF
(Body Axes)

• Custom Variable Mass 3DOF
(Wind Axes)

The Fixed selection conforms to the previously described equations of motion.
Programmatic Use
Block Parameter: mtype
Type: character vector
Values: Fixed | Simple Variable | Custom Variable
Default: 'Fixed'

Initial airspeed — Initial speed

100 (default) | scalar greater than 0

Initial speed of the body, (V0), specified as a scalar greater than 0.
Programmatic Use
Block Parameter: V_ini
Type: character vector
Values: '100' | scalar
Default: '100'

Initial flight path angle — Initial flight path angle

0 (default) | scalar

Initial flight path angle of the body, (γ0), specified as a scalar.
Programmatic Use
Block Parameter: gamma_ini
Type: character vector
Values: '0' | scalar
Default: '0'

Initial body rotation rate — Initial pitch rotation rate

0 (default) | scalar

Initial pitch rotation rate, (q0), specified as a scalar.
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Programmatic Use
Block Parameter: q_ini
Type: character vector
Values: '0' | scalar
Default: '0'

Initial incidence — Initial angle

0 (default) | scalar

Initial angle between the velocity vector and the body, (α0), specified as a scalar.

Programmatic Use
Block Parameter: alpha_ini
Type: character vector
Values: '0' | scalar
Default: '0'

Initial position (x,z) — Initial location

[0 0] (default) | two-element vector

Initial location of the body in the flat Earth reference frame, specified as a two-element vector.

Programmatic Use
Block Parameter: pos_ini
Type: character vector
Values: '[0 0]' | two-element vector
Default: '[0 0]'

Initial mass — Initial mass

1.0 (default) | scalar

Initial mass of the rigid body, specified as a scalar.

Programmatic Use
Block Parameter: mass
Type: character vector
Values: '1.0' | scalar
Default: '1.0'

Inertia body axes — Inertia of body

1.0 (default) | scalar

Inertia of the body, specified as a scalar.

Dependencies

To enable this parameter, set Mass type to Fixed.

Programmatic Use
Block Parameter: Iyy
Type: character vector
Values: '1.0' | scalar
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Default: '1.0'

Gravity Source — Gravity source

Internal (default) | External

Gravity source, specified as:

External Variable gravity input to block
Internal Constant gravity specified in mask

Programmatic Use
Block Parameter: g_in
Type: character vector
Values: 'Internal' | 'External'
Default: 'Internal'

Acceleration due to gravity — Gravity source

9.81 (default) | scalar

Acceleration due to gravity, specified as a double scalar and used if internal gravity source is
selected. If gravity is to be neglected in the simulation, this value can be set to 0.

Dependencies

• To enable this parameter, set Gravity Source to Internal.

Programmatic Use
Block Parameter: g
Type: character vector
Values: '9.81' | scalar
Default: '9.81'

Include inertial acceleration — Include inertial acceleration port

off (default) | on

Select this check box to add an inertial acceleration in flat Earth frame output port. You typically
connect this signal to the accelerometer.

Dependencies

To enable the AxeAze port, select this parameter.

Programmatic Use
Block Parameter: abi_flag
Type: character vector
Values: 'off' | 'on'
Default: 'off'

State Attributes

Assign a unique name to each state. You can use state names instead of block paths during
linearization.
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• The number of names must match the number of states, as shown for each item, or be empty. Set
all or none of the block states.

• To assign names to single-variable states, enter unique names between quotes, for example, 'q'
or "q".

• To assign names to two-variable states, enter a comma-separated list surrounded by braces, for
example, {'Xe','Ze'}.

• If a state parameter is empty (' '), no name is assigned.
• To assign state names with a variable in the MATLAB workspace, enter the variable without

quotes. A variable can be a character vector, cell array of character vectors, or string.

Velocity: e.g., 'V' — Velocity state name

'' (default) | character vector

Velocity state name, specified as a character vector or string.

Programmatic Use
Block Parameter: V_statename
Type: character vector | string
Values: '' | scalar
Default: ''

Position: e.g., {'Xe', 'Ze'} — Position state name

'' (default) | comma-separated list surrounded by braces

Position state names, specified as a comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: pos_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Body rotation rate: e.g., 'q' — Body rotation state name

'' (default) | scalar

Body rotation rate state names, specified as a character vector or string.

Programmatic Use
Block Parameter: q_statename
Type: character vector | string
Values: '' | scalar
Default: ''

Flight path angle: e.g., 'gamma' — Flight path angle state name

'' (default)

Flight path angle state name, specified as a character vector or string.

Programmatic Use
Block Parameter: gamma_statename
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Type: character vector | string
Values: '' | scalar
Default: ''

Incidence angle e.g., 'alpha' — Incidence angle state name

'' (default) | scalar

Incidence angle state name, specified as a character vector or string.

Programmatic Use
Block Parameter: alpha_statename
Type: character vector | string
Values: '' | scalar
Default: ''

Algorithms
The block considers the rotation in the vertical plane of a wind-fixed coordinate frame about a flat
Earth reference frame.

The equations of motion are
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Axb = Axe− qVsinα
Azb = Aze + qVcosα

Axe =
Fx
m − gsinγ cosα−

Fz
m + gcosγ sinα

Aze =
Fx
m − gsinγ sinα +

Fz
m + gcosγ cosα

V̇ =
Fx
m − gsinγ

Ẋe = Vcosγ

Że = − Vsinγ

q̇ =
My
Iyy

γ̇ = q− α̇

α̇ =
Fz

mV + g
V cosγ + q

where the applied forces are assumed to act at the center of gravity of the body. Input variables are
wind-axes forces Fx and Fz and body moment My. g is an optional input variable.

Version History
Introduced in R2006a

3DOF (Wind Axes) Block Changes
Behavior changed in R2021b

The 3DOF equations of motion have been updated. Existing models created prior to R2021b that
contain 3DOF equations of motion blocks continue to run. If you replace a pre-R2021b version of a
3DOF equation of motion block with an R2021b or later version, your updated model might have a
higher tendency for algebraic loops. For an example of how to remove algebraic loops using unit
delays, see “Remove Algebraic Loops”. For further information about algebraic loops, see “Identify
Algebraic Loops in Your Model”.

References
[1] Stevens, Brian, and Frank Lewis. Aircraft Control and Simulation. New York: John Wiley & Sons,

1992.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.
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See Also
3DOF (Body Axes) | 4th Order Point Mass (Longitudinal) | Custom Variable Mass 3DOF (Body Axes) |
Custom Variable Mass 3DOF (Wind Axes) | Simple Variable Mass 3DOF (Body Axes) | Simple Variable
Mass 3DOF (Wind Axes)
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3x3 Cross Product
Calculate cross product of two 3-by-1 vectors
Library: Aerospace Blockset / Utilities / Math Operations

Description
The 3x3 Cross Product block computes cross (or vector) product of two vectors, A and B. The block
generates a third vector, C, in a direction normal to the plane containing A and B, with magnitude
equal to the product of the lengths of A and B multiplied by the sine of the angle between them. The
direction of C follows the right-hand rule in turning from A to B. For related equations, see
“Algorithms” on page 5-71.

Ports
Input

A — First cross product input
3-by-1 vector

First cross product input, specified as a vector.
Example: [10 2 3]
Data Types: double

B — Second cross product input
3-by-1 vector

Second cross product input, specified as a vector.
Example: [10 2 3]
Data Types: double

Output

C — Cross product
3-by-1 vector

Cross product, output as a vector.
Data Types: double

Algorithms
The equations used to calculate A, B, and C are:
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A = a1i + a2j + a3k
B = b1i + b2j + b3k

C = A × B =
i j k

a1 a2 a3
b1 b2 b3

= (a2b3− a3b2)i + (a3b1− a1b3)j + (a1b2− a2b1)k

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Create 3x3 Matrix | Adjoint of 3x3 Matrix | Determinant of 3x3 Matrix | Invert 3x3 Matrix
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4th Order Point Mass (Longitudinal)
Calculate fourth-order point mass
Library: Aerospace Blockset / Equations of Motion / Point Mass

Description
The 4th Order Point Mass (Longitudinal) block performs the calculations for the translational motion
of a single point mass or multiple point masses. For more information on the system for the
translational motion of a single point mass or multiple mass, see “Algorithms” on page 5-76.

The 4th Order Point Mass (Longitudinal) block port labels change based on the input and output units
selected from the Units list.

Limitations
The flat Earth reference frame is considered inertial, an approximation that allows the forces due to
the Earth's motion relative to the “fixed stars” to be neglected.

Ports
Input

Port_1 — Force in x-axis
scalar | array

Force in x-axis, specified as a scalar or array, in selected units.
Data Types: double

Port_2 — Force in z-axis
scalar | array

Force in z-axis, specified as a scalar or array, in selected units.
Data Types: double

Output

Port_1 — Flight path angle
scalar | array

Flight path angle, returned as a scalar or array, in radians.
Data Types: double

Port_2 — Airspeed
scalar | array
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Airspeed, returned as a scalar or array, in selected units.
Data Types: double

Port_3 — Downrange or amount traveled east
scalar | array

Downrange or amount traveled east, returned as a scalar or array, in selected units.
Data Types: double

Port_4 — Altitude or amount traveled up
scalar | array

Altitude or amount traveled up, returned as a scalar or array, in selected units.
Data Types: double

Parameters
Units — Units

Metric (MKS) (default) | English (Velocity in ft/s) | English (Velocity in kts)

Input and output units, specified as:

Units Forces Velocity Position Mass
Metric (MKS) newtons meters per second meters kilograms
English (Velocity in
ft/s)

pounds feet per second feet slugs

English (Velocity in
kts)

pounds knots feet slugs

Programmatic Use
Block Parameter: units
Type: character vector
Values: 'Metric (MKS)' | 'English (Velocity in ft/s)' | 'English (Velocity in
kts)'
Default: 'Metric (MKS)'

Initial flight path angle — Initial flight path angle

0 (default) | scalar | vector

Initial flight path angle of the point mass(es), specified as a scalar or vector.

Programmatic Use
Block Parameter: gamma0
Type: character vector
Values: scalar | vector
Default: '0'

Initial airspeed — Initial airspeed
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100 (default) | scalar | vector

Initial airspeed of the point mass(es), specified as a scalar or vector.

Programmatic Use
Block Parameter: V0
Type: character vector
Values: scalar | vector
Default: '100'

Initial downrange [East] — Initial downrange

0 (default) | scalar | vector

Initial downrange of the point mass(es), specified as a scalar or vector.

Programmatic Use
Block Parameter: x0
Type: character vector
Values: scalar | vector
Default: '0'

Initial altitude [Up] — Initial altitude of point masses

0 (default) | scalar | vector

Initial altitude of the point mass(es), specified as a scalar or vector.

Programmatic Use
Block Parameter: h0
Type: character vector
Values: scalar | vector
Default: '0'

Initial mass — Point mass

1.0 (default) | scalar | vector

Mass of the point mass(es), specified as a scalar or vector.

Programmatic Use
Block Parameter: mass0
Type: character vector
Values: scalar | vector
Default: '1.0'
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Algorithms

The translational motions of the point mass [XEastXUp]T are functions of airspeed (V) and flight path
angle (γ),

Fx = mV̇
Fz = mVγ̇

ẊEast = Vcosγ

ẊUp = Vsinγ

where the applied forces [FxFz]T are in a system defined as follows: x-axis is in the direction of vehicle
velocity relative to air, z-axis is upward, and y-axis completes the right-handed frame. The mass of the
body m is assumed constant.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Simple Variable Mass 3DOF (Body Axes) | Custom Variable Mass 3DOF (Wind Axes) | 4th Order Point
Mass Forces (Longitudinal) | 3DOF (Body Axes) | 3DOF (Wind Axes) | 6th Order Point Mass
(Coordinated Flight) | Custom Variable Mass 3DOF (Body Axes) | 6th Order Point Mass Forces
(Coordinated Flight) | Simple Variable Mass 3DOF (Wind Axes)
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4th Order Point Mass Forces (Longitudinal)
Calculate forces used by fourth-order point mass
Library: Aerospace Blockset / Equations of Motion / Point Mass

Description
The 4th Order Point Mass Forces (Longitudinal) block calculates the applied forces for a single point
mass or multiple point masses. For more information on the system for the applied forces, see
“Algorithms” on page 5-79.

Limitations
The flat Earth reference frame is considered inertial, an approximation that allows the forces due to
the Earth motion relative to the "fixed stars" to be neglected.

Ports
Input

Lift — Lift
scalar | array

Lift, specified as a scalar or array, in units of force.
Data Types: double

Drag — Drag
scalar | array

Drag, specified as a scalar or array, in units of force.
Data Types: double

Weight — Weight
scalar | array

Weight, specified as a scalar or array, in units of force.
Data Types: double

Thrust — Thrust
scalar | array

Thrust, specified as a scalar or array, in units of force.
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Data Types: double

ɣ — Flight path angle
scalar | array

Flight path angle, specified as a scalar or array, in radians.
Data Types: double

μ — Bank angle
scalar | array

Bank angle, specified as a scalar or array, in radians.
Data Types: double

ɑ — Angle of attack
scalar | array

Angle of attack, specified as a scalar or array, in radians.
Data Types: double

Output

Fx — Force in x-axis
scalar | array

Force in x-axis, returned as a scalar or array, in units of force.
Data Types: double

Fz — Force in z-axis
scalar | array

Force in z-axis, returned as a scalar or array, in units of force.
Data Types: double
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Algorithms

The applied forces [Fx Fz]T are in a system defined as follows: x-axis is in the direction of vehicle
velocity relative to air, z-axis is upward, and y-axis completes the right-handed frame. They are
functions of lift (L), drag (D), thrust (T), weight (W), flight path angle (γ), angle of attack (α), and
bank angle (μ).

Fz = (L + Tsinα)cosμ−Wcosγ
Fx = Tcosα− D−Wsinγ

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
6th Order Point Mass (Coordinated Flight) | 4th Order Point Mass (Longitudinal) | 6th Order Point
Mass Forces (Coordinated Flight)
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6DoF Animation
Create 3-D MATLAB Graphics animation of six-degrees-of-freedom object
Library: Aerospace Blockset / Animation / MATLAB-Based Animation

Description
The 6DoF Animation block displays a 3-D animated view of a six-degrees-of-freedom (6DoF) vehicle,
its trajectory, and its target using MATLAB Graphics.

The 6DoF Animation block uses the input values and the block parameters to create and display the
animation. The Axes limits, Static object position, and Position of camera parameters have the
same units of length as the input parameters.

This block does not produce deployable code, but you can use it with Simulink Coder external mode
as a SimViewingDevice.

Ports
Input

xe — Downrange position, crossrange position, and altitude (positive down)
three-element vector

Downrange position, crossrange position, and altitude (positive down) of the vehicle, specified as a
three-element vector.
Data Types: double

φ θ ψ — Euler angles
three-element vector

Euler angles of the vehicle, specified as a three-element vector.
Data Types: double

Parameters
Axes limits [xmin xmax ymin ymax zmin zmax] — Axes limits

[0 4000 -2000 2000 -5000 -3000] (default) | six-element vector

Three-dimensional space to be viewed, specified as a six-element vector.
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Programmatic Use
Block Parameter: u1
Type: character vector
Values: six-element vector
Default: '[0 4000 -2000 2000 -5000 -3000]'

Time interval between updates — Time interval

0.1 (default) | scalar

Time interval at which the animation is redrawn, specified as a double scalar.

Programmatic Use
Block Parameter: u2
Type: character vector
Values: double scalar
Default: '0.1'

Size of craft displayed — Scale factor

1.0 (default) | scalar

Scale factor to adjust the size of the vehicle and target, specified as a double scalar.

Programmatic Use
Block Parameter: u3
Type: character vector
Values: double scalar
Default: '1.0'

Static object position [xp yp zp] — Static object position

[4000 0 -5000] (default) | three-element vector

Altitude, crossrange position, and downrange position of the target, specified as three-element vector.

Programmatic Use
Block Parameter: u4
Type: character vector
Values: three-element vector
Default: '[4000 0 -5000]'

Enter view — Entrance view

Fixed position (default) | Cockpit | Fly alongside

Preset entrance views, specified as:

• Fixed position
• Cockpit
• Fly alongside

These preset views are specified by MATLAB Graphics parameters CameraTarget and
CameraUpVector for the figure axes.
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Tip To customize the position and field of view for the selected view, use the Position of camera and
View angle parameters.

Programmatic Use
Block Parameter: u5
Type: character vector
Values: Fixed position | Cockpit | Fly alongside
Default: 'Fixed position'

Position of camera [xc yc zc] — Camera position

[2000 500 -3150] (default) | three-element vector

Camera position, specified using the MATLAB Graphics parameter CameraPosition for the figure axes
as a three-element vector. Used in all cases except for when Enter view is set to Cockpit.

Programmatic Use
Block Parameter: u6
Type: character vector
Values: three-element vector
Default: '[2000 500 -3150]'

View angle — View angle

10 (default) | scalar

View angle for the MATLAB Graphics parameter CameraViewAngle for the figure axes in degrees,
specified as a double scalar.

Programmatic Use
Block Parameter: u7
Type: character vector
Values: double scalar
Default: '10'

Enable animation — Display animation

on (default) | off

Whether to display the animation during the simulation. If not selected, the animation is not
displayed.

Programmatic Use
Block Parameter: u8
Type: character vector
Values: on | off
Default: 'on'

Version History
Introduced before R2006a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
3DoF Animation | FlightGear Preconfigured 6DoF Animation | CameraPosition | CameraViewAngle
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6DOF (Euler Angles)
Implement Euler angle representation of six-degrees-of-freedom equations of motion
Library: Aerospace Blockset / Equations of Motion / 6DOF

Description
The 6DOF (Euler Angles) block implements the Euler angle representation of six-degrees-of-freedom
equations of motion, taking into consideration the rotation of a body-fixed coordinate frame (Xb, Yb,
Zb) about a flat Earth reference frame (Xe, Ye, Ze). For more information about these reference points,
see “Algorithms” on page 5-90.

Limitations
The block assumes that the applied forces act at the center of gravity of the body, and that the mass
and inertia are constant.

Ports
Input

Fxyz(N) — Applied forces
three-element vector

Applied forces, specified as a three-element vector in body-fixed axes. For more information on the
frame, see “Body Coordinates” on page 2-8.
Data Types: double

Mxyz(N-m) — Applied moments
three-element vector

Applied moments, specified as a three-element vector in body-fixed axes. For more information on the
frame, see “Body Coordinates” on page 2-8.
Data Types: double

Output

Ve — Velocity in flat Earth reference frame
three-element vector

Velocity in the flat Earth reference frame, returned as a three-element vector.
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Data Types: double

Xe — Position in flat Earth reference frame
three-element vector

Position in the flat Earth reference frame, returned as a three-element vector.
Data Types: double

φ θ ψ (rad) — Euler rotation angles
three-element vector

Euler rotation angles [roll, pitch, yaw] defining an intrinsic x-y-z rotation, as a three-element vector,
in radians. Yaw, pitch, and roll angles are applied using the z-y-x rotation sequence, such as
angle2dcm(yaw,pitch,roll,"ZYX").
Data Types: double

DCMbe — Coordinate transformation
3-by-3 matrix

Coordinate transformation from flat Earth axes to body-fixed axes, returned as a 3-by-3 matrix.
Data Types: double

Vb — Velocity in the body-fixed frame
three-element vector

Velocity in the body-fixed frame, returned as a three-element vector.
Data Types: double

ωb (rad/s) — Angular rates in body-fixed axes
three-element vector

Angular rates in body-fixed axes, returned as a three-element vector, in radians per second.
Data Types: double

dωb/dt — Angular accelerations
three-element vector

Angular accelerations in body-fixed axes, returned as a three-element vector, in radians per second
squared.
Data Types: double

Abb — Accelerations in body-fixed axes
three-element vector

Accelerations in body-fixed axes with respect to body frame, returned as a three-element vector.
Data Types: double

Abe — Accelerations with respect to inertial frame
three-element vector

Accelerations in body-fixed axes with respect to inertial frame (flat Earth), returned as a three-
element vector. You typically connect this signal to the accelerometer.
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Dependencies

This port appears only when the Include inertial acceleration check box is selected.
Data Types: double

Parameters
Main

Units — Input and output units

Metric (MKS) (default) | English (Velocity in ft/s) | English (Velocity in kts)

Input and output units, specified as Metric (MKS), English (Velocity in ft/s), or English
(Velocity in kts).

Units Forces Moment Acceleration Velocity Position Mass Inertia
Metric
(MKS)

Newton Newton-
meter

Meters per second
squared

Meters per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in ft/s)

Pound Foot-pound Feet per second
squared

Feet per
second

Feet Slug Slug foot
squared

English
(Velocity
in kts)

Pound Foot-pound Feet per second
squared

Knots Feet Slug Slug foot
squared

Programmatic Use
Block Parameter: units
Type: character vector
Values: Metric (MKS) | English (Velocity in ft/s) | English (Velocity in kts)
Default: Metric (MKS)

Mass Type — Mass type

Fixed (default) | Simple Variable | Custom Variable

Mass type, specified according to the following table.

Mass Type Description Default for
Fixed Mass is constant throughout the

simulation.
• 6DOF (Euler Angles)
• 6DOF (Quaternion)
• 6DOF Wind (Wind Angles)
• 6DOF Wind (Quaternion)
• 6DOF ECEF (Quaternion)
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Mass Type Description Default for
Simple Variable Mass and inertia vary linearly as

a function of mass rate.
• Simple Variable Mass 6DOF

(Euler Angles)
• Simple Variable Mass 6DOF

(Quaternion)
• Simple Variable Mass 6DOF

Wind (Wind Angles)
• Simple Variable Mass 6DOF

Wind (Quaternion)
• Simple Variable Mass 6DOF

ECEF (Quaternion)
Custom Variable Mass and inertia variations are

customizable.
• Custom Variable Mass 6DOF

(Euler Angles)
• Custom Variable Mass 6DOF

(Quaternion)
• Custom Variable Mass 6DOF

Wind (Wind Angles)
• Custom Variable Mass 6DOF

Wind (Quaternion)
• Custom Variable Mass 6DOF

ECEF (Quaternion)

The Simple Variable selection conforms to the previously described equations of motion.
Programmatic Use
Block Parameter: mtype
Type: character vector
Values: Fixed | Simple Variable | Custom Variable
Default: Simple Variable

Representation — Equations of motion representation

Euler Angles (default) | Quaternion

Equations of motion representation, specified according to the following table.

Representation Description
Euler Angles Use Euler angles within equations of motion.
Quaternion Use quaternions within equations of motion.

The Quaternion selection conforms the equations of motion in “Algorithms” on page 5-90.
Programmatic Use
Block Parameter: rep
Type: character vector
Values: Euler Angles | Quaternion
Default: 'Euler Angles'

Initial position in inertial axes [Xe,Ye,Ze] — Position in inertial axes
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[0 0 0] (default) | three-element vector

Initial location of the body in the flat Earth reference frame, specified as a three-element vector.

Programmatic Use
Block Parameter: xme_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Initial velocity in body axes [U,v,w] — Velocity in body axes

[0 0 0] (default) | three-element vector

Initial velocity in body axes, specified as a three-element vector, in the body-fixed coordinate frame.

Programmatic Use
Block Parameter: Vm_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Initial Euler orientation [roll, pitch, yaw] — Initial Euler orientation

[0 0 0] (default) | three-element vector

Initial Euler orientation angles [roll, pitch, yaw], specified as a three-element vector, in radians. Euler
rotation angles are those between the body and north-east-down (NED) coordinate systems.

Programmatic Use
Block Parameter: eul_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Initial body rotation rates [p,q,r] — Initial body rotation

[0 0 0] (default) | three-element vector

Initial body-fixed angular rates with respect to the NED frame, specified as a three-element vector, in
radians per second.

Programmatic Use
Block Parameter: pm_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Initial mass — Initial mass

1.0 (default) | scalar

Initial mass of the rigid body, specified as a double scalar.

Programmatic Use
Block Parameter: mass_0
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Type: character vector
Values: '1.0' | double scalar
Default: '1.0'

Inertia — Inertia

eye(3) (default) | scalar

Inertia of the body, specified as a double scalar.

Dependencies

To enable this parameter, set Mass type to Fixed.

Programmatic Use
Block Parameter: inertia
Type: character vector
Values: eye(3) | double scalar
Default: eye(3)

Include inertial acceleration — Include inertial acceleration port

off (default) | on

Select this check box to add an inertial acceleration port.

Dependencies

To enable the Abe port, select this parameter.

Programmatic Use
Block Parameter: abi_flag
Type: character vector
Values: 'off' | 'on'
Default: off

State Attributes

Assign unique name to each state. You can use state names instead of block paths during
linearization.

• To assign a name to a single state, enter a unique name between quotes, for example,
'velocity'.

• To assign names to multiple states, enter a comma-delimited list surrounded by braces, for
example, {'a', 'b', 'c'}. Each name must be unique.

• If a parameter is empty (' '), no name assignment occurs.
• The state names apply only to the selected block with the name parameter.
• The number of states must divide evenly among the number of state names.
• You can specify fewer names than states, but you cannot specify more names than states.

For example, you can specify two names in a system with four states. The first name applies to the
first two states and the second name to the last two states.

• To assign state names with a variable in the MATLAB workspace, enter the variable without
quotes. A variable can be a character vector, cell array, or structure.
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Position: e.g., {'Xe', 'Ye', 'Ze'} — Position state name

'' (default) | comma-separated list surrounded by braces

Position state names, specified as a comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: xme_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Velocity: e.g., {'U', 'v', 'w'} — Velocity state name

'' (default) | comma-separated list surrounded by braces

Velocity state names, specified as comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: Vm_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Euler rotation angles: e.g., {'phi', 'theta', 'psi'} — Euler rotation state name

'' (default) | comma-separated list surrounded by braces

Euler rotation angle state names, specified as a comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: eul_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Body rotation rates: e.g., {'p', 'q', 'r'} — Body rotation state names

'' (default) | comma-separated list surrounded by braces

Body rotation rate state names, specified comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: pm_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Algorithms
The 6DOF (Euler Angles) block uses these reference frame concepts.

• The origin of the body-fixed coordinate frame is the center of gravity of the body, and the body is
assumed to be rigid, an assumption that eliminates the need to consider the forces acting between
individual elements of mass.
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The flat Earth reference frame is considered inertial, an excellent approximation that allows the
forces due to the Earth motion relative to the "fixed stars" to be neglected.

• Translational motion of the body-fixed coordinate frame, where the applied forces [Fx Fy Fz]T are in
the body-fixed frame, and the mass of the body m is assumed constant.

Fb =
Fx
Fy
Fz

= m V̇b + ω × Vb

Abb =
u̇b

v̇b

ẇb

= 1
mFb− ω × Vb

Abe = 1
mFb

Vb =
ub
vb
wb

, ω =
p
q
r

• The rotational dynamics of the body-fixed frame, where the applied moments are [L M N]T, and
the inertia tensor I is with respect to the origin O.

MB =
L
M
N

= Iω̇ + ω × (Iω)

I =
Ixx −Ixy −Ixz
−Iyx Iyy −Iyz
−Izx −Izy Izz

• The relationship between the body-fixed angular velocity vector, [p q r]T, and the rate of change of
the Euler angles, ϕ̇ θ̇ ψ̇ T, are determined by resolving the Euler rates into the body-fixed
coordinate frame.
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p
q
r

=
ϕ̇
0
0

+
1 0 0
0 cosϕ sinϕ
0 −sinϕ cosϕ

0
θ̇
0

+
1 0 0
0 cosϕ sinϕ
0 −sinϕ cosϕ

cosθ 0 −sinθ
0 1 0

sinθ 0 cosθ

0
0
ψ̇
≡ J−1

ϕ̇
θ̇
ψ̇

Inverting J then gives the required relationship to determine the Euler rate vector.

ϕ̇
θ̇
ψ̇

= J
p
q
r

=

1 (sinϕtanθ) (cosϕtanθ)
0 cosϕ −sinϕ

0 sinϕ
cosθ

cosϕ
cosθ

p
q
r

Version History
Introduced in R2006a

References
[1] Stevens, Brian, and Frank Lewis, Aircraft Control and Simulation. Hoboken, NJ: Second Edition,

John Wiley & Sons, 2003.

[2] Zipfel, Peter H., Modeling and Simulation of Aerospace Vehicle Dynamics. Reston, Va: Second
Edition, AIAA Education Series, 2007.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
6DOF (Quaternion) | 6DOF ECEF (Quaternion) | 6DOF Wind (Quaternion) | 6DOF Wind (Wind Angles)
| Custom Variable Mass 6DOF (Euler Angles) | Custom Variable Mass 6DOF (Quaternion) | Custom
Variable Mass 6DOF ECEF (Quaternion) | Custom Variable Mass 6DOF Wind (Quaternion) | Custom
Variable Mass 6DOF Wind (Wind Angles) | Simple Variable Mass 6DOF (Euler Angles) | Simple
Variable Mass 6DOF (Quaternion) | Simple Variable Mass 6DOF ECEF (Quaternion) | Simple Variable
Mass 6DOF Wind (Quaternion) | Simple Variable Mass 6DOF Wind (Wind Angles)

Topics
“About Aerospace Coordinate Systems” on page 2-7
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6DOF (Quaternion)
Implement quaternion representation of six-degrees-of-freedom equations of motion with respect to
body axes
Library: Aerospace Blockset / Equations of Motion / 6DOF

Description
The 6DOF (Quaternion) block implements quaternion representation of six-degrees-of-freedom
equations of motion with respect to body axes. For a description of the coordinate system and the
translational dynamics, see the block description for the 6DOF (Euler Angles) block.

For more information on the integration of the rate of change of the quaternion vector, see
“Algorithms” on page 5-100.

Limitations
The block assumes that the applied forces act at the center of gravity of the body, and that the mass
and inertia are constant.

Ports
Input

Fxyz(N) — Applied forces
three-element vector

Applied forces, specified as a three-element vector in body-fixed axes. For more information on the
frame, see “Body Coordinates” on page 2-8.
Data Types: double

Mxyz(N-m) — Applied moments
three-element vector

Applied moments, specified as a three-element vector in body-fixed axes. For more information on the
frame, see “Body Coordinates” on page 2-8.
Data Types: double

Output

Ve — Velocity in flat Earth reference frame
three-element vector
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Velocity in the flat Earth reference frame, returned as a three-element vector.
Data Types: double

Xe — Position in flat Earth reference frame
three-element vector

Position in the flat Earth reference frame, returned as a three-element vector.
Data Types: double

φ θ ψ (rad) — Euler rotation angles
three-element vector

Euler rotation angles [roll, pitch, yaw] defining an intrinsic x-y-z rotation, as a three-element vector,
in radians. Yaw, pitch, and roll angles are applied using the z-y-x rotation sequence, such as
angle2dcm(yaw,pitch,roll,"ZYX").
Data Types: double

DCMbe — Coordinate transformation
3-by-3 matrix

Coordinate transformation from flat Earth axes to body-fixed axes, returned as a 3-by-3 matrix.
Data Types: double

Vb — Velocity in the body-fixed frame
three-element vector

Velocity in the body-fixed frame, returned as a three-element vector.
Data Types: double

ωb (rad/s) — Angular rates in body-fixed axes
three-element vector

Angular rates in body-fixed axes, returned as a three-element vector, in radians per second.
Data Types: double

dωb/dt — Angular accelerations
three-element vector

Angular accelerations in body-fixed axes, returned as a three-element vector, in radians per second
squared.
Data Types: double

Abb — Accelerations in body-fixed axes
three-element vector

Accelerations in body-fixed axes with respect to body frame, returned as a three-element vector.
Data Types: double

Abe — Accelerations with respect to inertial frame
three-element vector
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Accelerations in body-fixed axes with respect to inertial frame (flat Earth), returned as a three-
element vector. You typically connect this signal to the accelerometer.

Dependencies

This port appears only when the Include inertial acceleration check box is selected.
Data Types: double

Parameters
Main

Units — Input and output units

Metric (MKS) (default) | English (Velocity in ft/s) | English (Velocity in kts)

Input and output units, specified as Metric (MKS), English (Velocity in ft/s), or English
(Velocity in kts).

Units Forces Moment Acceleration Velocity Position Mass Inertia
Metric
(MKS)

Newton Newton-
meter

Meters per second
squared

Meters per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in ft/s)

Pound Foot-pound Feet per second
squared

Feet per
second

Feet Slug Slug foot
squared

English
(Velocity
in kts)

Pound Foot-pound Feet per second
squared

Knots Feet Slug Slug foot
squared

Programmatic Use
Block Parameter: units
Type: character vector
Values: Metric (MKS) | English (Velocity in ft/s) | English (Velocity in kts)
Default: Metric (MKS)

Mass Type — Mass type

Fixed (default) | Simple Variable | Custom Variable

Mass type, specified according to the following table.

Mass Type Description Default for
Fixed Mass is constant throughout the

simulation.
• 6DOF (Euler Angles)
• 6DOF (Quaternion)
• 6DOF Wind (Wind Angles)
• 6DOF Wind (Quaternion)
• 6DOF ECEF (Quaternion)
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Mass Type Description Default for
Simple Variable Mass and inertia vary linearly as

a function of mass rate.
• Simple Variable Mass 6DOF

(Euler Angles)
• Simple Variable Mass 6DOF

(Quaternion)
• Simple Variable Mass 6DOF

Wind (Wind Angles)
• Simple Variable Mass 6DOF

Wind (Quaternion)
• Simple Variable Mass 6DOF

ECEF (Quaternion)
Custom Variable Mass and inertia variations are

customizable.
• Custom Variable Mass 6DOF

(Euler Angles)
• Custom Variable Mass 6DOF

(Quaternion)
• Custom Variable Mass 6DOF

Wind (Wind Angles)
• Custom Variable Mass 6DOF

Wind (Quaternion)
• Custom Variable Mass 6DOF

ECEF (Quaternion)

The Simple Variable selection conforms to the previously described equations of motion.
Programmatic Use
Block Parameter: mtype
Type: character vector
Values: Fixed | Simple Variable | Custom Variable
Default: Simple Variable

Representation — Equations of motion representation

Quaternion (default) | Euler Angles

Equations of motion representation, specified according to the following table.

Representation Description
Euler Angles Use Euler angles within equations of motion.
Quaternion Use quaternions within equations of motion.

The Quaternion selection conforms to the equations of motion in “Algorithms” on page 5-100.
Programmatic Use
Block Parameter: rep
Type: character vector
Values: Euler Angles | Quaternion
Default: 'Quaternion'

Initial position in inertial axes [Xe,Ye,Ze] — Position in inertial axes
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[0 0 0] (default) | three-element vector

Initial location of the body in the flat Earth reference frame, specified as a three-element vector.

Programmatic Use
Block Parameter: xme_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Initial velocity in body axes [U,v,w] — Velocity in body axes

[0 0 0] (default) | three-element vector

Initial velocity in body axes, specified as a three-element vector, in the body-fixed coordinate frame.

Programmatic Use
Block Parameter: Vm_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Initial Euler orientation [roll, pitch, yaw] — Initial Euler orientation

[0 0 0] (default) | three-element vector

Initial Euler orientation angles [roll, pitch, yaw], specified as a three-element vector, in radians. Euler
rotation angles are those between the body and north-east-down (NED) coordinate systems.

Programmatic Use
Block Parameter: eul_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Initial body rotation rates [p,q,r] — Initial body rotation

[0 0 0] (default) | three-element vector

Initial body-fixed angular rates with respect to the NED frame, specified as a three-element vector, in
radians per second.

Programmatic Use
Block Parameter: pm_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Initial mass — Initial mass

1.0 (default) | scalar

Initial mass of the rigid body, specified as a double scalar.

Programmatic Use
Block Parameter: mass_0
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Type: character vector
Values: '1.0' | double scalar
Default: '1.0'

Inertia — Inertia

eye(3) (default) | scalar

Inertia of the body, specified as a double scalar.
Dependencies

To enable this parameter, set Mass type to Fixed.
Programmatic Use
Block Parameter: inertia
Type: character vector
Values: eye(3) | double scalar
Default: eye(3)

Gain for quaternion normalization — Gain

1.0 (default) | scalar

Gain to maintain the norm of the quaternion vector equal to 1.0, specified as a double scalar.
Programmatic Use
Block Parameter: k_quat
Type: character vector
Values: 1.0 | double scalar
Default: 1.0

Include inertial acceleration — Include inertial acceleration port

off (default) | on

Select this check box to add an inertial acceleration port.
Dependencies

To enable the Abe port, select this parameter.
Programmatic Use
Block Parameter: abi_flag
Type: character vector
Values: 'off' | 'on'
Default: off

State Attributes

Assign a unique name to each state. You can use state names instead of block paths during
linearization.

• To assign a name to a single state, enter a unique name between quotes, for example,
'velocity'.

• To assign names to multiple states, enter a comma-separated list surrounded by braces, for
example, {'a', 'b', 'c'}. Each name must be unique.
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• If a parameter is empty (' '), no name is assigned.
• The state names apply only to the selected block with the name parameter.
• The number of states must divide evenly among the number of state names.
• You can specify fewer names than states, but you cannot specify more names than states.

For example, you can specify two names in a system with four states. The first name applies to the
first two states and the second name to the last two states.

• To assign state names with a variable in the MATLAB workspace, enter the variable without
quotes. A variable can be a character vector, cell array, or structure.

Position: e.g., {'Xe', 'Ye', 'Ze'} — Position state name

'' (default) | comma-separated list surrounded by braces

Position state names, specified as a comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: xme_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Velocity: e.g., {'U', 'v', 'w'} — Velocity state name

'' (default) | comma-separated list surrounded by braces

Velocity state names, specified as comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: Vm_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Quaternion vector: e.g., {'qr', 'qi', 'qj', 'qk'} — Quaternion vector state name

'' (default) | comma-separated list surrounded by braces

Quaternion vector state names, specified as a comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: quat_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Body rotation rates: e.g., {'p', 'q', 'r'} — Body rotation state names

'' (default) | comma-separated list surrounded by braces

Body rotation rate state names, specified comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: pm_statename
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Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Algorithms
The integration of the rate of change of the quaternion vector is given below. The gain K drives the
norm of the quaternion state vector to 1.0 should εbecome nonzero. You must choose the value of this
gain with care, because a large value improves the decay rate of the error in the norm, but also slows
the simulation because fast dynamics are introduced. An error in the magnitude in one element of the
quaternion vector is spread equally among all the elements, potentially increasing the error in the
state vector.
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Aerospace Blockset uses quaternions that are defined using the scalar-first convention.

Version History
Introduced in R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
6DOF (Euler Angles) | 6DOF ECEF (Quaternion) | 6DOF Wind (Quaternion) | 6DOF Wind (Wind
Angles) | Custom Variable Mass 6DOF (Euler Angles) | Custom Variable Mass 6DOF (Quaternion) |
Custom Variable Mass 6DOF ECEF (Quaternion) | Custom Variable Mass 6DOF Wind (Quaternion) |
Custom Variable Mass 6DOF Wind (Wind Angles) | Simple Variable Mass 6DOF (Euler Angles) |
Simple Variable Mass 6DOF (Quaternion) | Simple Variable Mass 6DOF ECEF (Quaternion) | Simple
Variable Mass 6DOF Wind (Quaternion) | Simple Variable Mass 6DOF Wind (Wind Angles)
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6DOF ECEF (Quaternion)
Implement quaternion representation of six-degrees-of-freedom equations of motion in Earth-
centered Earth-fixed (ECEF) coordinates
Library: Aerospace Blockset / Equations of Motion / 6DOF

Description
The 6DOF ECEF (Quaternion) block Implement quaternion representation of six-degrees-of-freedom
equations of motion in Earth-centered Earth-fixed (ECEF) coordinates. It considers the rotation of a
Earth-centered Earth-fixed (ECEF) coordinate frame (XECEF, YECEF, ZECEF) about an Earth-centered
inertial (ECI) reference frame (XECI, YECI, ZECI). The origin of the ECEF coordinate frame is the center
of the Earth. For more information on the ECEF coordinate frame, see “Algorithms” on page 5-110.

Limitations
• This implementation assumes that the applied forces act at the center of gravity of the body, and

that the mass and inertia are constant.
• This implementation generates a geodetic latitude that lies between ±90 degrees, and longitude

that lies between ±180 degrees. Additionally, the MSL altitude is approximate.
• The Earth is assumed to be ellipsoidal. By setting flattening to 0.0, a spherical planet can be

achieved. The Earth's precession, nutation, and polar motion are neglected. The celestial
longitude of Greenwich is Greenwich Mean Sidereal Time (GMST) and provides a rough
approximation to the sidereal time.

• The implementation of the ECEF coordinate system assumes that the origin is at the center of the
planet, the x-axis intersects the Greenwich meridian and the equator, the z-axis is the mean spin
axis of the planet, positive to the north, and the y-axis completes the right-handed system.

• The implementation of the ECI coordinate system assumes that the origin is at the center of the
planet, the x-axis is the continuation of the line from the center of the Earth toward the vernal
equinox, the z-axis points in the direction of the mean equatorial plane's north pole, positive to the
north, and the y-axis completes the right-handed system.

Ports
Input

Fxyz — Applied forces
three-element vector

Applied forces, specified as a three-element vector.
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Data Types: double

Mxyz — Applied moments
three-element vector

Applied moments, specified as a three-element vector.
Data Types: double

LG(0) — Initial celestial longitude of Greenwich
scalar

Greenwich meridian initial celestial longitude angle, specified as a scalar.

Dependencies

To enable this port, set Celestial longitude of Greenwich to External.
Data Types: double

Output

Vecef — Velocity of body with respect to ECEF frame,
three-element vector

Velocity of body with respect to ECEF frame, expressed in ECEF frame, returned as a three-element
vector.
Data Types: double

Xecef — Position in ECEF reference frame
three-element vector

Position in ECEF reference frame, returned as a three-element vector.
Data Types: double

μ l h — Position in geodetic latitude, longitude, and altitude
three-element vector | M-by-3 array

Position in geodetic latitude, longitude, and altitude, in degrees, returned as a three-element vector
or M-by-3 array, in selected units of length, respectively.
Data Types: double

φ θ Ψ (rad) — Body rotation angles
three-element vector

Body rotation angles [roll, pitch, yaw], returned as a three-element vector, in radians. Euler rotation
angles are those between body and NED coordinate systems.
Data Types: double

DCMbi — Coordinate transformation from ECI axes
3-by-3 matrix

Coordinate transformation from ECI axes to body-fixed axes, returned as a 3-by-3 matrix.
Data Types: double
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DCMbe — Coordinate transformation from NED axes
3-by-3 matrix

Coordinate transformation from NED axes to body-fixed axes, returned as a 3-by-3 matrix.
Data Types: double

DCMef — Coordinate transformation from ECEF axes
3-by-3 matrix

Coordinate transformation from ECEF axes to NED axes, returned as a 3-by-3 matrix.
Data Types: double

Vb — Velocity of body with respect to ECEF frame
three-element vector

Velocity of body with respect to ECEF frame, returned as a three-element vector.
Data Types: double

ωrel — Relative angular rates of body with respect to NED frame
three-element vector

Relative angular rates of body with respect to NED frame, expressed in body frame and returned as a
three-element vector, in radians per second.
Data Types: double

ωb — Angular rates of body with respect to ECI frame
three-element vector

Angular rates of the body with respect to ECI frame, expressed in body frame and returned as a
three-element vector, in radians per second.
Data Types: double

dωb/dt — Angular accelerations of the body with respect to ECI frame
three-element vector

Angular accelerations of the body with respect to ECI frame, expressed in body frame and returned
as a three-element vector, in radians per second squared.
Data Types: double

Abb — Accelerations in body-fixed axes
three-element vector

Accelerations of the body with respect to the ECEF coordinate frame, returned as a three-element
vector.
Data Types: double

Ab ecef — Accelerations in body-fixed axes
three-element vector

Accelerations in body-fixed axes with respect to ECEF frame, returned as a three-element vector.
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Dependencies

To enable this point, Include inertial acceleration.
Data Types: double

Parameters
Main

Units — Input and output units

Metric (MKS) (default) | English (Velocity in ft/s) | English (Velocity in kts)

Input and output units, specified as Metric (MKS), English (Velocity in ft/s), or English
(Velocity in kts).

Units Forces Moment Acceleration Velocity Position Mass Inertia
Metric
(MKS)

Newton Newton-
meter

Meters per second
squared

Meters per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in ft/s)

Pound Foot-pound Feet per second
squared

Feet per
second

Feet Slug Slug foot
squared

English
(Velocity
in kts)

Pound Foot-pound Feet per second
squared

Knots Feet Slug Slug foot
squared

Programmatic Use
Block Parameter: units
Type: character vector
Values: Metric (MKS) | English (Velocity in ft/s) | English (Velocity in kts)
Default: Metric (MKS)

Mass type — Mass type

Fixed (default) | Simple Variable | Custom Variable

Select the type of mass to use:

Mass Type Description Default for
Fixed Mass is constant throughout the

simulation.
• 6DOF (Euler Angles)
• 6DOF (Quaternion)
• 6DOF Wind (Wind Angles)
• 6DOF Wind (Quaternion)
• 6DOF ECEF (Quaternion)
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Mass Type Description Default for
Simple Variable Mass and inertia vary linearly as

a function of mass rate.
• Simple Variable Mass 6DOF

(Euler Angles)
• Simple Variable Mass 6DOF

(Quaternion)
• Simple Variable Mass 6DOF

Wind (Wind Angles)
• Simple Variable Mass 6DOF

Wind (Quaternion)
• Simple Variable Mass 6DOF

ECEF (Quaternion)
Custom Variable Mass and inertia variations are

customizable.
• Custom Variable Mass 6DOF

(Euler Angles)
• Custom Variable Mass 6DOF

(Quaternion)
• Custom Variable Mass 6DOF

Wind (Wind Angles)
• Custom Variable Mass 6DOF

Wind (Quaternion)
• Custom Variable Mass 6DOF

ECEF (Quaternion)

The Fixed selection conforms to the previously described equations of motion.

Programmatic Use
Block Parameter: mtype
Type: character vector
Values: Fixed | Simple Variable | Custom Variable
Default: 'Simple Variable'

Initial position in geodetic latitude, longitude and altitude [mu,l,h] — Initial
location of the aircraft

[0 0 0] (default) | three-element vector

Initial location of the aircraft in the geodetic reference frame, specified as a three-element vector.
Latitude and longitude values can be any value. However, latitude values of +90 and -90 may return
unexpected values because of singularity at the poles.

Programmatic Use
Block Parameter: xg_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Initial velocity in body axes [U,v,w] — Velocity in body axes

[0 0 0] (default) | three-element vector

Initial velocity in body axes, specified as a three-element vector, in the body-fixed coordinate frame.
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Programmatic Use
Block Parameter: Vm_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Initial Euler orientation [roll, pitch, yaw] — Initial Euler orientation

[0 0 0] (default) | three-element vector

Initial Euler orientation angles [roll, pitch, yaw], specified as a three-element vector, in radians. Euler
rotation angles are those between the body and north-east-down (NED) coordinate systems.

Programmatic Use
Block Parameter: eul_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Initial body rotation rates [p,q,r] — Initial body rotation

[0 0 0] (default) | three-element vector

Initial body-fixed angular rates with respect to the NED frame, specified as a three-element vector, in
radians per second.

Programmatic Use
Block Parameter: pm_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Initial mass — Initial mass

1.0 (default) | scalar

Initial mass of the rigid body, specified as a double scalar.

Programmatic Use
Block Parameter: mass_0
Type: character vector
Values: '1.0' | double scalar
Default: '1.0'

Inertia — Inertia

eye(3) (default) | scalar

Inertia of the body, specified as a double scalar.

Dependencies

To enable this parameter, set Mass type to Fixed.

Programmatic Use
Block Parameter: inertia
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Type: character vector
Values: eye(3) | double scalar
Default: eye(3)

Include inertial acceleration — Include inertial acceleration port

off (default) | on

Select this check box to add an inertial acceleration port.

Dependencies

To enable the Abe port, select this parameter.

Programmatic Use
Block Parameter: abi_flag
Type: character vector
Values: 'off' | 'on'
Default: off

Planet

Planet model — Planet model

Earth (WGS84) (default) | Custom

Planet model to use, Custom or Earth (WGS84).

Programmatic Use
Block Parameter: ptype
Type: character vector
Values: 'Earth (WGS84)' | 'Custom'
Default: 'Earth (WGS84)'

Equatorial radius of planet — Radius of planet at equator

6378137 (default) | scalar

Radius of the planet at its equator, specified as a double scalar, in the same units as the desired units
for the ECEF position.

Dependencies

To enable this parameter, set Planet model to Custom.

Programmatic Use
Block Parameter: R
Type: character vector
Values: double scalar
Default: '6378137'

Flattening — Flattening of planet

1/298.257223563 (default) | scalar

Flattening of the planet, specified as a double scalar.
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Dependencies

To enable this parameter, set Planet model to Custom.
Programmatic Use
Block Parameter: F
Type: character vector
Values: double scalar
Default: '1/298.257223563'

Rotational rate — Rotational rate

7292115e-11 (default) | scalar

Rotational rate of the planet, specified as a scalar, in rad/s.
Dependencies

To enable this parameter, set Planet model to Custom.
Programmatic Use
Block Parameter: w_E
Type: character vector
Values: double scalar
Default: '7292115e-11'

Celestial longitude of Greenwich source — Source of Greenwich meridian initial
celestial longitude

Internal (default) | External

Source of Greenwich meridian initial celestial longitude, specified as:

Internal Use celestial longitude value from Celestial
longitude of Greenwich.

External Use external input for celestial longitude value.

Dependencies

Setting this parameter to External enables the LG(0) port.
Programmatic Use
Block Parameter: angle_in
Type: character vector
Values: 'Internal' | 'External'
Default: 'Internal'

Celestial longitude of Greenwich [deg] — Initial angle

0 (default) | scalar

Initial angle between Greenwich meridian and the x-axis of the ECI frame, specified as a double
scalar.
Dependencies

To enable this parameter, set Celestial longitude of Greenwich source to Internal.
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Programmatic Use
Block Parameter: LG0
Type: character vector
Values: double scalar
Default: '0'

State Attributes

Assign a unique name to each state. You can use state names instead of block paths during
linearization.

• To assign a name to a single state, enter a unique name between quotes, for example,
'velocity'.

• To assign names to multiple states, enter a comma-separated list surrounded by braces, for
example, {'a', 'b', 'c'}. Each name must be unique.

• If a parameter is empty (' '), no name is assigned.
• The state names apply only to the selected block with the name parameter.
• The number of states must divide evenly among the number of state names.
• You can specify fewer names than states, but you cannot specify more names than states.

For example, you can specify two names in a system with four states. The first name applies to the
first two states and the second name to the last two states.

• To assign state names with a variable in the MATLAB workspace, enter the variable without
quotes. A variable can be a character vector, cell array, or structure.

Quaternion vector: e.g., {'qr', 'qi', 'qj', 'qk'} — Quaternion vector state name

'' (default) | comma-separated list surrounded by braces

Quaternion vector state names, specified as a comma-separated list surrounded by braces.
Programmatic Use
Block Parameter: quat_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Body rotation rates: e.g., {'p', 'q', 'r'} — Body rotation state names

'' (default) | comma-separated list surrounded by braces

Body rotation rate state names, specified comma-separated list surrounded by braces.
Programmatic Use
Block Parameter: pm_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Velocity: e.g., {'U', 'v', 'w'} — Velocity state name

'' (default) | comma-separated list surrounded by braces

Velocity state names, specified as comma-separated list surrounded by braces.
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Programmatic Use
Block Parameter: Vm_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

ECEF position: e.g., {'Xecef', 'Yecef', 'Zecef'} — ECEF position state name

'' (default) | comma-separated list surrounded by braces

ECEF position state names, specified as a comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: posECEF_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Inertial position: e.g., {'Xeci', 'Yeci', 'Zeci'} — Inertial position state names

'' (default) | comma-separated list surrounded by braces

Inertial position state names, specified as a comma-separated list surrounded by braces.

Default value is ''.

Programmatic Use
Block Parameter: posECI_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Celestial longitude of Greenwich: e.g., 'LG' — Celestial longitude state name

'' (default) | character vector

Celestial longitude of Greenwich state name, specified as a character vector.

Programmatic Use
Block Parameter: LG_statename
Type: character vector
Values: '' | scalar
Default: ''

Algorithms
The origin of the ECEF coordinate frame is the center of the Earth. In addition, the body of interest is
assumed to be rigid, an assumption that eliminates the need to consider the forces acting between
individual elements of mass. The representation of the rotation of ECEF frame from ECI frame is
simplified to consider only the constant rotation of the ellipsoid Earth (ωe) including an initial
celestial longitude (LG(0)). This excellent approximation allows the forces due to the Earth's complex
motion relative to the “fixed stars” to be neglected.
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The translational motion of the ECEF coordinate frame is given below, where the applied forces [Fx Fy
Fz]T are in the body frame and the mass of the body m is assumed constant.

Fb =
Fx
Fy
Fz

= m V̇b + ωb × Vb + DCMbfωe × Vb + DCMbf ωe × ωe × Xf

where the change of position in ECEF ẋ f  is calculated by

ẋ f = DCMfbVb

and the velocity of the body with respect to ECEF frame, expressed in body frame (Vb), angular rates
of the body with respect to ECI frame, expressed in body frame (ωb). Earth rotation rate (ωe), and
relative angular rates of the body with respect to north-east-down (NED) frame, expressed in body
frame (ωrel), are defined as

Vb =
u
v
w

, ωrel =
p
q
r

, ωe =
0
0
ωe

, ωb = ωrel + DCMbfωe + DCMbeωned

ωned =
l̇ cosμ
−μ̇

− l̇ sinμ
=

VE/ N + h
−VN/ M + h

−VE • tanμ/ N + h

The rotational dynamics of the body defined in body-fixed frame are given below, where the applied
moments are [L M N]T, and the inertia tensor I is with respect to the origin O.
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Abb =
u̇b

v̇b

ω̇b

= 1
mFb− ωb × Vb + DCMbfωe × Vb + DCMbf ωe × ωe × Xf

Abecef =
Fb
m

Mb =
L
M
N

= Iω̇b + ωb × (Iωb)

I =
Ixx −Ixy −Ixz
−Iyx Iyy −Iyz
−Izx −Izy Izz

The integration of the rate of change of the quaternion vector is given below.

q̇0

q̇1

q̇2

q̇3

= − 1 2

0 ωb 1 ωb 2 ωb 3
−ωb 1 0 −ωb 3 ωb 2
−ωb 2 ωb 3 0 −ωb 1
−ωb 3 −ωb 2 ωb 1 0

q0
q1
q2
q3

Aerospace Blockset uses quaternions that are defined using the scalar-first convention.

Version History
Introduced in R2006a

References
[1] Stevens, Brian, and Frank Lewis. Aircraft Control and Simulation, 2nd ed. Hoboken, NJ: John

Wiley & Sons, 2003.

[2] McFarland, Richard E. "A Standard Kinematic Model for Flight simulation at NASA-Ames." NASA
CR-2497.

[3] "Supplement to Department of Defense World Geodetic System 1984 Technical Report: Part I -
Methods, Techniques and Data Used in WGS84 Development." DMA TR8350.2-A.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
6DOF (Euler Angles) | 6DOF (Quaternion) | 6DOF Wind (Quaternion) | 6DOF Wind (Wind Angles) |
Simple Variable Mass 6DOF ECEF (Quaternion) | Custom Variable Mass 6DOF (Euler Angles) |
Custom Variable Mass 6DOF (Quaternion) | Custom Variable Mass 6DOF Wind (Quaternion) | Custom
Variable Mass 6DOF Wind (Wind Angles) | Simple Variable Mass 6DOF ECEF (Quaternion) | Simple
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Variable Mass 6DOF (Euler Angles) | Simple Variable Mass 6DOF (Quaternion) | Simple Variable Mass
6DOF Wind (Wind Angles)
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6DOF Wind (Quaternion)
Implement quaternion representation of six-degrees-of-freedom equations of motion with respect to
wind axes
Library: Aerospace Blockset / Equations of Motion / 6DOF

Description
The 6DOF Wind (Quaternion) block considers the rotation of a wind-fixed coordinate frame (Xw, Yw,
Zw) about an flat Earth reference frame (Xe, Ye, Ze). For more information on the wind-fixed
coordinate frame, see “Algorithms” on page 5-121.

Aerospace Blockset uses quaternions that are defined using the scalar-first convention.

Limitations
The block assumes that the applied forces act at the center of gravity of the body, and that the mass
and inertia are constant.

Ports
Input

Fxyz(N) — Applied forces
three-element vector

Applied forces, specified as a three-element vector.
Data Types: double

Mxyz(N-m) — Applied moments
three-element vector

Applied moments, specified as a three-element vector.
Data Types: double

Output

Ve — Velocity in flat Earth reference frame
three-element vector

Velocity in the flat Earth reference frame, returned as a three-element vector.
Data Types: double
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Xe — Position in flat Earth reference frame
three-element vector

Position in the flat Earth reference frame, returned as a three-element vector.
Data Types: double

μ γ x (rad) — Wind rotation angles
three-element vector

Wind rotation angles [bank, flight path, heading], returned as a three-element vector, in radians.
Data Types: double

DCMwe — Coordinate transformation
3-by-3 matrix

Coordinate transformation from flat Earth axes to wind-fixed axes, returned as a 3-by-3 matrix.
Data Types: double

Vw — Velocity in wind-fixed frame
three-element vector

Velocity in wind-fixed frame, returned as a three-element vector.
Data Types: double

α β (rad) — Angle of attack and sideslip angle
two-element vector

Angle of attack and sideslip angle, returned as a two-element vector, in radians.
Data Types: double

dα/dt dβ/dt — Rate of change of angle of attack and rate of change of sideslip angle
two-element vector

Rate of change of angle of attack and rate of change of sideslip angle, returned as a two-element
vector, in radians per second.
Data Types: double

ωb (rad/s) — Angular rates in body-fixed axes
three-element vector

Angular rates in body-fixed axes, returned as a three-element vector.
Data Types: double

dωb/dt — Angular accelerations in body-fixed axes
three-element vector

Angular accelerations in body-fixed axes, returned as a three-element vector, in radians per second
squared.
Data Types: double
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Abb — Accelerations in body-fixed axes
three-element vector

Accelerations in body-fixed axes with respect to body frame, returned as a three-element vector.
Data Types: double

Abe — Accelerations with respect to inertial frame
three-element vector

Accelerations in body-fixed axes with respect to inertial frame (flat Earth), returned as a three-
element vector. You typically connect this signal to the accelerometer.

Dependencies

To enable this point, select Include inertial acceleration.
Data Types: double

Parameters
Main

Units — Input and output units

Metric (MKS) (default) | English (Velocity in ft/s) | English (Velocity in kts)

Input and output units, specified as Metric (MKS), English (Velocity in ft/s), or English
(Velocity in kts).

Units Forces Moment Acceleration Velocity Position Mass Inertia
Metric
(MKS)

Newton Newton-
meter

Meters per second
squared

Meters per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in ft/s)

Pound Foot-pound Feet per second
squared

Feet per
second

Feet Slug Slug foot
squared

English
(Velocity
in kts)

Pound Foot-pound Feet per second
squared

Knots Feet Slug Slug foot
squared

Programmatic Use
Block Parameter: units
Type: character vector
Values: Metric (MKS) | English (Velocity in ft/s) | English (Velocity in kts)
Default: Metric (MKS)

Mass Type — Mass type

Fixed (default) | Simple Variable | Custom Variable

Mass type, specified according to the following table.
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Mass Type Description Default For
Fixed Mass is constant throughout the

simulation.
• 6DOF (Euler Angles)
• 6DOF (Quaternion)
• 6DOF Wind (Wind Angles)
• 6DOF Wind (Quaternion)
• 6DOF ECEF (Quaternion)

Simple Variable Mass and inertia vary linearly as
a function of mass rate.

• Simple Variable Mass 6DOF
(Euler Angles)

• Simple Variable Mass 6DOF
(Quaternion)

• Simple Variable Mass 6DOF
Wind (Wind Angles)

• Simple Variable Mass 6DOF
Wind (Quaternion)

• Simple Variable Mass 6DOF
ECEF (Quaternion)

Custom Variable Mass and inertia variations are
customizable.

• Custom Variable Mass 6DOF
(Euler Angles)

• Custom Variable Mass 6DOF
(Quaternion)

• Custom Variable Mass 6DOF
Wind (Wind Angles)

• Custom Variable Mass 6DOF
Wind (Quaternion)

• Custom Variable Mass 6DOF
ECEF (Quaternion)

The Simple Variable selection conforms to the previously described equations of motion.

Programmatic Use
Block Parameter: mtype
Type: character vector
Values: Fixed | Simple Variable | Custom Variable
Default: Simple Variable

Representation — Equations of motion representation

Quaternion (default) | Wind Angles

Equations of motion representation, specified according to the following table.

Representation Description
Quaternion Use quaternions within equations of motion.
Wind Angles Use wind angles within equations of motion.

The Quaternion selection conforms to the equations of motion in “Algorithms” on page 5-121.
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Programmatic Use
Block Parameter: rep
Type: character vector
Values: Wind Angles | Quaternion
Default: 'Wind Angles'

Initial position in inertial axes [Xe,Ye,Ze] — Position in inertial axes

[0 0 0] (default) | three-element vector

Initial location of the body in the flat Earth reference frame, specified as a three-element vector.

Programmatic Use
Block Parameter: xme_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Initial airspeed, angle of attack, and sideslip angle [V,alpha,beta] — Initial
airspeed, angle of attack, and sideslip angle

[0 0 0] (default) | three-element vector

Initial airspeed, angle of attack, and sideslip angle, specified as a three-element vector.

Programmatic Use
Block Parameter: Vm_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Initial wind orientation [bank angle,flight path angle,heading angle] — Initial
wind orientation

[0 0 0] (default) | three-element vector

Initial wind angles [bank, flight path, and heading], specified as a three-element vector in radians.

Programmatic Use
Block Parameter: wind_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Initial body rotation rates [p,q,r] — Initial body rotation

[0 0 0] (default) | three-element vector

Initial body-fixed angular rates with respect to the NED frame, specified as a three-element vector, in
radians per second.

Programmatic Use
Block Parameter: pm_0
Type: character vector
Values: '[0 0 0]' | three-element vector
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Default: '[0 0 0]'

Initial mass — Initial mass

1.0 (default) | scalar

Initial mass of the rigid body, specified as a double scalar.

Programmatic Use
Block Parameter: mass_0
Type: character vector
Values: '1.0' | double scalar
Default: '1.0'

Inertia in body axis — Inertia of body

eye(3) (default) | scalar

Inertia of the body, specified as a double scalar.

Programmatic Use
Block Parameter: inertia
Type: character vector
Values: 'eye(3)' | double scalar
Default: 'eye(3)'

Include inertial acceleration — Include inertial acceleration port

off (default) | on

Select this check box to add an inertial acceleration port.

Dependencies

To enable the Abe port, select this parameter.

Programmatic Use
Block Parameter: abi_flag
Type: character vector
Values: 'off' | 'on'
Default: off

State Attributes

Assign a unique name to each state. You can use state names instead of block paths during
linearization.

• To assign a name to a single state, enter a unique name between quotes, for example,
'velocity'.

• To assign names to multiple states, enter a comma-separated list surrounded by braces, for
example, {'a', 'b', 'c'}. Each name must be unique.

• If a parameter is empty (' '), no name is assigned.
• The state names apply only to the selected block with the name parameter.
• The number of states must divide evenly among the number of state names.
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• You can specify fewer names than states, but you cannot specify more names than states.

For example, you can specify two names in a system with four states. The first name applies to the
first two states and the second name to the last two states.

• To assign state names with a variable in the MATLAB workspace, enter the variable without
quotes. A variable can be a character vector, cell array, or structure.

Position: e.g., {'Xe', 'Ye', 'Ze'} — Position state name

'' (default) | comma-separated list surrounded by braces

Position state names, specified as a comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: xme_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Velocity: e.g., 'V' — Velocity state name

'' (default) | character vector

Velocity state names, specified as a character vector.

Programmatic Use
Block Parameter: Vm_statename
Type: character vector
Values: '' | character vector
Default: ''

Incidence angle e.g., 'alpha' — Incidence angle state name

'' (default) | character vector

Incidence angle state name, specified as a character vector.

Programmatic Use
Block Parameter: alpha_statename
Type: character vector
Values: ''
Default: ''

Sideslip angle e.g., 'beta' — Sideslip angle state name

'' (default) | character vector

Sideslip angle state name, specified as a character vector.

Programmatic Use
Block Parameter: beta_statename
Type: character vector
Values: ''
Default: ''
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Wind orientation e.g., {'mu', 'gamma', 'chi'} — Wind orientation state names

'' (default) | comma-separated list surrounded by braces

Wind orientation state names, specified as a comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: wind_statename
Type: character vector
Values: ''
Default: ''

Quaternion vector: e.g., {'qr', 'qi', 'qj', 'qk'} — Quaternion vector state name

'' (default) | comma-separated list surrounded by braces

Quaternion vector state names, specified as a comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: quat_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Body rotation rates: e.g., {'p', 'q', 'r'} — Body rotation state names

'' (default) | comma-separated list surrounded by braces

Body rotation rate state names, specified comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: pm_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Mass: e.g., 'mass' — Mass state name

'' (default) | character vector

Mass state name, specified as a character vector.

Programmatic Use
Block Parameter: mass_statename
Type: character vector
Values: '' | character vector
Default: ''

Algorithms
The origin of the wind-fixed coordinate frame is the center of gravity of the body, and the body is
assumed to be rigid, an assumption that eliminates the need to consider the forces acting between
individual elements of mass. The flat Earth reference frame is considered inertial, an excellent
approximation that allows the forces due to the Earth's motion relative to the “fixed stars” to be
neglected.
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The translational motion of the wind-fixed coordinate frame is given below, where the applied forces
[Fx Fy Fz]T are in the wind-fixed frame, and the mass of the body m is assumed constant.

Fw =
Fx
Fy
Fz

= m(V̇w + ωw × Vw)

Abe = DCMwb
Fw
m

Vw =
V
0
0

, ωw =
pw
qw
rw

= DMCwb

pb− β̇sinα
qb− α̇

rb + β̇cosα

, ωb =
pb
qb
rb

Abb =
u̇b

v̇b

ẇb

= DCMwb
Fw
m − ωw × Vw

The rotational dynamics of the body-fixed frame are given below, where the applied moments are [L
M N]T, and the inertia tensor I is with respect to the origin O. Inertia tensor I is easier to define in
body-fixed frame.

Mb =
L
M
N

= Iω̇b + ωb × Iωb

I =
Ixx −Ixy −Ixz
−Iyx Iyy −Iyz
−Izx −Izy Izz

The integration of the rate of change of the quaternion vector is given below.
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q̇0

q̇1

q̇2

q̇3

= − 1 2

0 p q r
−p 0 −r q
−q r 0 −p
−r −q p 0

q0
q1
q2
q3

Version History
Introduced in R2006a

References
[1] Stevens, Brian, and Frank Lewis. Aircraft Control and Simulation. New York: John Wiley & Sons,

1992.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
6DOF (Euler Angles) | 6DOF (Quaternion) | 6DOF ECEF (Quaternion) | 6DOF Wind (Wind Angles) |
Custom Variable Mass 6DOF (Euler Angles) | Custom Variable Mass 6DOF (Quaternion) | Custom
Variable Mass 6DOF ECEF (Quaternion) | Custom Variable Mass 6DOF Wind (Quaternion) | Custom
Variable Mass 6DOF Wind (Wind Angles) | Simple Variable Mass 6DOF ECEF (Quaternion) | Simple
Variable Mass 6DOF (Euler Angles) | Simple Variable Mass 6DOF (Quaternion) | Simple Variable Mass
6DOF Wind (Quaternion) | Simple Variable Mass 6DOF Wind (Wind Angles)
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6DOF Wind (Wind Angles)
Implement wind angle representation of six-degrees-of-freedom equations of motion
Library: Aerospace Blockset / Equations of Motion / 6DOF

Description
The 6DOF Wind (Wind Angles) block implements a wind angle representation of six-degrees-of-
freedom equations of motion. For a description of the coordinate system employed and the
translational dynamics, see the block description for the 6DOF Wind (Quaternion) block.

For more information on the relationship between the wind angles, see “Algorithms” on page 5-131

Limitations
The block assumes that the applied forces act at the center of gravity of the body, and that the mass
and inertia are constant.

Ports
Input

Fxyz(N) — Applied forces
three-element vector

Applied forces, specified as a three-element vector.
Data Types: double

Mxyz(N-m) — Applied moments
three-element vector

Applied moments, specified as a three-element vector.
Data Types: double

Output

Ve — Velocity in flat Earth reference frame
three-element vector

Velocity in the flat Earth reference frame, returned as a three-element vector.
Data Types: double
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Xe — Position in flat Earth reference frame
three-element vector

Position in the flat Earth reference frame, returned as a three-element vector.
Data Types: double

μ γ x (rad) — Wind rotation angles
three-element vector

Wind rotation angles [bank, flight path, heading], returned as a three-element vector, in radians.
Data Types: double

DCMwe — Coordinate transformation
3-by-3 matrix

Coordinate transformation from flat Earth axes to wind-fixed axes, returned as a 3-by-3 matrix.
Data Types: double

Vw — Velocity in wind-fixed frame
three-element vector

Velocity in wind-fixed frame, returned as a three-element vector.
Data Types: double

α β (rad) — Angle of attack and sideslip angle
two-element vector

Angle of attack and sideslip angle, returned as a two-element vector, in radians.
Data Types: double

dα/dt dβ/dt — Rate of change of angle of attack and rate of change of sideslip angle
two-element vector

Rate of change of angle of attack and rate of change of sideslip angle, returned as a two-element
vector, in radians per second.
Data Types: double

ωb (rad/s) — Angular rates in body-fixed axes
three-element vector

Angular rates in body-fixed axes, returned as a three-element vector.
Data Types: double

dωb/dt — Angular accelerations in body-fixed axes
three-element vector

Angular accelerations in body-fixed axes, returned as a three-element vector, in radians per second
squared.
Data Types: double
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Abb — Accelerations in body-fixed axes
three-element vector

Accelerations in body-fixed axes with respect to body frame, returned as a three-element vector.
Data Types: double

Abe — Accelerations with respect to inertial frame
three-element vector

Accelerations in body-fixed axes with respect to inertial frame (flat Earth), returned as a three-
element vector. You typically connect this signal to the accelerometer.

Dependencies

This port appears only when the Include inertial acceleration check box is selected.
Data Types: double

Parameters
Main

Units — Input and output units

Metric (MKS) (default) | English (Velocity in ft/s) | English (Velocity in kts)

Input and output units, specified as Metric (MKS), English (Velocity in ft/s), or English
(Velocity in kts).

Units Forces Moment Acceleration Velocity Position Mass Inertia
Metric
(MKS)

Newton Newton-
meter

Meters per second
squared

Meters per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in ft/s)

Pound Foot-pound Feet per second
squared

Feet per
second

Feet Slug Slug foot
squared

English
(Velocity
in kts)

Pound Foot-pound Feet per second
squared

Knots Feet Slug Slug foot
squared

Programmatic Use
Block Parameter: units
Type: character vector
Values: Metric (MKS) | English (Velocity in ft/s) | English (Velocity in kts)
Default: Metric (MKS)

Mass Type — Mass type

Fixed (default) | Simple Variable | Custom Variable

Mass type, specified according to the following table.
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Mass Type Description Default For
Fixed Mass is constant throughout the

simulation.
• 6DOF (Euler Angles)
• 6DOF (Quaternion)
• 6DOF Wind (Wind Angles)
• 6DOF Wind (Quaternion)
• 6DOF ECEF (Quaternion)

Simple Variable Mass and inertia vary linearly as
a function of mass rate.

• Simple Variable Mass 6DOF
(Euler Angles)

• Simple Variable Mass 6DOF
(Quaternion)

• Simple Variable Mass 6DOF
Wind (Wind Angles)

• Simple Variable Mass 6DOF
Wind (Quaternion)

• Simple Variable Mass 6DOF
ECEF (Quaternion)

Custom Variable Mass and inertia variations are
customizable.

• Custom Variable Mass 6DOF
(Euler Angles)

• Custom Variable Mass 6DOF
(Quaternion)

• Custom Variable Mass 6DOF
Wind (Wind Angles)

• Custom Variable Mass 6DOF
Wind (Quaternion)

• Custom Variable Mass 6DOF
ECEF (Quaternion)

The Simple Variable selection conforms to the previously described equations of motion.

Programmatic Use
Block Parameter: mtype
Type: character vector
Values: Fixed | Simple Variable | Custom Variable
Default: Simple Variable

Representation — Equations of motion representation

Wind Angles (default) | Quaternion

Equations of motion representation, specified according to the following table.

Representation Description
Wind Angles Use wind angles within equations of motion.
Quaternion Use quaternions within equations of motion.

The Wind Angles selection conforms to the equations of motion in “Algorithms” on page 5-131.
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Programmatic Use
Block Parameter: rep
Type: character vector
Values: Wind Angles | Quaternion
Default: 'Wind Angles'

Initial position in inertial axes [Xe,Ye,Ze] — Position in inertial axes

[0 0 0] (default) | three-element vector

Initial location of the body in the flat Earth reference frame, specified as a three-element vector.

Programmatic Use
Block Parameter: xme_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Initial airspeed, angle of attack, and sideslip angle [V,alpha,beta] — Initial
airspeed, angle of attack, and sideslip angle

[0 0 0] (default) | three-element vector

Initial airspeed, angle of attack, and sideslip angle, specified as a three-element vector.

Programmatic Use
Block Parameter: Vm_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Initial wind orientation [bank angle,flight path angle,heading angle] — Initial
wind orientation

[0 0 0] (default) | three-element vector

Initial wind angles [bank, flight path, and heading], specified as a three-element vector in radians.

Programmatic Use
Block Parameter: wind_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Initial body rotation rates [p,q,r] — Initial body rotation

[0 0 0] (default) | three-element vector

Initial body-fixed angular rates with respect to the NED frame, specified as a three-element vector, in
radians per second.

Programmatic Use
Block Parameter: pm_0
Type: character vector
Values: '[0 0 0]' | three-element vector
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Default: '[0 0 0]'

Initial mass — Initial mass

1.0 (default) | scalar

Initial mass of the rigid body, specified as a double scalar.

Programmatic Use
Block Parameter: mass_0
Type: character vector
Values: '1.0' | double scalar
Default: '1.0'

Inertia in body axis — Inertia of body

eye(3) (default) | scalar

Inertia of the body, specified as a double scalar.

Programmatic Use
Block Parameter: inertia
Type: character vector
Values: 'eye(3)' | double scalar
Default: 'eye(3)'

Include inertial acceleration — Include inertial acceleration port

off (default) | on

Select this check box to add an inertial acceleration port.

Dependencies

To enable the Abe port, select this parameter.

Programmatic Use
Block Parameter: abi_flag
Type: character vector
Values: 'off' | 'on'
Default: off

State Attributes

Assign a unique name to each state. You can use state names instead of block paths during
linearization.

• To assign a name to a single state, enter a unique name between quotes, for example,
'velocity'.

• To assign names to multiple states, enter a comma-separated list surrounded by braces, for
example, {'a', 'b', 'c'}. Each name must be unique.

• If a parameter is empty (' '), no name is assigned.
• The state names apply only to the selected block with the name parameter.
• The number of states must divide evenly among the number of state names.
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• You can specify fewer names than states, but you cannot specify more names than states.

For example, you can specify two names in a system with four states. The first name applies to the
first two states and the second name to the last two states.

• To assign state names with a variable in the MATLAB workspace, enter the variable without
quotes. A variable can be a character vector, cell array, or structure.

Position: e.g., {'Xe', 'Ye', 'Ze'} — Position state name

'' (default) | comma-separated list surrounded by braces

Position state names, specified as a comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: xme_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Velocity: e.g., 'V' — Velocity state name

'' (default) | character vector

Velocity state names, specified as a character vector.

Programmatic Use
Block Parameter: Vm_statename
Type: character vector
Values: '' | character vector
Default: ''

Incidence angle e.g., 'alpha' — Incidence angle state name

'' (default) | character vector

Incidence angle state name, specified as a character vector.

Programmatic Use
Block Parameter: alpha_statename
Type: character vector
Values: ''
Default: ''

Sideslip angle e.g., 'beta' — Sideslip angle state name

'' (default) | character vector

Sideslip angle state name, specified as a character vector.

Programmatic Use
Block Parameter: beta_statename
Type: character vector
Values: ''
Default: ''
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Wind orientation e.g., {'mu', 'gamma', 'chi'} — Wind orientation state names

'' (default) | comma-separated list surrounded by braces

Wind orientation state names, specified as a comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: wind_statename
Type: character vector
Values: ''
Default: ''

Quaternion vector: e.g., {'qr', 'qi', 'qj', 'qk'} — Quaternion vector state name

'' (default) | comma-separated list surrounded by braces

Quaternion vector state names, specified as a comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: quat_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Body rotation rates: e.g., {'p', 'q', 'r'} — Body rotation state names

'' (default) | comma-separated list surrounded by braces

Body rotation rate state names, specified comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: pm_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Mass: e.g., 'mass' — Mass state name

'' (default) | character vector

Mass state name, specified as a character vector.

Programmatic Use
Block Parameter: mass_statename
Type: character vector
Values: '' | character vector
Default: ''

Algorithms

The relationship between the wind angles [μγχ]T can be determined by resolving the wind rates into
the wind-fixed coordinate frame.
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pw
qw
rw

=
μ̇
0
0

+
1 0 0
0 cosμ sinμ
0 −sinμ cosμ

0
γ̇
0

+
1 0 0
0 cosμ sinμ
0 −sinμ cosμ

cosγ 0 −sinγ
0 1 0

sinγ 0 cosγ

0
0
χ̇
≡ J−1

μ̇
γ̇
χ̇

Inverting J then gives the required relationship to determine the wind rate vector.

μ̇
γ̇
χ̇

= J
pw
qw
rw

=

1 (sinμtanγ) (cosμtanγ)
0 cosμ −sinμ

0 sinμ
cosγ

cosμ
cosγ

pw
qw
rw

The body-fixed angular rates are related to the wind-fixed angular rate by the following equation.

pw
qw
rw

= DMCwb

pb− β̇sinα
qb− α̇

rb + β̇cosα

Using this relationship in the wind rate vector equations, gives the relationship between the wind
rate vector and the body-fixed angular rates.

μ̇
γ̇
χ̇

= J
pw
qw
rw

=

1 (sinμtanγ) (cosμtanγ)
0 cosμ −sinμ

0 sinμ
cosγ

cosμ
cosγ

DMCwb

pb− β̇sinα
qb− α̇

rb + β̇cosα

Version History
Introduced in R2006a

References
[1] Stevens, Brian, and Frank Lewis. Aircraft Control and Simulation. New York: John Wiley & Sons,
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
6DOF (Euler Angles) | 6DOF (Quaternion) | 6DOF ECEF (Quaternion) | 6DOF Wind (Quaternion) |
Custom Variable Mass 6DOF (Euler Angles) | Custom Variable Mass 6DOF (Quaternion) | Custom
Variable Mass 6DOF ECEF (Quaternion) | Custom Variable Mass 6DOF Wind (Quaternion) | Custom
Variable Mass 6DOF Wind (Wind Angles) | Simple Variable Mass 6DOF ECEF (Quaternion) | Simple
Variable Mass 6DOF (Euler Angles) | Simple Variable Mass 6DOF (Quaternion) | Simple Variable Mass
6DOF Wind (Quaternion) | Simple Variable Mass 6DOF Wind (Wind Angles)
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6th Order Point Mass (Coordinated Flight)
Calculate sixth-order point mass in coordinated flight
Library: Aerospace Blockset / Equations of Motion / Point Mass

Description
The 6th Order Point Mass (Coordinated Flight) block performs the calculations for the translational
motion of a single point mass or multiple point masses. For more information on the system for the
translational motion of a single point mass or multiple mass, see “Algorithms” on page 5-136.

The 6th Order Point Mass (Coordinated Flight) block port labels change based on the input and
output units selected from the Units list.

Limitations
• The block assumes that there is fully coordinated flight, i.e., there is no side force (wind axes) and

sideslip is always zero.
• The flat Earth reference frame is considered inertial, an approximation that allows the forces due

to the Earth motion relative to the "fixed stars" to be neglected.

Ports
Input

Port_1 — Force in x-axis
scalar | array

Force in x-axis, specified as a scalar or vector, in selected units.
Data Types: double

Port_2 — Force in y-axis
scalar | array

Force in y-axis, specified as a scalar or vector, in selected units.
Data Types: double

Port_3 — Force in z-axis
scalar | array

Force in z-axis, specified as a scalar or vector, in selected units.
Data Types: double
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Output

Port_1 — Flight path angle
scalar | array

Flight path angle, returned as a scalar or vector, in radians.
Data Types: double

Port_2 — Heading angle
scalar | array

Heading angle, returned as a scalar or vector, in radians.
Data Types: double

Port_3 — Airspeed
scalar | array

Airspeed, returned as a scalar or vector, in selected units.
Data Types: double

Port_4 — Downrange or amount traveled east
scalar | array

Downrange or amount traveled east, returned as a scalar or vector, in selected units.
Data Types: double

Port_5 — Crossrange or amount travelled north
scalar | array

Crossrange or amount traveled north, returned as a scalar or vector, in selected units.
Data Types: double

Port_6 — Altitude or amount or travelled up
scalar | array

Altitude or amount traveled up, returned as a scalar or vector, in selected units.
Data Types: double

Parameters
Units — Units

Metric (MKS) (default) | English (Velocity in ft/s) | English (Velocity in kts)

Input and output units, specified as:

Units Forces Velocity Position Mass
Metric (MKS) newtons meters per second meters kilograms
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Units Forces Velocity Position Mass
English
(Velocity in
ft/s)

pounds feet per second feet slugs

English
(Velocity in
kts)

pounds knots feet slugs

Programmatic Use
Block Parameter: units
Type: character vector
Values: 'Metric (MKS)' | 'English (Velocity in ft/s)' | 'English (Velocity in
kts)'
Default: 'Metric (MKS)'

Initial flight path angle — Initial flight path angle

0 (default) | scalar | vector

Initial flight path angle of the point mass(es), specified as a scalar or vector.

Programmatic Use
Block Parameter: gamma0
Type: character vector
Values: scalar | vector
Default: '0'

Initial heading angle — Initial heading angle

0 (default) | scalar | vector

Initial heading angle of the point mass(es), specified as a scalar or vector.

Programmatic Use
Block Parameter: chi0
Type: character vector
Values: scalar | vector
Default: '0'

Initial airspeed — Initial airspeed

100 (default) | scalar | vector

Initial airspeed of the point mass(es), specified as a scalar or vector.

Programmatic Use
Block Parameter: V0
Type: character vector
Values: scalar | vector
Default: '100'

Initial downrange [East] — Initial downrange

0 (default) | scalar | vector
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Initial downrange of the point mass(es), specified as a scalar or vector.

Programmatic Use
Block Parameter: x0
Type: character vector
Values: scalar | vector
Default: '0'

Initial crossrange [North] — Initial cross range

0 (default) | scalar | vector

Initial crossrange of the point mass(es), specified as a scalar or vector.

Programmatic Use
Block Parameter: y0
Type: character vector
Values: scalar | vector
Default: '0'

Initial altitude [Up] — Initial altitude

0 (default) | scalar | vector

Initial altitude of the point mass(es), specified as a scalar or vector.

Programmatic Use
Block Parameter: h0
Type: character vector
Values: scalar | vector
Default: '0'

Initial mass — Point mass

1.0 (default) | scalar | vector

Mass of the point mass(es), specified as a scalar or vector.

Programmatic Use
Block Parameter: mass0
Type: character vector
Values: scalar | vector
Default: '1.0'

Algorithms
This figure shows the system for the translational motion of a single point mass or multiple point
masses.
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The translational motion of the point mass [XEastXNorthXUp]T are functions of airspeed (V), flight path
angle (γ), and heading angle (χ),

Fx = mV̇
Fy = (mVcosγ)χ̇
Fz = mVγ̇

ẊEast = Vcosχcosγ

ẊNorth = Vsinχcosγ

ẊUp = Vsinγ

where the applied forces [FxFyFh]T are in a system is defined by x-axis in the direction of vehicle
velocity relative to air, z-axis is upward, and y-axis completes the right-handed frame, and the mass of
the body m is assumed constant.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
4th Order Point Mass (Longitudinal) | 4th Order Point Mass Forces (Longitudinal) | 6th Order Point
Mass Forces (Coordinated Flight) | 6DOF (Euler Angles) | 6DOF (Quaternion) | 6DOF ECEF
(Quaternion) | 6DOF Wind (Wind Angles) | Custom Variable Mass 6DOF (Euler Angles) | Custom
Variable Mass 6DOF (Quaternion) | Custom Variable Mass 6DOF ECEF (Quaternion) | Custom
Variable Mass 6DOF Wind (Quaternion) | Custom Variable Mass 6DOF Wind (Wind Angles) | Simple
Variable Mass 6DOF (Euler Angles) | Simple Variable Mass 6DOF (Quaternion) | Simple Variable Mass
6DOF ECEF (Quaternion) | Simple Variable Mass 6DOF Wind (Quaternion) | Simple Variable Mass
6DOF Wind (Wind Angles)
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6th Order Point Mass Forces (Coordinated Flight)
Calculate forces used by sixth-order point mass in coordinated flight
Library: Aerospace Blockset / Equations of Motion / Point Mass

Description
The 6th Order Point Mass Forces (Coordinated Flight) block calculates the applied forces for a single
point mass or multiple point masses. For more information on the system for the applied forces, see
“Algorithms” on page 5-139.

Limitations
• The block assumes that there is fully coordinated flight, i.e., there is no side force (wind axes) and

sideslip is always zero.
• The flat Earth reference frame is considered inertial, an approximation that allows the forces due

to the Earth motion relative to the "fixed stars" to be neglected.

Ports
Input

Lift — Lift
scalar | array

Lift, specified as a scalar or array, in units of force.
Data Types: double

Drag — Drag
scalar | array

Drag, specified as a scalar or array, in units of force.
Data Types: double

Weight — Weight
scalar | array

Weight, specified as a scalar or array, in units of force.
Data Types: double

Thrust — Thrust
scalar | array
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Thrust, specified as a scalar or array, in units of force.
Data Types: double

ɣ — Flight path angles
scalar | array

Flight path angle, specified as a scalar or array, in radians.
Data Types: double

μ — Bank angle
scalar | array

Bank angle, specified as a scalar or array, in radians.
Data Types: double

ɑ — Angle of attack
scalar | array

Angle of attack, specified as a scalar or array, in radians.
Data Types: double

Output

Fx — Force in x- axis
scalar | array

Force in x-axis, specified as a scalar or array, in units of force.
Data Types: double

Fy — Force in y- axis
scalar | array

Force in y-axis, specified as a scalar or array, in units of force.
Data Types: double

Fz — Force in z- axis
scalar | array

Force in z-axis, specified as a scalar or array, in units of force.
Data Types: double

Algorithms
This figure shows the applied forces in the system used by this block.
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The applied forces [FxFyFh]T are in a system is defined by x-axis in the direction of vehicle velocity
relative to air, z-axis is upwards and y-axis completes the right-handed frame and are functions of lift
(L), drag (D), thrust (T), weight (W), flight path angle (γ), angle of attack (α), and bank angle (μ).

Fx = Tcosα− D−Wsinγ
Fy = (L + Tsinα)sinμ
Fz = (L + Tsinα)cosμ−Wcosγ

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
4th Order Point Mass (Longitudinal) | 4th Order Point Mass Forces (Longitudinal) | 6th Order Point
Mass (Coordinated Flight)
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Acceleration Conversion
Convert from acceleration units to desired acceleration units
Library: Aerospace Blockset / Utilities / Unit Conversions

Description
The Acceleration Conversion block computes the conversion factor from specified input acceleration
units to specified output acceleration units and applies the conversion factor to the input signal.

The Acceleration Conversion block port labels change based on the input and output units selected
from the Initial unit and Final unit parameters.

Ports
Input

Port_1 — Acceleration
scalar | array

Acceleration, specified as a scalar or array, in initial acceleration units.

Dependencies

The input port label depends on the Initial unit setting.
Data Types: double

Output

Port_1 — Acceleration
scalar | array

Acceleration, returned as a scalar or array, in final acceleration units.

Dependencies

The output port label depends on the Final unit setting.
Data Types: double

Parameters
Initial unit — Input units

ft/ss (default) | m/s2 | km/s2 | in/s2 | km/h-s | mph/s | G's

Input units, specified as:
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m/s2 Meters per second squared
ft/s2 Feet per second squared
km/s2 Kilometers per second squared
in/s2 Inches per second squared
km/h-s Kilometers per hour per second
mph-s Miles per hour per second
G's g-units

Dependencies

The input port label depends on the Initial unit setting.

Programmatic Use
Block Parameter: IU
Type: character vector
Values: 'ft/s^s | 'm/s^2' | 'km/s^2' | 'in/s^2' | 'km/h-s' | 'mph/s' | 'G's'
Default: 'ft/s2'

Final unit — Output units

ft/s^2' (default) | m/s^2 | km/s^2 | in/s^2 | km/h-s | mph/s | G's

Output units, specified as:

m/s2 Meters per second squared
ft/s2 Feet per second squared
km/s2 Kilometers per second squared
in/s2 Inches per second squared
km/h-s Kilometers per hour per second
mph-s Miles per hour per second
G's g-units

Dependencies

The output port label depends on the Final unit setting.

Programmatic Use
Block Parameter: OU
Type: character vector
Values: 'ft/s^2' | 'm/s^2' | 'km/s^2' | 'in/s^2' | 'km/h-s' | 'mph/s' | 'G's'
Default: 'ft/s2'

Version History
Introduced before R2006a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Angle Conversion | Angular Acceleration Conversion | Angular Velocity Conversion | Density
Conversion | Force Conversion | Length Conversion | Mass Conversion | Pressure Conversion |
Temperature Conversion | Velocity Conversion
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Adjoint of 3x3 Matrix
Compute adjoint of matrix
Library: Aerospace Blockset / Utilities / Math Operations

Description
The Adjoint of 3x3 Matrix block computes the adjoint matrix for the input matrix. For related
equations, see “Algorithms” on page 5-144.

Ports
Input

Port_1 — Input matrix
3-by-3 matrix

Input matrix, specified as a 3-by-3 matrix, in initial acceleration units.
Data Types: double

Output

Port_1 — Output acceleration
3-by-3 matrix

Output acceleration, returned as a 3-by-3 matrix, in final acceleration units.
Data Types: double

Algorithms
The input matrix has the form of

A =
A11 A12 A13
A21 A22 A23
A31 A32 A33

The adjoint of the matrix has the form of

ad j(A) =

+
A22 A23
A32 A33

−
A12 A13
A32 A33

+
A12 A13
A22 A23

−
A21 A23
A31 A33

+
A11 A13
A31 A33

−
A11 A13
A21 A23

+
A21 A22
A31 A32

−
A11 A12
A31 A32

+
A11 A12
A21 A22

5 Blocks

5-144



Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Create 3x3 Matrix | Determinant of 3x3 Matrix | Invert 3x3 Matrix
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Aerodynamic Forces and Moments
Compute aerodynamic forces and moments using aerodynamic coefficients, dynamic pressure, center
of gravity, center of pressure, and velocity
Library: Aerospace Blockset / Aerodynamics

Description
The Aerodynamic Forces and Moments block computes the aerodynamic forces and moments about
the center of gravity.

The Aerodynamic Forces and Moments block port labels change based on the coordinate system
selected from the Input axes, Force axes, and Moment axes list.

Limitations
• The default state of the block hides the Vb input port and assumes that the transformation is body-

body.
• The center of gravity and the center of pressure are assumed to be in body axes.
• While this block has the ability to output forces and/or moments in the stability axes, the blocks in

the Equations of Motion library are currently designed to accept forces and moments in either the
body or wind axes only.

Ports
Input

Port_1 — Aerodynamic coefficients
six-element vector

Aerodynamic coefficients (in the chosen input axes) for forces and moments, specified as a vector.
These coefficients are ordered into a vector depending on the choice of axes:

Input Axes Input Vector
Body (axial force Cx, side force Cy, normal force Cz, rolling moment Cl, pitching moment

Cm, yawing moment Cn)
Stability (drag force CD(β=0), side force Cy, lift force CL, rolling moment Cl, pitching moment Cm,

yawing moment Cn)
Wind (drag force CD, cross-wind force Cc, lift force CL, rolling moment Cl, pitching moment

Cm, yawing moment Cn)

Data Types: double
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Port_2 — Dynamic pressure
scalar | three-element vector

Dynamic pressure, specified as a 1-by-3 array.
Data Types: double

Port_3 — Center of gravity
three-element vector

Center of gravity, specified as a 1-by-3 vector.
Data Types: double

Port_4 — Center of pressure
three-element vector

Center of pressure, specified as a 1-by-3 vector. This can also be taken as any general moment
reference point as long as the rest of the model reflects the use of the moment reference point.
Data Types: double

Port_5 — Velocity in the body axes
three-element vector

Velocity in the body axes. specified as a 1-by-3 vector.
Dependencies

This port is enabled if the Input axes parameter is set to Wind or Stability.
Data Types: double

Output

Port_1 — Aerodynamic forces
three-element vector

Aerodynamic forces (in the chosen output axes), returned as three-element vector, at the center of
gravity in x-, y-, and z-axes.
Data Types: double

Port_2 — Aerodynamic moments
three-element vector

Aerodynamic moments (in the chosen output axes), returned as three-element vector, at the center of
gravity in x-, y-, and z-axes.
Data Types: double

Parameters
Input axes — Coordinate system for input coefficients

Body (default) | Stability | Wind

Coordinate system for input coefficients, specified as Body (default), Stability, or Wind.
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Dependencies

Selecting Stability or Wind enables input port Port_5.

Programmatic Use
Block Parameter: inputAxes
Type: character vector
Values: 'Body' | 'Stability' | 'Wind'
Default: 'Body'

Force axes — Coordinate system for aerodynamic force

Body (default) | Stability | Wind

Coordinate system for aerodynamic force, specified as Body (default), Stability, or Wind.

Dependencies

Selecting Stability or Wind enables input port Port_5.

Programmatic Use
Block Parameter: outputForcesAxes
Type: character vector
Values: 'Body' | 'Stability' | 'Wind'
Default: 'Body'

Moment axes — Coordinate system for aerodynamic moment

Body (default) | Stability | Wind

Coordinate system for aerodynamic moment, specified as Body (default), Stability, or Wind.

Dependencies

Selecting Stability or Wind enables input port Port_5.

Programmatic Use
Block Parameter: outputMomentAxes
Type: character vector
Values: 'Body' | 'Stability' | 'Wind'
Default: 'Body'

Reference area — Reference area

1 (default) | any double value

Reference area for calculating aerodynamic forces and moments, specified as any double value.

Programmatic Use
Block Parameter: S
Type: character vector
Values: any double value
Default: '1'

Reference span — Reference span

1 (default) | any double value
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Reference span for calculating aerodynamic moments in x-axes and z-axes, specified as any double
value.

Programmatic Use
Block Parameter: b
Type: character vector
Values: any double value
Default: '1'

Reference length — Reference length

1 (default) | any double value

Reference length for calculating aerodynamic moment in the y-axes, specified as any double value.

Programmatic Use
Block Parameter: cbar
Type: character vector
Values: any double value
Default: '1'

Algorithms
Let α be the angle of attack and β the sideslip. The rotation from body to stability axes:

Cs b =
cos(α) 0 sin(α)

0 1 0
−sin(α) 0 cos(α)

can be combined with the rotation from stability to wind axes:

Cw s =
cos(β) sin(β) 0
−sin(β) cos(β) 0

0 0 1

to yield the net rotation from body to wind axes:

Cw b =
cos(α)cos(β) sin(β) sin(α)cos(β)
−cos(α)sin(β) cos(β) −sin(α)sin(β)
−sin(α) 0 cos(α)

Moment coefficients have the same notation in all systems. Force coefficients are given below. Note
there are no specific symbols for stability-axes force components. However, the stability axes have
two components that are unchanged from the other axes.

FA
w ≡

−D
−C
−L

= Cw b ⋅
XA
YA
ZA

≡ Cw b ⋅ FA
b

Components/Axes x y z
Wind CD CC CL

 Aerodynamic Forces and Moments

5-149



Components/Axes x y z
Stability — CY CL

Body CX CY CZ (–CN)

Given these definitions, to account for the standard definitions of D, C, Y (where Y = -C), and L, force
coefficients in the wind axes are multiplied by the negative identity diag(-1, -1, -1). Forces coefficients
in the stability axes are multiplied by diag(-1, 1, -1). CN and CX are, respectively, the normal and axial
force coefficients (CN = -CZ).

Version History
Introduced before R2006a

References
[1] Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley & Sons, New York,

1992

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Dynamic Pressure | Digital DATCOM Forces and Moments | Estimate Center of Gravity | Moments
about CG due to Forces

Topics
“NASA HL-20 Lifting Body Airframe” on page 3-14
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Airspeed Indicator
Display measurements for aircraft airspeed
Library: Aerospace Blockset / Flight Instruments

Description
The Airspeed Indicator block displays measurements for aircraft airspeed in knots.

By default, minor ticks represent 10-knot increments and major ticks represent 40-knot increments.
The parameters Minimum and Maximum determine the minimum and maximum values on the
gauge. The number and distribution of ticks is fixed, which means that the first and last tick display
the minimum and maximum values. The ticks in between distribute evenly between the minimum and
maximum values. For major ticks, the distribution of ticks is (Maximum-Minimum)/9. For minor
ticks, the distribution of ticks is (Maximum-Minimum)/36.

The airspeed indicator has scale color bars that allow for overlapping for the first bar, displayed at a
different radius. This different radius lets the block represent maximum speed with flap extended
(VFE) and stall speed with flap extended (VSO) accurately for aircraft airspeed and stall speed.

Tip To facilitate understanding and debugging your model, you can modify instrument block
connections in your model during normal and accelerator mode simulations.

Parameters
Connection — Connect to signal
signal name

Connect to signal for display, selected from list of signal names.

To view the data from a signal, select a signal in the model. The signal appears in the Connection
table. Select the option button next to the signal you want to display. Click Apply to connect the
signal.

The table has a row for the signal connected to the block. If there are no signals selected in the
model, or the block is not connected to any signals, the table is empty.

Minimum — Minimum tick mark value

40 (default) | finite | double | scalar

Minimum tick mark value, specified as a finite double scalar value, in knots.
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Dependencies

The Minimum tick value must be less than the Maximum tick value.

Programmatic Use
Block Parameter: Limits
Type: double
Values: vector
Default: [40 400], where 40 is the minimum value

Maximum — Maximum tick mark value

400 (default) | finite | double | scalar

Specify the maximum tick mark value, specified as a finite double scalar value, in knots.

Dependencies

The Maximum tick value must be greater than the Minimum tick value.

Programmatic Use
Block Parameter: Limits
Type: double
Values: vector
Default: [40 400], where 400 is the maximum value

Scale Colors — Ranges of color bands
0 (default) | double | scalar

Ranges of color bands outside the scale, specified as a finite double scalar value. Specify the
minimum and maximum color range to display on the gauge.

To add a new color, click +. To remove a color, click -.

Programmatic Use
Block Parameter: ScaleColors
Type: n-by-1 struct array
Values: struct array with elements Min, Max, and Color

Label — Name of connected signal

Top (default) | Bottom | Hide

Name of connected signal.

• Top

Show label at the top of the block.
• Bottom

Show label at the bottom of the block.
• Hide

Do not show the label or instructional text when the block is not connected.
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Programmatic Use
Block Parameter: LabelPosition
Type: character vector
Values: 'Top' | 'Bottom' | 'Hide'
Default: 'Top'

Version History
Introduced in R2016a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block is ignored for code generation.

See Also
Altimeter | Artificial Horizon | Exhaust Gas Temperature (EGT) Indicator | Climb Rate Indicator |
Heading Indicator | Revolutions Per Minute (RPM) Indicator | Turn Coordinator

Topics
“Display Measurements with Cockpit Instruments” on page 2-50
“Programmatically Interact with Gauge Band Colors” on page 2-52
“Flight Instrument Gauges” on page 2-49
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Altimeter
Display measurements for aircraft altitude
Library: Aerospace Blockset / Flight Instruments

Description
The Altimeter Indicator block displays the altitude above sea level in feet, also known as the pressure
altitude. The block displays the altitude value with needles on a gauge and a numeric indicator.

• The gauge has 10 major ticks. Within each major tick are five minor ticks. This gauge has three
needles. Using the needles, the altimeter can display accurately only altitudes between 0 and
100,000 feet.

• For the longest needle, an increment of a small tick represents 20 feet and a major tick
represents 100 feet.

• For the second longest needle, a minor tick represents 200 feet and a major tick represents
1,000 feet.

• For the shortest needle a minor tick represents 2,000 feet and a major tick represents 10,000
feet.

• For the numeric display, the block shows values as numeric characters between 0 and 9,999 feet.
When the numeric display value reaches 10,000 feet, the gauge displays the value as the
remaining values below 10,000 feet. For example, 12,345 feet displays as 2,345 feet. When a value
is less than 0 (below sea level), the block displays 0. The needles show the appropriate value
except for when the value is below sea level or over 99999 feet. Below sea level, the needles set to
0, over 99,999, the needles stay set at 99,999.

Tip To facilitate understanding and debugging your model, you can modify instrument block
connections in your model during normal and accelerator mode simulations.

Parameters
Connection — Connect to signal
signal name

Connect to signal for display, selected from list of signal names.

To view the data from a signal, select a signal in the model. The signal appears in the Connection
table. Select the option button next to the signal you want to display. Click Apply to connect the
signal.
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The table has a row for the signal connected to the block. If there are no signals selected in the
model, or the block is not connected to any signals, the table is empty.

Label — Block label location

Top (default) | Bottom | Hide

Block label, displayed at the top or bottom of the block, or hidden.

• Top

Show label at the top of the block.
• Bottom

Show label at the bottom of the block.
• Hide

Do not show the label or instructional text when the block is not connected.

Programmatic Use
Block Parameter: LabelPosition
Type: character vector
Values: 'Top' | 'Bottom' | 'Hide'
Default: 'Top'

Version History
Introduced in R2016a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block is ignored for code generation.

See Also
Airspeed Indicator | Artificial Horizon | Climb Rate Indicator | Exhaust Gas Temperature (EGT)
Indicator | Heading Indicator | Revolutions Per Minute (RPM) Indicator | Turn Coordinator

Topics
“Display Measurements with Cockpit Instruments” on page 2-50
“Flight Instrument Gauges” on page 2-49
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Angle Conversion
Convert from angle units to desired angle units
Library: Aerospace Blockset / Utilities / Unit Conversions

Description
The Angle Conversion block computes the conversion factor from specified input angle units to
specified output angle units and applies the conversion factor to the input signal.

The Angle Conversion block port labels change based on the input and output units selected from the
Initial unit and the Final unit lists.

Ports
Input

Port_1 — Angle
scalar | array

Angle, specified as a scalar or array, in initial acceleration units.

Dependencies

The input port label depends on the Initial unit setting.
Data Types: double

Output

Port_1 — Angle
scalar | array

Angle, returned as a scalar, in final acceleration units.

Dependencies

The output port label depends on the Final unit setting.
Data Types: double

Parameters
Initial unit — Input units

deg (default) | rad | rev

Input units, specified as:
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deg Degrees
rad Radians
rev Revolutions

Dependencies

The input port label depends on the Initial unit setting.

Programmatic Use
Block Parameter: IU
Type: character vector
Values: 'deg' | 'rad' | 'rev'
Default: 'deg'

Final unit — Output units

rad (default) | deg | rev

Output units, specified as:

deg Degrees
rad Radians
rev Revolutions

Dependencies

The output port label depends on the Final unit setting.

Programmatic Use
Block Parameter: OU
Type: character vector
Values: 'deg' | 'rad' | 'rev'
Default: 'rad'

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Acceleration Conversion | Angular Acceleration Conversion | Angular Velocity Conversion | Density
Conversion | Force Conversion | Length Conversion | Mass Conversion | Pressure Conversion |
Temperature Conversion | Velocity Conversion
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Angular Acceleration Conversion
Convert from angular acceleration units to desired angular acceleration units
Library: Aerospace Blockset / Utilities / Unit Conversions

Description
The Angular Acceleration Conversion block computes the conversion factor from specified input
angular acceleration units to specified output angular acceleration units and applies the conversion
factor to the input signal.

The Angular Acceleration Conversion block port labels change based on the input and output units
selected from the Initial unit and the Final unit lists.

Ports
Input

Port_1 — Angular input acceleration
scalar | array

Angle, specified as a scalar, in initial acceleration units.

Dependencies

The input port label depends on the Initial unit setting.
Data Types: double

Output

Port_1 — Angular output acceleration
scalar | array

Angle, returned as a scalar, in final acceleration units.

Dependencies

The output port label depends on the Final unit setting.
Data Types: double

Parameters
Initial unit — Input units

deg/s2 (default) | rad/s2 | rpm/s

Specifies the input units, specified as:
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deg/s2 Degrees per second squared
rad/s2 Radians per second squared
rpm/s Revolutions per minute per second

Dependencies

The input port label depends on the Initial unit setting.

Programmatic Use
Block Parameter: IU
Type: character vector
Values: 'deg/s^2' | 'rad/s^2' | 'rpm/s'
Default: 'deg/s^2'

Final unit — Output units

rad/ss (default) | deg/ss | rpm/s

Output units, specified as:

deg/s2 Degrees per second squared
rad/s2 Radians per second squared
rpm/s Revolutions per minute per second

Dependencies

The output port label depends on the Final unit setting.

Programmatic Use
Block Parameter: OU
Type: character vector
Values: 'deg/s^2' | 'rad/s^2' | 'rpm/s'
Default: 'rad/s^2'

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Acceleration Conversion | Angle Conversion | Angular Velocity Conversion | Density Conversion |
Force Conversion | Length Conversion | Mass Conversion | Pressure Conversion | Temperature
Conversion | Velocity Conversion
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Angular Velocity Conversion
Convert from angular velocity units to desired angular velocity units
Library: Aerospace Blockset / Utilities / Unit Conversions

Description
The Angular Velocity Conversion block computes the conversion factor from specified input angular
velocity units to specified output angular velocity units and applies the conversion factor to the input
signal.

The Angular Velocity Conversion block port labels change based on the input and output units
selected from the Initial unit and the Final unit lists.

Ports
Input

Port_1 — Angular acceleration
scalar | array

Angular acceleration, specified as a scalar, in initial angular acceleration units.

Dependencies

The input port label depends on the Initial unit setting.
Data Types: double

Output

Port_1 — Angular acceleration
scalar | array

Angular acceleration, returned as a scalar, in final angular acceleration units.

Dependencies

The output port label depends on the Final unit setting.
Data Types: double

Parameters
Initial unit — Input units

deg/s (default) | rad/s | rpm

Input units, specified as:
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deg/s Degrees per second
rad/s Radians per second
rpm Revolutions per minute

Dependencies

The input port label depends on the Initial unit setting.

Programmatic Use
Block Parameter: IU
Type: character vector
Values: 'deg/s' | 'rad/s' | 'rpm/s'
Default: 'deg/s'

Final unit — Output units

rad/s (default) | deg/s | rpm

Output units, specified as:

deg/s Degrees per second
rad/s Radians per second
rpm Revolutions per minute

Dependencies

The output port label depends on the Final unit setting.

Programmatic Use
Block Parameter: OU
Type: character vector
Values: 'deg/s' | 'rad/s' | 'rpm/s'
Default: 'deg/s'

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Acceleration Conversion | Angle Conversion | Angular Acceleration Conversion | Density Conversion |
Force Conversion | Length Conversion | Mass Conversion | Pressure Conversion | Temperature
Conversion | Velocity Conversion

 Angular Velocity Conversion

5-161



Artificial Horizon
Represent aircraft attitude relative to horizon
Library: Aerospace Blockset / Flight Instruments

Description
The Artificial Horizon block represents aircraft attitude relative to horizon and displays roll and pitch
in degrees:

• Values for roll cannot exceed +/– 90 degrees.
• Values for pitch cannot exceed +/– 30 degrees.

If the values exceed the maximum values, the gauge maximum and minimum values do not change.

Changes in roll value affect the gauge semicircles and the ticks located on the black arc turn
accordingly. Changes in pitch value affect the scales and the distribution of the semicircles.

Combine the roll and pitch signals in a Mux block in the order:

1 Roll
2 Pitch

Tip To facilitate understanding and debugging your model, you can modify instrument block
connections in your model during normal and accelerator mode simulations.

Parameters
Connection — Connect to signal
signal name | 2-element signal

Connect to 2-element signal for display, selected from list of signal names. The 2-element signal
consists of roll and pitch combined together in a Mux block, in degrees. You connect and display this
combined signal. This input cannot be a bus signal.

To view the data from a signal, select a signal in the model. The signal appears in the Connection
table. Select the option button next to the signal you want to display. Click Apply to connect the
signal.

The table has a row for the signal connected to the block. If there are no signals selected in the
model, or the block is not connected to any signals, the table is empty.
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To view the data from a signal, select a signal in the model. The signal appears in the Connection
table. Select the option button next to the signal you want to display. Click Apply to connect the
signal.

The table has a row for the signal connected to the block. If there are no signals selected in the
model, or the block is not connected to any signals, the table is empty.

Label — Block label location

Top (default) | Bottom | Hide

Block label, displayed at the top or bottom of the block, or hidden.

• Top

Show label at the top of the block.
• Bottom

Show label at the bottom of the block.
• Hide

Do not show the label or instructional text when the block is not connected.

Programmatic Use
Block Parameter: LabelPosition
Type: character vector
Values: 'Top' | 'Bottom' | 'Hide'
Default: 'Top'

Version History
Introduced in R2016a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Airspeed Indicator | Altimeter | Artificial Horizon | Climb Rate Indicator | Exhaust Gas Temperature
(EGT) Indicator | Revolutions Per Minute (RPM) Indicator | Turn Coordinator

Topics
“Display Measurements with Cockpit Instruments” on page 2-50
“Flight Instrument Gauges” on page 2-49

 Artificial Horizon

5-163



Attitude Profile
Calculate shortest quaternion rotation
Library: Aerospace Blockset / Spacecraft / Spacecraft Dynamics

Description
The Attitude Profile block calculates the shortest quaternion rotation that aligns the primary
alignment vector with the primary constraint vector. A quaternion is defined using the scalar-first
convention. Aerospace Blockset uses quaternions that are defined using the scalar-first convention.

Provide the primary constraint as either a pointing mode:

• Point at nadir
• Point at celestial body
• Point at LatLonAlt

Or via a custom constraint vector. The block then aligns secondary alignment and constraint vectors
as much as possible without breaking primary alignment.

The library contains three versions of the Attitude Profile block preconfigured for these common
attitude control modes:

• Nadir Pointing — Point at nadir
• Geographic Pointing — Point at LatLonAlt
• Sun Tracking — Point at celestial body with Sun as the celestial target

For more information on the coordinate systems the Attitude Profile block uses, see “Algorithms” on
page 5-170.
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Ports
Input

X — Velocity state vector position
3-element vector

Position state vector of spacecraft at time tutc.
Data Types: double

V — Velocity state vector
3-element vector

Velocity state vector of spacecraft at time tutc, specified as a 3-element vector.

Dependencies

To enable this port, set Constraint coordinate frame (CCF) to LVLH.
Data Types: double

q — Spacecraft attitude
4-element vector

Attitude of the spacecraft at tutc, represented as a quaternion from body frame to port coordinate
frame, specified as a 4-element vector.
Data Types: double

tutc — Current data or time
scalar

Current date or time, specified as a scalar, as a Julian date.

Dependencies

To enable this port, perform one of these:

• Set Pointing mode to Point at celestial body or Point at LatLonAlt
• Select the Allow pointing mode change during run check box.

Data Types: double

μ l — Geodetic latitude and longitude
2-element vector

Geodetic latitude and longitude (deg) of a terrestrial point of interest, specified as a 1-D array of size
2. This port is used together with altitude when Pointing mode is Point at LatLongAlt. This
location is used as the primary constraint.

Dependencies

To enable this port, do one of these:

• Set Pointing mode to LatLonAlt.
• Select the Allow pointing mode change during run check box.
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Data Types: double

h — Altitude
scalar

Altitude of terrestrial point of interest, specified as a scalar. This port is used together with geodetic
latitude and longitude when Pointing mode is Point at LatLongAlt. This location is used as the
primary constraint.

Dependencies

To enable this port, do one of these:

• Set Pointing mode to LatLonAlt.
• Select the Allow pointing mode change during run check box.

Data Types: double

A1b — Primary alignment vector
3-element vector

Primary alignment vector (in body frame), specified as a 3-element vector.

Dependencies

To enable this port, set Primary alignment (body-frame) to Port.
Data Types: double

A2b — Secondary alignment vector
3-element vector

Secondary alignment vector (in body frame), specified as a 3-element vector.

Dependencies

To enable this port, set Secondary alignment (Body-frame) to Port.
Data Types: double

C1lvlh — Primary constraint vector
3-element vector

Primary constraint vector, specified as a 3-element vector, in constraint coordinate frame.

Dependencies

To enable this port, set:

• Pointing mode to Custom.
• Primary constraint (CCF) to Port.

Data Types: double

C2lvlh — Secondary constraint
3-element vector

Secondary constraint vector, specified as a 3-element vector.
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Dependencies

To enable this port, set Secondary constraint (CCF) to Port.
Data Types: double

Output

qtgtb — Shortest quaternion
4-element vector (scalar first)

Shortest quaternion by which to rotate from the spacecraft's current orientation to the desired
orientation (in body frame), specified as a 3-element vector.
Data Types: double

Parameters
Port coordinate frame — Coordinate frame for position, velocity, and attitude ports

ICRF (default) | Fixed-frame

Coordinate frame for position, velocity, and attitude (q) ports. For more information about coordinate
systems, see “Algorithms” on page 5-170.

Programmatic Use
Block Parameter: portFrame
Type: character vector
Values: 'ICRF' | 'Fixed-frame'
Default: 'ICRF'

Pointing mode — Primary vector alignment pointing mode

Point at nadir (default) | Point at celestial body | Point at LatLonAlt | Custom

Primary vector alignment pointing mode, specified as Point at nadir, Point at celestial
body, Point at LatLonAlt, or Custom.

Programmatic Use
Block Parameter: pointingMode
Type: character vector
Values: 'Point at nadir' | 'Point at celestial body' | 'Point at LatLonAlt' |
'Custom'
Default: 'Point at nadir'

Allow pointing mode change during run — Allow pointing mode change during run

off (default) | on

To allow pointing mode change during run, select this check box. Otherwise, clear this check box.

Programmatic Use
Block Parameter: tunablePointing
Type: character vector
Values: 'on' | 'off'
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Default: 'on'

Celestial target — Celestial body

Sun (default) | Mercury | Venus | Moon | Mars | Jupiter | Saturn | Uranus | Neptune | Pluto |
Solar system barycenter | Earth-Moon barycenter

Celestial body with which to align primary alignment vector.

Dependencies

To enable this parameter, set Pointing mode to Point at celestial body.

Programmatic Use
Block Parameter: celestialTarget
Type: character vector
Values: 'Sun' | 'Mercury' | 'Venus' | 'Moon' | 'Mars' | 'Jupiter' | 'Saturn' | 'Uranus' |
'Neptune' | 'Pluto' | 'Solar' | 'Solar system barycenter' | 'Earth-Moon barycenter'
Default: 'Sun'

Primary alignment (body-frame) — Primary alignment vector
Dialog (default) | Port

Primary alignment vector source, specified as Port or Dialog.

• Port — Specify port alignment array through the A1b port.
• Dialog — Specify port alignment 3-element vector in the accompanying text box (default value of

[0 0 1]).

Dependencies

To specify the port alignment array in a text box, set this parameter to Dialog.

Programmatic Use
Block Parameter: primaryAlignmentSrc | when primaryAlignmentSrc is 'Dialog', use
primaryAlignment to set the primary alignment vector
Type: character vector
Values: 'Port' | 'Dialog' | primary alignment vector, specified 3-element vector
Default: 'Dialog'

Secondary alignment (body-frame) — Secondary alignment vector
Dialog (default) | Port

Secondary alignment vector source, specified as Port or Dialog.

• Port — Specify port alignment array through the A2b port.
• Dialog — Specify port alignment 3-element vector in the accompanying text box (default value of

[1 0 0]).

Dependencies

To specify the port alignment array in a text box, set this parameter to Dialog.

Programmatic Use
Block Parameter: secondaryAlignmentSrc | when secondaryAlignmentSrc is 'Dialog', use
secondaryAlignment to set the secondary alignment vector
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Type: character vector
Values: 'Port' | 'Dialog' | secondary alignment vector, specified as a 3-element vector
Default: 'Dialog'

Constraint coordinate frame, CCF — Constraint coordinate frame

ICRF (default) | Fixed-frame | LVLH | NED | Body-fixed

Coordinate frame in which constraint vectors are provided, specified as ICRF, Fixed-frame, LVLH,
NED, or Body-fixed. For more information about coordinate systems, see “Algorithms” on page 5-
170.

Programmatic Use
Block Parameter: constraintFrame
Type: character vector
Values: 'ICRF' | 'Fixed-frame' | 'LVLH' | 'NED' | 'Body-fixed'
Default: 'ICRF'

Primary constraint (CCF) — Primary constraint
Dialog (default) | Port

Primary constraint vector source, specified as Port or Dialog.

• Port — Specify primary constraint array through the C1b port.
• Dialog — Specify port constraint 3-element vector in the accompanying text box (default value of

[1 0 0]).

Dependencies

• To specify the port alignment array in a text box, set this parameter to Dialog.
• This parameter is affected when Constraint coordinate frame (CCF) is set to Custom.

Programmatic Use
Block Parameter: primaryConstraintSrc | when primaryConstraintSrc is 'Dialog', use
primaryConstraint to set the primary constraint vector
Type: character vector
Values: 'Port' | 'Dialog' | primary constraint vector, specified as a 3-element vector
Default: 'Dialog'

Secondary constraint (CCF) — Secondary constraint
Dialog (default) | Port

Secondary constraint vector source, specified as Port or Dialog.

• Port — Specify secondary constraint array through the C1b port.
• Dialog — Specify port constraint 3-element vector in the accompanying text box (default value of

[0 1 0]).

After the primary alignment vector is aligned with the primary constraint vector, to fully define the
rotation, the block attempts to align the secondary alignment vector with the rotation vector. The
rotation vector should be the secondary constraint vector.

Whereas the primary constraint is enabled only for the custom pointing mode, the secondary
constraint is always enabled.
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Dependencies

To specify the port alignment array in a text box, set this parameter to Dialog.

Programmatic Use
Block Parameter: secondaryConstraintSrc | when secondaryConstraintSrc is 'Dialog',
use secondaryConstraint to set the secondary constraint vector
Type: character vector
Values: 'Port' | 'Dialog' | secondary constraint vector, specified as a 3-element vector
Default: 'Dialog'

Algorithms
The Attitude Profile block uses Earth-centric and vehicle-centric coordinate systems.

Earth-Centric Coordinate Systems

The Earth-centric coordinate system uses the ICRF and fixed-frame coordinate systems:

• International Celestial Reference Frame. This frame can be treated as equal to the ECI coordinate
system realized at J2000 (Jan 1 2000 12:00:00 TT. For more information, see “ECI Coordinates” on
page 2-11.

• Fixed-frame — The fixed-frame for Earth this block uses is the International Terrestrial Reference
Frame (ITRF). This reference frame is realized by the IAU2000/2006 reduction from the ICRF
coordinate system. This frame is often described as the Earth-centered Earth-fixed reference
frame.

Vehicle-Centric Coordinate Systems

The vehicle-centric coordinate system works in the body frame, north-east-down (NED), and local
vertical, local horizontal (LVLH) coordinate systems.

• Body frame — Fixed in both origin and orientation to the moving craft. For more information, see
“Body Coordinates” on page 2-8.

• North-east-down — Noninertial system with its origin fixed at the aircraft or spacecraft center of
gravity. For more information, see “NED Coordinates” on page 2-10.

• Local vertical, local horizontal — Also known as the spacecraft coordinate system, Gaussian
coordinate system, or the orbit frame. LVLH is a rotation accelerating frame commonly used in
studies of relative motion, such as vehicle maneuvering. The axes of this frame are:

• R-axis — Points outward from the spacecraft origin along its position vectors (with respect to
the center of Earth). Measurements along this axis are referred to as radial.

• W-axis — Points normal to the orbital plane. Measurements along this axis are referred to as
cross-track.

• S-axis — Completes the right hand coordinate system. This axis points in the direction of the
velocity vector, but is only parallel to it for circular orbits. Measurements along this axis are
referred to as along-track or transverse.

Version History
Introduced in R2020b
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See Also
CubeSat Vehicle | Orbit Propagator | juliandate

Topics
“Model and Simulate CubeSats” on page 2-64
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Besselian Epoch to Julian Epoch
Transform position and velocity components from discontinued Standard Besselian Epoch (B1950) to
Standard Julian Epoch (J2000)
Library: Aerospace Blockset / Utilities / Axes Transformations

Description
The Besselian Epoch to Julian Epoch block transforms two 3-by-1 vectors of Besselian Epoch position
(r B1950), and Besselian Epoch velocity (vB1950) into Julian Epoch position (r J2000), and Julian Epoch
velocity (v J2000). For more information on the transformation, see “Algorithms” on page 5-172.

Ports
Input

rB1950 — Position
3-by-1 vector

Position in Standard Besselian Epoch (B1950), specified as a 3-by-1 vector.
Data Types: double

vB1950 — Velocity
3-by-1 vector

Velocity in Standard Besselian Epoch (B1950), specified as a 3-by-1 vector.
Data Types: double

Output

rJ2000 — Position
3-by-1 vector

Position in Standard Julian Epoch (J2000), returned as a 3-by-1 vector.
Data Types: double

vJ2000 — Velocity
3-by-1 vector

Velocity in Standard Julian Epoch (J2000), returned as a 3-by-1 vector.
Data Types: double

Algorithms
The transformation is calculated using:
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r J2000
v J2000

=
Mrr Mvr

Mrv Mvv

r B1950
vB1950

where (Mrr, Mvr, Mrv, Mvv) are defined as:

Mrr

0.9999256782 −0.0111820611 −0.0048579477
0.0111820610 0.9999374784 −0.0000271765
0.0048579479 −0.0000271474 0.9999881997

Mvr =
0.00000242395018 −0.00000002710663 −0.00000001177656
0.00000002710663 0.00000242397878 −0.00000000006587
0.00000001177656 −0.00000000006582 0.00000242410173

Mrv =
−0.000551 −0.238565 0.435739
0.238514 −0.002667 −0.008541
−0.435623 0.012254 0.002117

Mvv =
0.99994704 −0.01118251 −0.00485767
0.01118251 0.99995883 −0.00002718
0.00485767 −0.00002714 1.00000956

Version History
Introduced before R2006a

References
[1] "Supplement to Department of Defense World Geodetic System 1984 Technical Report: Part I -

Methods, Techniques and Data Used in WGS84 Development," DMA TR8350.2-A.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Julian Epoch to Besselian Epoch
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Calculate Range
Calculate range between two vehicles given their respective positions
Library: Aerospace Blockset / GNC / Guidance

Description
The Calculate Range block computes the range between two vehicles. The equation used for the
range calculation is

Range = (x1− x2)2 + (y1− y2)2 + (z1− z2)2

Ports
Input

x1 — Vehicle 1 position
3-element vector

Contains the (x, y, and z) position of vehicle 1, specified as a three-element vector. These values of the
double data type.
Data Types: double

x2 — Vehicle 2 position
3-element vector

The (x, y, and z) position of vehicle 2, specified as a three-element vector. These values are of the
double data type.
Data Types: double

Output

R2-1 — Range
scalar

Range from vehicle 2 and vehicle 1, returned as a scalar of double data type. The calculated range is
the magnitude of the distance, but not the direction. It is always positive or zero.
Data Types: double

Version History
Introduced before R2006a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Three-axis Inertial Measurement Unit
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Centrifugal Effect Model
Implement mathematical representation of centrifugal effect for planetary gravity
Library: Aerospace Blockset / Environment / Gravity

Description
The Centrifugal Effect Model block implements the mathematical representation of centrifugal effect
for planetary gravity. The gravity centrifugal effect is the acceleration portion of centrifugal force
effects due to the rotation of a planet. This block implements this representation using planetary
rotation rates. You use centrifugal force values in rotating or non-inertial coordinate systems.

Ports
Input

Xecef — Planet-centered planet-fixed coordinates
m-by-3 matrix

Planet-centered planet-fixed coordinates from the center of the planet, specified as a scalar. If Planet
model has a value of Earth, this matrix contains Earth-centered Earth-fixed (ECEF) coordinates. The
block does not use explicit units.
Data Types: double

ω — Planetary rotation rate
scalar

Planetary rotation rate, specified as a scalar, in rad/sec.
Dependencies

To enable this parameter, set Planetary rotational rate (rad/sec) to Custom.
Data Types: double

Output

Output 1 — Gravity values
m-by-3 array

Gravity values, returned as an m-by-3 array, in the x-axis, y-axis, and z-axis of the planet-centered
planet-fixed coordinates, in input distance units per second squared.
Data Types: double

Parameters
Planet model — Planetary model
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Earth (default) | Venus | Mercury | Moon | Mars | Jupiter | Saturn | Uranus | Neptune | Custom

Planetary model, specified as Mercury, Venus, Earth, Moon, Mars, Jupiter, Saturn, Uranus,
Neptune, or Custom. The block uses the rotation of the selected planet to implement the
mathematical representation of the centrifugal effect.

Dependencies

Selecting Custom enables the Planetary rotational rate (rad/sec) and Input planetary rotation
rate parameters.

Programmatic Use
Block Parameter: ptype
Type: character vector
Values: 'Mercury' | 'Venus' | 'Earth' | 'Moon' | 'Mars' | 'Jupiter' | 'Saturn' | 'Uranus' |
'Neptune' | 'Custom'
Default: 'Earth'

Planetary rotational rate (rad/sec) — Planetary rotational rate

7.2921150e-05 (default) | scalar

Planetary rotational rate in radians per second.

If you want to specify the planetary rotational rate as an input to the block, see the Input planetary
rotation rate parameter.

Dependencies

Selecting the Input planetary rotation rate check box disables the Planetary rotational rate
(rad/sec) parameter.

Programmatic Use
Block Parameter: omega
Type: character vector
Values: '7.2921150e-05' | scalar
Default: '7.2921150e-05'

Input planetary rotation rate — Planetary rotation rate port

off (default) | on

Select this check box to enable the ω input port. You can then input a planetary rotation rate as a
block input.

Dependencies

Selecting this check box enables the ω and disables the Planetary rotational rate (rad/sec)
parameter.

Programmatic Use
Block Parameter: rate_loc
Type: character vector
Values: 'off' | 'on'
Default: 'off'
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Version History
Introduced in R2010a

References
[1] Vallado, David. Fundamentals of Astrodynamics and Applications. New York, NY: McGraw-Hill,

1997.

[2] "Department of Defense World Geodetic System 1984, Its Definition and Relationship with Local
Geodetic Systems." NIMA TR8350.2.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Spherical Harmonic Gravity Model | Zonal Harmonic Gravity Model
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CIRA-86 Atmosphere Model
Implement mathematical representation of 1986 CIRA atmosphere
Library: Aerospace Blockset / Environment / Atmosphere

Description
The CIRA-86 Atmosphere Model block implements the mathematical representation of the 1986
Committee on Space Research (COSPAR) International Reference Atmosphere (CIRA). The block
provides values for mean temperature, pressure, and zonal wind speed for the input geopotential
altitude.

The CIRA-86 Atmosphere Model block port labels change based on the input and output units
selected from the Units list.

Limitations
• This function uses a corrected version of the CIRA data files provided by J. Barnett in July 1990 in

ASCII format.
• This function has the limitations of the CIRA 1986 model. The values for the CIRA 1986 model are

limited to the regions of 80 degrees S to 80 degrees N on the Earth and geopotential heights of 0
to 120 kilometers. In each monthly mean data set, values at 80 degrees S for 101,300 pascal or 0
meters were omitted because these levels are within the Antarctic land mass. For zonal mean
pressure in constant altitude coordinates, pressure data is not available below 20 kilometers.
Therefore, this is the bottom level of the CIRA climatology.

Ports
Input

Port_1 — Latitude
array

Contains the latitude in degrees (limited to +/-80 degrees).
Data Types: double

Port_2 — Geopotential heights or pressures
array

Contains an m array of either:

• Geopotential heights in selected length units (Coordinate type is GPHeight)
• Pressures in selected pressure units (Coordinate type is Pressure)

Data Types: double

 CIRA-86 Atmosphere Model

5-179



Output

Port_1 — Mean temperature
array

Mean temperature, specified as an array, in selected units.
Data Types: double

Port_2 — Pressures or geopotential heights
array

m array of either:

• Pressures in selected pressure units (Coordinate type is GPHeight)
• Geopotential heights in selected length units (Coordinate type is Pressure)

Data Types: double

Port_3 — Mean zonal winds
array

Mean zonal winds, specified as an array, in selected units.
Data Types: double

Parameters
Units — Units

Metric (MKS) (default) | English (Velocity in ft/s) | English (Velocity in kts)

Input and output units, specified as:

Units Height Temperature Speed of Sound Air Pressure Air Density
Metric (MKS) Meters Kelvin Meters per

second
Pascal Kilograms per

cubic meter
English
(Velocity in
ft/s)

Feet Degrees Rankine Feet per second Pound-force per
square inch

Slug per cubic
foot

English
(Velocity in
kts)

Feet Degrees Rankine Knots Pound-force per
square inch

Slug per cubic
foot

Programmatic Use
Block Parameter: units
Type: character vector
Values: 'Metric (MKS)' | 'English (Velocity in ft/s)' | 'English (Velocity in
kts)'
Default: 'Metric (MKS)'

Coordinate type — Coordinate type representation
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Pressure (default) | GPHeight

Coordinate type representation, specified as:

• Pressure

Indicates pressure in pascal.
• GPHeight

Indicates geopotential height in meters.

Programmatic Use
Block Parameter: ctype
Type: character vector
Values: 'GPHeight' | 'Pressure'
Default: 'GPHeight'

Mean value type — Mean value types

Monthly (default) | Annual

Mean value types, specified as:

• Monthly

Indicates monthly values. If you select Monthly, you must also set the Month parameter.
• Annual

Indicates annual values. Valid when Coordinate type has a value of Pressure.

Dependencies

Setting this parameter to Monthly enables the Month parameter.

Programmatic Use
Block Parameter: mtype
Type: character vector
Values: 'Monthly' | 'Annual'
Default: 'Monthly'

Month — Month of mean value

January (default) | February | March | April | May | June | July | August | September |
October | November | December

Month in which the mean values are taken.

Dependencies

This parameter is enabled when Mean value type is set to Monthly.

Programmatic Use
Block Parameter: month
Type: character vector
Values: 'January' | 'February' | 'March' | 'April' | 'May' | 'June' | 'July' | 'August' |
'September' | 'October' | 'November' | 'December'
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Default: 'January'

Action for out-of-range input — Out-of-range block behavior

None (default) | Warning | Error

Out-of-range block behavior, specified as:

Action Description
None No action.
Warning Warning in the MATLAB Command Window, model simulation

continues.
Error (default) MATLAB returns an exception, model simulation stops.

Programmatic Use
Block Parameter: action
Type: character vector
Values: 'None' | 'Warning' | 'Error'
Default: 'Warning'

Version History
Introduced in R2007b

References
[1] Fleming, E. L., Chandra, S., Shoeberl, M. R., Barnett, J. J., Monthly Mean Global Climatology of

Temperature, Wind, Geopotential Height and Pressure for 0-120 km, NASA TM100697,
February 1988.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
COESA Atmosphere Model | ISA Atmosphere Model

External Websites
https://ccmc.gsfc.nasa.gov/
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Climb Rate Indicator
Display measurements for aircraft climb rate
Library: Aerospace Blockset / Flight Instruments

Description
The Climb Rate Indicator block displays measurements for an aircraft climb rate in ft/min.

The needle covers the top semicircle, if the velocity is positive, and the lower semicircle, if the climb
rate is negative. The range of the indicator is from –Maximum feet per minute to Maximum feet per
minute. Major ticks indicate Maximum/4. Minor ticks indicate Maximum/8 and Maximum/80.

Tip To facilitate understanding and debugging your model, you can modify instrument block
connections in your model during normal and accelerator mode simulations.

Parameters
Connection — Connect to signal
signal name

Connect to signal for display, selected from list of signal names.

To view the data from a signal, select a signal in the model. The signal appears in the Connection
table. Select the option button next to the signal you want to display. Click Apply to connect the
signal.

The table has a row for the signal connected to the block. If there are no signals selected in the
model, or the block is not connected to any signals, the table is empty.

Maximum — Maximum tick mark value

4000 (default) | finite | double | scalar

Maximum tick mark value, specified as a finite double scalar value, in ft/min.

The minimum tick value is always 0.

Programmatic Use
Block Parameter: MaximumRate
Type: character vector
Values: scalar
Default: '4000'
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Label — Block label location

Top (default) | Bottom | Hide

Block label, displayed at the top or bottom of the block, or hidden.

• Top

Show label at the top of the block.
• Bottom

Show label at the bottom of the block.
• Hide

Do not show the label or instructional text when the block is not connected.

Programmatic Use
Block Parameter: LabelPosition
Type: character vector
Values: 'Top' | 'Bottom' | 'Hide'
Default: 'Top'

Version History
Introduced in R2016a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block is ignored for code generation.

See Also
Airspeed Indicator | Altimeter | Artificial Horizon | Exhaust Gas Temperature (EGT) Indicator |
Heading Indicator | Revolutions Per Minute (RPM) Indicator | Turn Coordinator

Topics
“Display Measurements with Cockpit Instruments” on page 2-50
“Programmatically Interact with Gauge Band Colors” on page 2-52
“Flight Instrument Gauges” on page 2-49
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COESA Atmosphere Model
Implement 1976 COESA lower atmosphere
Library: Aerospace Blockset / Environment / Atmosphere

Description
The COESA Atmosphere Model block implements the mathematical representation of the 1976
Committee on Extension to the Standard Atmosphere (COESA) United States standard lower
atmospheric values for absolute temperature, pressure, density, and speed of sound for the input
geopotential altitude.

The COESA Atmosphere Model, Non-Standard Day 210C, and Non-Standard Day 310 blocks are
identical blocks. When configured for COESA Atmosphere Model, the block implements the COESA
mathematical representation. When configured for Non-Standard Day 210C, the block implements
MIL-STD-210C climatic data. When configured for Non-Standard Day 310, the block implements MIL-
HDBK-310 climatic data.

Below 32,000 meters (approximately 104,987 feet), the U.S. Standard Atmosphere is identical with
the Standard Atmosphere of the International Civil Aviation Organization (ICAO).

The COESA Atmosphere Model block port labels change based on the input and output units selected
from the Units list.

Limitations
Below the geopotential altitude of 0 m (0 feet) and above the geopotential altitude of 84,852 m
(approximately 278,386 feet), temperature values are extrapolated linearly and pressure values are
extrapolated logarithmically. Density and speed of sound are calculated using a perfect gas
relationship.

Ports
Input

Port_1 — Geopotential height
scalar | array

Geopotential height, specified as a scalar or array, in specified units.
Data Types: double

Output

Port_1 — Temperature
scalar | array
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Temperature, specified as a scalar or array, in specified units.
Data Types: double

Port_2 — Speed of sound
scalar | array

Speed of sound, specified as a scalar or array, in specified units.
Data Types: double

Port_3 — Air pressure
scalar | array

Air pressure, specified as a scalar or array, in specified units.
Data Types: double

Port_4 — Air density
scalar | array

Air density, specified as a scalar or array, in specified units.
Data Types: double

Parameters
Units — Input and output units

Metric (MKS) (default) | English (Velocity in ft/s) | English (Velocity in kts)

Input and output units, specified as:

Units Height Temperature Speed of Sound Air Pressure Air Density
Metric (MKS) Meters Kelvin Meters per

second
Pascal Kilograms per

cubic meter
English
(Velocity in
ft/s)

Feet Degrees Rankine Feet per second Pound-force per
square inch

Slug per cubic
foot

English
(Velocity in
kts)

Feet Degrees Rankine Knots Pound-force per
square inch

Slug per cubic
foot

Programmatic Use
Block Parameter: units
Type: character vector
Values: 'Metric (MKS)' | 'English (Velocity in ft/s)' | 'English (Velocity in
kts)'
Default: 'Metric (MKS)'

Specification — Atmosphere model type

1976 COESA-extended U.S. Standard Atmosphere (default) | MIL-HDBK-310 | MIL-
STD-210C
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Atmosphere model type, specified as 1976 COESA-extended U.S. Standard Atmosphere, MIL-
HDBK-310, or MIL-STD-210C. For the MIL-HDBK-310 and MIL-STD-210C options:

MIL-HDBK-310 This selection is linked to the Non-Standard Day
310 block. See the block reference for more
information. Selecting MIL-HDBK-310 enables
the parameters Atmospheric model type,
Extreme parameter, Frequency of
occurrence, and Altitude of extreme value.

MIL-STD-210C This selection is linked to the Non-Standard Day
210C block. See the block reference for more
information. Selecting MIL-HDBK-310 enables
the parameters Atmospheric model type,
Extreme parameter, Frequency of
occurrence, and Altitude of extreme value.

Dependencies

Selecting MIL-HDBK-310 or MIL-STD-210C enables these parameters:

• Atmospheric model type
• Extreme parameter
• Frequency of occurrence
• Altitude of extreme value

Programmatic Use
Block Parameter: spec
Type: character vector
Values: '1976 COESA-extended U.S. Standard Atmosphere' | 'MIL-HDBK-310' | 'MIL-
STD-210C'
Default: '1976 COESA-extended U.S. Standard Atmosphere'

Atmospheric model type — Model type

Profile (default) | Envelope

Representation of atmospheric model type, specified as:

Profile Realistic atmospheric profiles associated with extremes at specified altitudes.
Recommended for simulation of vehicles vertically traversing the atmosphere or
when the total influence of the atmosphere is needed.

Envelope Uses extreme atmospheric values at each altitude. Recommended for vehicles
only horizontally traversing the atmosphere without much change in altitude.

Dependencies

• Selecting MIL-HDBK-310 or MIL-STD-210C for the Specification parameter enables this
parameter.

• Selecting Profile enables the Attitude of extreme value parameter.

Programmatic Use
Block Parameter: model
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Type: character vector
Values: 'Profile' | 'Envelope'
Default: 'Profile'

Extreme parameter — Model type

High temperature (default) | Low temperature | High density | Low density | High
pressure | Low pressure

Atmospheric parameter that is the extreme value.
Dependencies

• Selecting MIL-HDBK-310 or MIL-STD-210C for the Specification parameter enables this
parameter.

• The High pressure and Low pressure options appear only when Atmospheric model type is
set to Envelope.

Programmatic Use
Block Parameter: profile_var
Type: character vector
Values: 'High temperature' | 'Low temperature' | 'High density' | 'Low density' |
'High pressure' | 'Low pressure'
Default: 'High temperature'

Frequency of occurrence — Model type

1% (default) | Extreme values | 5% | 10% | 20%

Percent of time the values would occur.
Dependencies

• Selecting MIL-HDBK-310 or MIL-STD-210C for the Specification parameter enables this
parameter.

• Extreme values, 5%, and 20% are available only when Envelope is selected for Atmospheric
model type.

• 1% and 10% are always available.

Programmatic Use
Block Parameter: profile_percent
Type: character vector
Values: 'Extreme values' | '1%' | '5%' | '10%' | '20%'
Default: '1%'

Altitude of extreme value — Geometric altitude

5 km (16404 ft) (default) | 10 km (32808 ft) | 20 km (65617 ft) | 30 km (98425 ft) |
40 km (131234 ft)

Geometric altitude at which the extreme values occur, specified as 5 km (16404 ft), 10 km
(32808 ft), 20 km (65617 ft), 30 km (98425 ft), or 40 km (131234 ft).
Dependencies

This parameter appears if the Atmospheric model type is set to Profile.
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Programmatic Use
Block Parameter: profile_alt
Type: character vector
Values: 5 km (16404 ft) | 10 km (32808 ft) | 20 km (65617 ft) | 30 km (98425 ft) | 40
km (131234 ft)
Default: 40 km (131234 ft)

Action for out-of-range input — Out-of-range block behavior

Warning (default) | None | Error

Out-of-range block behavior, specified as follows.

Action Description
None No action.
Warning Warning in the Diagnostic Viewer, model simulation continues.
Error (default) MATLAB returns an exception, model simulation stops.

Programmatic Use
Block Parameter: action
Type: character vector
Values: 'None' | 'Warning' | 'Error'
Default: 'Warning'

Version History
Introduced before R2006a

References
[1] U.S. Standard Atmosphere., Washington, D.C.: U.S. Government Printing Office, 1976.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
CIRA-86 Atmosphere Model | ISA Atmosphere Model | Non-Standard Day 210C | Non-Standard Day
310

Topics
“NASA HL-20 Lifting Body Airframe” on page 3-14
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Create 3x3 Matrix
Create 3-by-3 matrix from nine input values
Library: Aerospace Blockset / Utilities / Math Operations

Description
The Create 3x3 Matrix block creates a 3-by-3 matrix from nine input values where each input
corresponds to an element of the matrix.

The output matrix has the form of

A =
A11 A12 A13
A21 A22 A23
A31 A32 A33

Ports
Input

A11 — First row, first column of matrix
matrix element

First row, first column of the matrix, specified as a matrix element.
Example: 1
Data Types: double

A12 — First row, second column of matrix
matrix element

First row, second column of the matrix, specified as a matrix element.
Example: 2
Data Types: double

A13 — First row, third column of matrix
matrix element

First row, third column of the matrix, specified as a matrix element.
Example: 3
Data Types: double
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A21 — Second row, first column of matrix
matrix element

Second row, first column of the matrix, specified as a matrix element.
Example: 4
Data Types: double

A22 — Second row, second column of matrix
matrix element

Second row, second column of the matrix, specified as a matrix element.
Example: 5
Data Types: double

A23 — Second row, third column of matrix
matrix element

Second row, third column of the matrix, specified as a matrix element.
Example: 6
Data Types: double

A31 — Third row, first column of matrix
matrix element

Third row, first column of the matrix, specified as a matrix element.
Example: 7
Data Types: double

A32 — Third row, second column of matrix
matrix element

Third row, second column of the matrix, specified as a matrix element.
Example: 8
Data Types: double

A33 — Third row, third column of matrix
matrix element

Third row, third column of the matrix, specified as a matrix element.
Example: 9
Data Types: double

Output

A — Matrix
3-by-3 matrix

Matrix, output as a 3-by-3 matrix.

 Create 3x3 Matrix

5-191



Data Types: double

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Adjoint of 3x3 Matrix | Determinant of 3x3 Matrix | Invert 3x3 Matrix | Symmetric Inertia Tensor
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Crossover Pilot Model
Represent crossover pilot model
Library: Aerospace Blockset / Pilot Models

Description
The Crossover Pilot Model block represents the pilot model described in Mathematical Models of
Human Pilot Behavior [1]). This pilot model is a single input, single output (SISO) model that
represents some aspects of human behavior when controlling aircraft.

The Crossover Pilot Model takes into account the combined dynamics of the human pilot and the
aircraft, using the form described in “Algorithms” on page 5-197 around the crossover frequency.

This block has nonlinear behavior. If you want to linearize the block (for example, with one of the
linmod functions), you might need to change the Pade approximation order. The Crossover Pilot
Model block implementation incorporates the Transport Delay block with the Pade order (for
linearization) parameter set to 2 by default. To change this value, use the set_param function, for
example:

set_param(gcb,'pade','3')

When modeling human pilot models, use this block for more accuracy than that provided by the
Tustin Pilot Model block. This block is also less accurate than the Precision Pilot Model block.

Ports
Input

x com — Signal command
scalar

Signal command that the pilot model controls, specified as a scalar.
Data Types: double

x — Signal
scalar

Signal that the pilot model controls, specified as a scalar.
Data Types: double

Output

u — Aircraft command
scalar
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Aircraft command, returned as a scalar.
Data Types: double

Parameters
Type of control — Dynamics control

Proportional (default) | Rate or velocity | Spiral divergence | Second order - Short
period | Acceleration(*) | Roll attitude(*) | Unstable short period(*) | Second
order - Phugoid(*)

Dynamics control that you want the pilot to have over the aircraft. This table lists the options and
associated dynamics.

Option
(Controlled
Element
Transfer
Function)

Transfer Function of
Controlled Element ( Y
c )

Transfer Function of
Pilot ( Y p )

Y c Y p Notes

Proportion‐
al

Kc Kpe−τs

s
KcKpe−τs

s
 

Rate or
velocity

Kc
s

Kpe−τs KcKpe−τs

s
 

Spiral
divergence

Kc
TIs− 1

Kpe−τs KcKpe−τs

(TIs− 1)
 

Second order
- Short
period

Kcωn2

s2 + 2ζωns + ωn
2

Kpe−τs

TIs + 1
Kcωn2

s2 + 2ζωns + ωn
2 ×

Kpe−τs

TIs + 1

Short
period,
with ωn > 1/τ

Acceleration
(*)

Kc
s2

Kpse−τs KcKpe−τs

s
 

Roll
attitude (*)

Kc
s(TIs + 1)

Kp(TLs + 1)e−τs KcKpe−τs

s
With
T L ≈ T I

Unstable
short
period(*)

Kc
(TI1s + 1)(TI2s− 1)

Kp(TLs + 1)e−τs KcKpe−τs

(TI2s− 1)
With
T L ≈ T I1

Second order
- Phugoid(*)

Kcωn2

s2 + 2ζωns + ωn
2

Kp(TLs + 1)e−τs KcKpωn
2e−τs

s
Phugoid,

with 
ωn ≪ 1/τ,
1/TL ≈ ζωn

* Indicates that the pilot model includes a Derivative block, which produces a numerical derivative.
For this reason, do not send discontinuous (such as a step) or noisy input to the Crossover Pilot Model
block. Such inputs can cause large outputs that might render the system unstable.

This table defines the variables used in the list of control options.
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Variable Description
K c Aircraft gain.
K p Pilot gain.
τ Pilot time delay.
T I Lag constant.
T L Lead constant.
ζ Damping ratio for the aircraft.
ω n Natural frequency of the aircraft.

Dependencies

The Crossover Pilot Model parameters are enabled and disabled according to the Type of control
options. The Calculated value, Controlled element gain, Pilot gain, Crossover frequency
(rad/s), and Pilot time delay(s) parameters are always enabled.

Programmatic Use
Block Parameter: sw_popup
Type: character vector
Values: 'Proportion' | 'Rate or velocity' |'Spiral divergence' | 'Second order -
Short period' | 'Acceleration(*)' | 'Roll attitude(*)' | 'Unstable short
period(*)' | 'Second order - Phugoid(*)'
Default: 'Proportion'

Calculated value — Crossover frequency or pilot gain

Crossover frequency (default) | Pilot gain

Crossover frequency or pilot gain value you want the block to calculate:

• Crossover frequency — The block calculates the crossover frequency value. The parameter
value is disabled.

• Pilot gain — The block calculates the pilot gain value. The parameter value is disabled.

Programmatic Use
Block Parameter: freq_gain_popup
Type: character vector
Values: 'Crossover frequency' | 'Pilot gain'
Default: 'Crossover frequency'

Controlled element gain — Controlled element gain

1 (default) | scalar

Controlled element gain, specified as a double scalar.

Programmatic Use
Block Parameter: Kc
Type: character vector
Values: double scalar
Default: '1'
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Pilot gain — Pilot gain

3 (default) | scalar

Pilot gain, specified as a double scalar.

Dependencies

To enable this parameter, set Calculated value to Pilot gain.

Programmatic Use
Block Parameter: Kp
Type: character vector
Values: double scalar
Default: '3'

Crossover frequency (rad/s) — Crossover frequency

3 (default) | scalar in the range of 1 and 10

Crossover frequency value, specified as double scalar, in rad/s. The value must be in the range
between 1 and 10.

Dependencies

To enable this parameter, set Calculated value to Crossover frequency.

Programmatic Use
Block Parameter: omega_c
Type: character vector
Values: double scalar
Default: '3'

Pilot time delay(s) — Pilot time delay

0.1 (default) | scalar

Total pilot time delay, specified as a double scalar, in seconds. This value typically ranges from 0.1 s
to 0.2 s.

Programmatic Use
Block Parameter: time_delay
Type: character vector
Values: double scalar
Default: '0.1'

Pilot lead constant — Pilot lead constant

1 (default) | scalar

Pilot lead constant, specified as a double scalar.

Dependencies

To enable this parameter, set Type of control to one of the following options:

• Roll attitude (*)
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• Unstable short period (*)
• Second order - Phygoid(*)

Programmatic Use
Block Parameter: T
Type: character vector
Values: double scalar
Default: '1'

Pilot lag constant — Pilot lag constant

5 (default) | scalar

Pilot lag constant, specified as a double scalar.

Dependencies

To enable this parameter, set Type of control to Second order - Short period.

Programmatic Use
Block Parameter: Ti
Type: character vector
Values: double scalar
Default: '5'

Algorithms
The Crossover Model takes into account the combined dynamics of the human pilot and the aircraft,
using the following form around the crossover frequency:

YpYc =
ωce−τs

s ,

Where:

Variable Description
Y p Pilot transfer function.
Y c Aircraft transfer function.
ω c Crossover frequency.
τ Transport delay time caused by the pilot neuromuscular

system.

If the dynamics of the aircraft (Yc) change, Yp changes correspondingly.

Note This block is valid only around the crossover frequency. It is not valid for discrete inputs such
as a step.

Version History
Introduced in R2012b

 Crossover Pilot Model

5-197



References
[1] McRuer, D. T., Krendel, E., Mathematical Models of Human Pilot Behavior. Advisory Group on

Aerospace Research and Development AGARDograph 188, Jan. 1974.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Precision Pilot Model | Tustin Pilot Model | Transport Delay | linmod
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CubeSat Vehicle
Model CubeSat vehicle
Library: Aerospace Blockset / Spacecraft / CubeSat Vehicles

Description
The CubeSat Vehicle block models CubeSat vehicles to provide a high level mission planning/rapid
prototyping option to quickly model and propagate satellite orbits, one satellite at a time. (To
propagate multiple satellites simultaneously, see the Orbit Propagator block.) To accommodate
constellation planning workflows, you can also use these blocks multiple times in a model. Specify
this information for the vehicle:

• Initial orbital state
• Attitude control (pointing) mode

The library contains three versions of the CubeSat Vehicle block preconfigured for these common
attitude control modes:

• Earth (Nadir) Pointing — Primary alignment vector points towards the center of the Earth
• Sun Tracking — Primary alignment vector points toward the Sun
• Custom Pointing — Custom alignment and constraint vectors

Ports
Input

AECEF (m/s2) — Vehicle accelerations
vector of size 3

Vehicle gravity accelerations (including gravity) used for orbit propagation, specified as a vector of
size 3, in m/s2.
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Data Types: single | double

1st AlignmentBody — Primary alignment vector
three-element vector

Primary alignment vector, in the Body frame, to align with primary constraint vector.
Data Types: double

1st ConstraintECI — Primary constraint vector
three-element vector

Primary constraint vector specifying the direction in which to align the primary alignment vector.
Dependencies

This port is not available when Pointing mode is set to Earth (Nadir) Pointing or Sun
Tracking, which have implied primary constraint vectors.
Data Types: double

1st AlignmentBody — Primary alignment vector
three-element vector

Primary alignment vector, in the Body frame, to align with primary constraint vector.
Data Types: double

1st ConstraintECI — Primary constraint vector
three-element vector

Primary constraint vector specifying the direction in which to align the primary alignment vector.
Dependencies

• The direction depends on the Constraint coordinate system.
• This port is not available when Pointing mode is set to Earth (Nadir) Pointing or Sun

Tracking, which have implied primary constraint vectors.

Data Types: double

2nd AlignmentBody — Secondary alignment vector
three-element vector

Secondary alignment vector, in the Body frame, to align with secondary constraint vector.
Data Types: double

2nd ConstraintECI — Secondary constraint vector
three-element vector

Secondary constraint vector specifying the direction in which to align the secondary alignment
vector.
Dependencies

The direction depends on the Constraint coordinate system.
Data Types: double
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Output

XECEF — CubeSat position
three-element vector

Earth-centered Earth-fixed CubeSat position components, specified as a 3-by-1 array.
Data Types: double

VECEF — Velocity components
3-by-1 array

Earth-centered Earth-fixed velocity components, specified as a 3-by-1 array.
Data Types: double

qECI2Body — Quaternion rotation
4-by-1 array

Quaternion rotation from Earth-centered inertial frame to Body frame.
Data Types: double

qECEF2Body — Quaternion array
4-by-1 array

Quaternion rotation from Earth-centered Earth-fixed frame to Body frame.
Data Types: double

Parameters
Start date [Julian date] — Initial start date of simulation

2458488 (default) | Julian date

Initial start date of simulation. The block defines initial conditions using this date.

Tip To calculate the Julian date, use the juliandate function.

Programmatic Use
Block Parameter: sim_t0
Type: character vector
Values: Julian date
Default: '2458488'

CubeSat Orbit

Input method — Initial vehicle

Keplerian Orbital Elements (default) | ECI Position and Velocity | ECEF Position
and Velocity | Geodetic LatLonAlt and Velocity in NED

Initial vehicle position and velocity input method.
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Dependencies

Selecting the Keplerian Orbital Elements input method enables these parameters:

• Epoch of ECI frame [Julian date]
• Semi-major axis [m]
• Eccentricity
• Inclination [deg]
• Right ascension of the ascending node [deg]
• Argument of periapsis [deg]
• True anomaly [deg]
• True longitude [deg] (circular equatorial)
• Argument of latitude [deg] (circular inclined)
• Longitude of periapsis [deg] (elliptical equatorial)

Selecting the ECI Position and Velocity input method enables these parameters:

• Epoch of ECI frame [Julian date]
• ECI position vector [m]
• ECI velocity vector [m/s]

Selecting the ECEF Position and Velocity input method enables these parameters:

• ECEF position vector [m]
• ECEF velocity vector [m/s]

Selecting the Geodetic LatLonAlt and Velocity in NED input method enables these
parameters:

• Geodetic latitude, longitude, altitude [deg, deg, m]
• NED velocity vector [m/s]

Programmatic Use
Block Parameter: method
Type: character vector
Values: 'Keplerian Orbital Elements' | 'ECI Postion and Velocit' | 'ECEF Postion
and Velocity' | 'Geodetic LatLonAlt and Velocity in NED'
Default: 'Keplerian Orbital Elements'

Epoch of ECI frame [Julian date] — Epoch of ECI frame

2451545 (default) | Julian date

Epoch of ECI frame, specified as a Julian date.

Tip To calculate the Julian date for a particular date, use the juliandate function.

Programmatic Use
Block Parameter: epoch
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Type: character vector
Values: Julian date format
Default: '2451545'

Semi-major axis [m] — CubeSat semi-major axis

6878137 (default) | axis in meters

CubeSat semi-major axis (half of the longest orbit diameter), specified in m.
Programmatic Use
Block Parameter: a
Type: character vector
Values: scalar
Default: '6878137'

Eccentricity — Orbital eccentricity

0 (default) | eccentricity greater than or equal to 0

Deviation of the CubeSat orbit from a perfect circle.
Programmatic Use
Block Parameter: ecc
Type: character vector
Values: scalar
Default: '0'

Inclination [deg] — Tilt angle of CubeSat orbital plane

0 | degrees between 0 and 180

Tilt angle of CubeSat orbital plane, specified between 0 and 180 deg.
Programmatic Use
Block Parameter: incl
Type: character vector
Values: scalar
Default: '0'

Right ascension of the ascending node [deg] — Angular distance in equatorial plane

0 (default) | degrees between 0 and 360

Angular distance in equatorial plane from x-axis to location of the ascending node (point at which the
satellite crosses the equator from south to north), specified between 0 and 360 deg.
Programmatic Use
Block Parameter: omega
Type: character vector
Values: scalar
Default: '0'

Argument of periapsis [deg] — Angle from CubeSat body ascending node to periapsis

0 (default) | degrees between 0 and 360
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Angle from the CubeSat body ascending node to the periapsis (closest point of orbit to Earth),
specified between 0 and 360 deg.

Programmatic Use
Block Parameter: argp
Type: character vector
Values: scalar
Default: '0'

True anomaly [deg] — Angle between periapsis and current position of CubeSat

0 (default) | degrees between 0 and 360

Angle between the periapsis (closest point of orbit to Earth) and the current position of CubeSat,
specified between 0 and 360 deg.

Programmatic Use
Block Parameter: nu
Type: character vector
Values: scalar
Default: '0'

True longitude [deg] (circular equatorial) — Angle between x-axis of periapsis and
position of CubeSat vector

0 (default) | degrees between 0 and 360

Angle between x-axis of periapsis and position of CubeSat vector, specified between 0 and 360 deg.

Programmatic Use
Block Parameter: truelon
Type: character vector
Values: scalar
Default: '0'

Argument of latitude [deg] (circular inclined) — Angle between ascending node
and satellite position vector

0 (default) | degrees between 0 and 360

Angle between ascending node and satellite position vector, specified between 0 and 360 deg.

Programmatic Use
Block Parameter: arglat
Type: character vector
Values: scalar
Default: '0'

Longitude of periapsis [deg] (elliptical equatorial) — Angle between x-axis of
periapsis and eccentricity vector

0 (default) | degrees between 0 and 360

Angle between the x-axis of the periapsis and the eccentricity vector, specified between 0 and 360
deg.
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Programmatic Use
Block Parameter: lonper
Type: character vector
Values: scalar
Default: '0'

ECI position vector [m] — Cartesian position vector

[0 0 0] (default) | vector

Cartesian position vector of satellite in ECI coordinate frame at Start Date.

Programmatic Use
Block Parameter: r_eci
Type: character vector
Values: scalar
Default: '[0 0 0]'

ECI velocity vector [m/s] — Cartesian velocity vector

[0 0 0] (default) | velocity vector

Cartesian velocity vector of satellite in ECI coordinate frame at Start Date.

Programmatic Use
Block Parameter: v_eci
Type: character vector
Values: scalar
Default: '[0 0 0]'

ECEF position vector [m] — Cartesian position vector

[0 0 0] (default) | vector

Cartesian position vector of satellite in ECEF coordinate frame at Start Date.

Programmatic Use
Block Parameter: r_ecef
Type: character vector
Values: scalar
Default: '[0 0 0]'

ECEF velocity vector [m/s] — Cartesian velocity vector

[0 0 0] (default) | velocity vector

Cartesian velocity vector of satellite in ECEF coordinate frame at Start Date.

Programmatic Use
Block Parameter: v_ecef
Type: character vector
Values: scalar
Default: '[0 0 0]'
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Geodetic latitude, longitude, altitude [deg, deg, m] — Geodetic latitude and
longitude, and altitude

[0 0 0] (default) | velocity vector

Geodetic latitude and longitude, in deg, and altitude above WGS84 ellipsoid, in m.
Programmatic Use
Block Parameter: lla
Type: character vector
Values: scalar
Default: '[0 0 0]'

NED velocity vector [m/s] — Body velocity

[0 0 0] (default) | velocity vector

Body velocity with respect to Earth-centered Earth-fixed (ECEF), expressed in the north-east-down
(NED) coordinate frame, specified as a vector, in m/s.
Programmatic Use
Block Parameter: v_ned
Type: character vector
Values: scalar
Default: '[0 0 0]'

CubeSat Attitude

Initial Euler angles (roll, pitch, yaw) [deg] — Initial Euler rotation angles

[0 0 0] (default) | vector | degrees

Initial Euler rotation angles (roll, pitch, yaw) between Body and NED coordinate frames, specified in
degrees.
Programmatic Use
Block Parameter: euler
Type: character vector
Values: scalar
Default: '[0 0 0]'

Initial body angular rates [deg/s] — Initial angular rates

[0 0 -0.05168] (default) | vector

Initial angular rates with respect to NED frame, expressed in Body frame, specified as a vector.
Programmatic Use
Block Parameter: pqr
Type: character vector
Values: scalar
Default: '[0 0 0]'

Pointing mode — CubeSat vehicle pointing mode

Earth (Nadir) Pointing (default) | Sun Tracking | Custom Pointing | Standby (Off)
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CubeSat vehicle pointing mode, specified as Earth (Nadir) Pointing, Sun Tracking, or
Custom Pointing. The CubeSat vehicle uses the pointing mode for precise attitude control. For no
attitude control, select Standby (Off).

Programmatic Use
Block Parameter: pointingMode
Type: character vector
Values: 'Earth (Nadir) Pointing' | 'Sun Tracking' | 'Custom Pointing' | 'Standby
(Off)'
Default: 'Earth (Nadir) Pointing'

Primary alignment vector (Body wrt BCM) — Primary alignment vector
Dialog (default) | Input port

Primary alignment vector, in Body frame, to align with primary constraint vector.

Dependencies

• Selecting Dialog enables a text box in which you specify the primary alignment vector. The
default value is [0 0 1].

• Selecting Input port enables the 1st AlignmentBody input port, at which you specify the primary
alignment vector.

Programmatic Use
Block Parameter: firstAlign
Type: character vector
Values: vector
Default: '[0 0 1]'

Programmatic Use
Block Parameter: firstAlignExt
Type: character vector
Values: 'Input port' | 'Dialog'
Default: 'Dialog'

Secondary alignment vector (Body wrt BCM) — Secondary alignment vector
Dialog (default) | Input port

Secondary alignment vector, in Body frame, to align with secondary constraint vector.

Dependencies

• Selecting Dialog enables a text box in which you specify the secondary alignment vector. The
default value is [0 1 0].

• Selecting Input port enables the 2nd AlignmentBody input port, at which you specify the
secondary alignment vector.

Programmatic Use
Block Parameter: secondAlign
Type: character vector
Values: vector
Default: '[0 1 0]'

Programmatic Use
Block Parameter: secondAlignExt
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Type: character vector
Values: 'Input port' | 'Dialog'
Default: 'Dialog'

Constraint coordinate system — Constraint coordinate system

ECI Axes (default) | ECEF Axes | NED Axes | Body-Fixed Axes

Constraint coordinate system, specified as ECI Axes, ECEF Axes, NED Axes, or Body-Fixed
Axes.

Programmatic Use
Block Parameter: constraintCoord
Type: character vector
Values: 'ECI Axes' | 'ECEF Axes' | 'NED Axes' | 'Body-Fixed Axes'
Default: 'ECI Axes'

Primary constraint vector (wrt BCM) — Primary constraint vector
Dialog (default) | Input port

Primary constraint vector, in the Body frame, to align with the primary alignment vector.

Dependencies

• This parameter is disabled when Pointing mode is Earth (Nadir) Pointing or Sun
Tracking.

• Selecting Dialog enables a text box in which you specify the primary constraint vector. The
default value is [1 0 0].

• Selecting Input port enables the 1st constraintBody input port, at which you specify the primary
constraint vector.

Programmatic Use
Block Parameter: firstRef
Type: character vector
Values: vector
Default: '[1 0 0]'

Programmatic Use
Block Parameter: firstRefExt
Type: character vector
Values: 'Input port' | 'Dialog'
Default: 'Dialog'

Secondary constraint vector (wrt BCM) — Secondary constraint vector
Dialog (default) | Input port

Secondary constraint vector, in the Body frame, to align with the secondary alignment vector.

Dependencies

• Selecting Dialog enables a text box in which you specify the secondary constraint vector. The
default value is [0 0 1].

• Selecting Input port enables the 2nd constraintBody input port, at which you specify the
secondary constraint vector.
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Programmatic Use
Block Parameter: secondRef
Type: character vector
Values: vector
Default: '[0 0 1]'
Programmatic Use
Block Parameter: secondRefExt
Type: character vector
Values: 'Input port' | 'Dialog'
Default: 'Dialog'

Mission Analysis

Analysis run time source — Source of run time for mission analysis live script

Dialog (default) | Model Stop Time

Source of run time for mission analysis live script, specified as:

• Dialog — Defined in Run time parameter.
• Model Stop Time — Defined in model configuration parameter Stop Time.

Programmatic Use
Block Parameter: missionRTSource
Type: character vector
Values: 'Dialog' | 'Model StopTime'
Default: 'Dialog'

Run time [sec] — Run time for mission analysis live script

6*60*60 (default) | scalar

Run time for mission analysis live script, specified as a scalar.

Programmatic Use
Block Parameter: missionRT
Type: character vector
Values: scalar
Default: '6*60*60'

Ground station geodetic latitude, longitude [deg, deg] — Ground station location

[42, -71] (default) | vector

Ground station location, specified as a vector, in geodetic latitude and longitude in deg, deg.

Programmatic Use
Block Parameter: missionGS
Type: character vector
Values: vector
Default: '[42, -71]'

Run TOI analysis — Enable time of interest mission analysis
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on (default) | off

Select this check box to enable time of interest analysis in mission analysis.live script

Programmatic Use
Block Parameter: missionTOICheck
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Time of interest [Julian date] — Time of interest for mission analysis live script

[] (default) | Julian date

Time of interest mission analysis, specified as a Julian date. To use the simulation start date, enter an
empty array ([]).

Tip To calculate the Julian date, use the juliandate function.

Programmatic Use
Block Parameter: missionTOI
Type: character vector
Values: Julian date
Default: '[]'

Camera field-of-view (FOV) half angle (deg) — Half angle of field of view

55 (default) | [] | scalar

Half angle of field of view for nadir on-pointed camera. To exclude from analysis, enter an empty
array ([]).

Programmatic Use
Block Parameter: missionEta
Type: character vector
Values: '[]' | scalar
Default: '55'

Live script file name — File name for mission analysis live script report

blank entry (default) | live script file name

File name for mission analysis live script report, generated as a live script. To create a default
mission analysis report with the format CubeSatMissionReport_currentdate.mlx, leave the
parameter blank. To create a live script of the mission analysis report, click the Create Live Script
Report button.

Dependencies

To create the live script with the specified file name, click the Create Live Script Report button. If
this parameter is blank, the block creates a live script with a default file name.

Programmatic Use
Block Parameter: missionName
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Type: character vector
Values: blank entry | file name
Default: blank entry

Create Live Script Report — Analyze mission and create live script report

button

To analyze mission and create report in live script format, click this button. To create a default
mission analysis report with the format CubeSatMissionReport_currentdate.mlx, leave the
parameter blank. To create a live script of the mission analysis report, click the Create Live Script
Report button.

Dependencies

To create the live script with the file name specified in Live script file name, click the Create Live
Script Report button. If Live script file name is blank, the block creates a live script with a default
file name.

Version History
Introduced in R2019a

CubeSat Vehicle now propagates in the ECI coordinate frame
Behavior changed in R2021a

The CubeSat Vehicle now propagates in the ECI coordinate frame using Earth orientation parameters
data from the aeroiersdata.mat file. Results differ from previous releases, but are more accurate
than with previous versions of the block.

References
[1] Wertz, James R, David F. Everett, and Jeffery J. Puschell. Space Mission Engineering: The New

Smad. Hawthorne, CA: Microcosm Press, 2011. Print.

See Also
Attitude Profile | Orbit Propagator | ecef2eci | eci2ecef | ijk2keplerian | juliandate |
keplerian2ijk | siderealTime

Topics
“Model and Simulate CubeSats” on page 2-64
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Custom Variable Mass 3DOF (Body Axes)
Implement three-degrees-of-freedom equations of motion of custom variable mass with respect to
body axes
Library: Aerospace Blockset / Equations of Motion / 3DOF

Description
The Custom Variable Mass 3DOF (Body Axes) block implements three-degrees-of-freedom equations
of motion of custom variable mass with respect to body axes. It considers the rotation in the vertical
plane of a body-fixed coordinate frame about a flat Earth reference frame. For more information
about the rotation and equations of motion, see “Algorithms” on page 5-219.

Ports
Input

Fx — Applied force along x-axis
scalar

Applied force along the body x-axis, specified as a scalar, in the units selected in Units.
Data Types: double

Fz — Applied force along z-axis
scalar

Applied force along the body z-axis, specified as a scalar.
Data Types: double

M — Applied pitching moment
scalar

Applied pitching moment, specified as a scalar.
Data Types: double

dm/dt — Rate of change of mass
scalar

Rate of change of mass (positive if accreted, negative if ablated), specified as a scalar.
Data Types: double

m — Mass
scalar
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Mass, specified as a scalar.
Data Types: double

dI/dt — Rate of change of inertia tensor
scalar

Rate of change of inertia tensor, Iyy, specified as scalar.

Dependencies

To enable this port, set Mass type to Custom Variable.
Data Types: double

I — Inertia tensor
scalar

Inertia tensor, specified as a scalar.

Dependencies

To enable this port, set Mass type to Custom Variable.
Data Types: double

g — Gravity
scalar

Gravity, specified as a scalar.

Dependencies

To enable this port, set Gravity source to External.
Data Types: double

Vre — Relative velocity
two-element vector

Relative velocity at which mass is accreted to or ablated from the body in body-fixed axes, specified
as a two-element vector.

Dependencies

To enable this port, select Include mass flow relative velocity.
Data Types: double

Output

θ — Pitch attitude
scalar

Pitch attitude, within ±pi, returned as a scalar, in radians (θ).
Data Types: double

q — Pitch angular rate
scalar

 Custom Variable Mass 3DOF (Body Axes)

5-213



Pitch angular rate, returned as a scalar, in radians per second.
Data Types: double

dq/dt — Pitch angular acceleration
scalar

Pitch angular acceleration, returned as a scalar, in radians per second squared.
Data Types: double

XeZe — Location of body
two-element vector

Location of the body in the flat Earth reference frame, (Xe, Ze), returned as a two-element vector.
Data Types: double

U w — Velocity of body
two-element vector

Velocity of the body resolved into the body-fixed coordinate frame, (u, w), returned as a two-element
vector.
Data Types: double

AxbAzb — Acceleration of body
two-element vector

Acceleration of the body with respect to the body-fixed coordinate frame, (Ax, Az), returned as a two-
element vector.
Data Types: double

AxeAze — Acceleration of body
two-element vector

Accelerations of the body with respect to the inertial (flat Earth) coordinate frame, returned as a two-
element vector. You typically connect this signal to the accelerometer.

Dependencies

To enable this port, select the Include inertial acceleration check box.
Data Types: double

Parameters
Main

Units — Input and output units

Metric (MKS) (default) | English (Velocity in ft/s) | English (Velocity in kts)

Input and output units, specified as Metric (MKS), English (Velocity in ft/s), or English
(Velocity in kts).
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Units Forces Moment Acceleration Velocity Position Mass Inertia
Metric
(MKS)

Newton Newton-
meter

Meters per second
squared

Meters per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in ft/s)

Pound Foot-pound Feet per second
squared

Feet per
second

Feet Slug Slug foot
squared

English
(Velocity
in kts)

Pound Foot-pound Feet per second
squared

Knots Feet Slug Slug foot
squared

Programmatic Use
Block Parameter: units
Type: character vector
Values: Metric (MKS) | English (Velocity in ft/s) | English (Velocity in kts)
Default: Metric (MKS)

Axes — Body or wind axes

Body (default) | Wind

Body or wind axes, specified as Wind or Body

Programmatic Use
Block Parameter: axes
Type: character vector
Values: Wind | Body
Default: Body

Mass type — Mass type
Custom Variable (default) | Fixed | Simple Variable

Mass type, specified according to the following table.

Mass Type Description Default for
Fixed Mass is constant throughout the

simulation.
• 3DOF (Body Axes)
• 3DOF (Wind Axes)

Simple Variable Mass and inertia vary linearly as
a function of mass rate.

• Simple Variable Mass 3DOF
(Body Axes)

• Simple Variable Mass 3DOF
(Wind Axes)

Custom Variable Mass and inertia variations are
customizable.

• Custom Variable Mass 3DOF
(Body Axes)

• Custom Variable Mass 3DOF
(Wind Axes)

The Custom Variable selection conforms to the previously described equations of motion.

Programmatic Use
Block Parameter: mtype
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Type: character vector
Values: Fixed | Simple Variable | Custom Variable
Default: 'Custom Variable'

Initial velocity — Initial velocity of body

100 (default) | scalar

Initial velocity of the body, (V0), specified as a scalar.

Programmatic Use
Block Parameter: v_ini
Type: character vector
Values: '100' | scalar
Default: '100'

Initial body attitude — Initial pitch altitude

0 (default) | scalar

Initial pitch attitude of the body, (θ0), specified as a scalar.

Programmatic Use
Block Parameter: theta_ini
Type: character vector
Values: '0' | scalar
Default: '0'

Initial body rotation rate — Initial pitch rotation rate

0 (default) | scalar

Initial pitch rotation rate, (q0), specified as a scalar.

Programmatic Use
Block Parameter: q_ini
Type: character vector
Values: '0' | scalar
Default: '0'

Initial incidence — Initial angle

0 (default) | scalar

Initial angle between the velocity vector and the body, (α0), specified as a scalar.

Programmatic Use
Block Parameter: alpha_ini
Type: character vector
Values: '0' | scalar
Default: '0'

Initial position (x,z) — Initial location

[0 0] (default) | two-element vector
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Initial location of the body in the flat Earth reference frame, specified as a two-element vector.

Programmatic Use
Block Parameter: pos_ini
Type: character vector
Values: '[0 0]' | two-element vector
Default: '[0 0]'

Gravity Source — Gravity source

Internal (default) | External

Gravity source, specified as:

External Variable gravity input to block
Internal Constant gravity specified in mask

Programmatic Use
Block Parameter: g_in
Type: character vector
Values: 'Internal' | 'External'
Default: 'Internal'

Acceleration due to gravity — Gravity source

9.81 (default) | scalar

Acceleration due to gravity, specified as a double scalar and used if internal gravity source is
selected. If gravity is to be neglected in the simulation, this value can be set to 0.

Dependencies

• To enable this parameter, set Gravity Source to Internal.

Programmatic Use
Block Parameter: g
Type: character vector
Values: '9.81' | scalar
Default: '9.81'

Include mass flow relative velocity — Mass flow relative velocity port

off (default) | on

Select this check box to add a mass flow relative velocity port. This is the relative velocity at which
the mass is accreted or ablated.

Programmatic Use
Block Parameter: vre_flag
Type: character vector
Values: off | on
Default: 'off'

Include inertial acceleration — Include inertial acceleration port
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off (default) | on

Select this check box to add an inertial acceleration in flat Earth frame output port. You typically
connect this signal to the accelerometer.

Dependencies

To enable the AxeAze port, select this parameter.

Programmatic Use
Block Parameter: abi_flag
Type: character vector
Values: 'off' | 'on'
Default: 'off'

State Attributes

Assign a unique name to each state. You can use state names instead of block paths during
linearization.

• The number of names must match the number of states, as shown for each item, or be empty. Set
all or none of the block states.

• To assign names to single-variable states, enter unique names between quotes, for example, 'q'
or "q".

• To assign names to two-variable states, enter a comma-separated list surrounded by braces, for
example, {'Xe','Ze'}.

• If a state parameter is empty (' '), no name is assigned.
• To assign state names with a variable in the MATLAB workspace, enter the variable without

quotes. A variable can be a character vector, cell array of character vectors, or string.

Velocity: e.g., {'u, 'w'} — Velocity state name

'' (default) | comma-separated list surrounded by braces

Velocity state names, specified as a comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: vel_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Position: e.g., {'Xe', 'Ze'} — Position state name

'' (default) | comma-separated list surrounded by braces

Position state names, specified as a comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: pos_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''
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Pitch angular rate e.g., 'q' — Pitch angular rate state name

'' (default)

Pitch angular rate state name, specified as a character vector or string.

Programmatic Use
Block Parameter: q_statename
Type: character vector | string
Values: '' | scalar
Default: ''

Pitch attitude: e.g., 'theta' — Pitch attitude state name

'' (default)

Pitch attitude state name, specified as a character vector or string.

Programmatic Use
Block Parameter: theta_statename
Type: character vector | string
Values: ''
Default: ''

Algorithms
The Custom Variable Mass 3DOF (Body Axes) block considers the rotation in the vertical plane of a
body-fixed coordinate frame about a flat Earth reference frame.

The equations of motion are
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Axb = u̇ = Axe− qw
Azb = ẇ = Aze + qu

Axe =
Fx− ṁure

m − gsinθ

Aze =
Fz− ṁwre

m + gcosθ

Ẋe = ucosθ + wsinθ

Że = − usinθ + wcosθ

q̇ =
My − İ yyq

Iyy

θ̇ = q

where the applied forces are assumed to act at the center of gravity of the body. Input variables are
Fx, Fz, My, ṁ (dm/dt), m, İ  (dIyy/dt), and Iyy. ure, wre, and g are optional input variables.

Version History
Introduced in R2006a

Custom Variable Mass 3DOF (Body Axes) Block Changes
Behavior changed in R2021b

The 3DOF equations of motion have been updated. Existing models created prior to R2021b that
contain 3DOF equations of motion blocks continue to run. If you replace a pre-R2021b version of a
3DOF equation of motion block with an R2021b or later version, your updated model might have a
higher tendency for algebraic loops. For an example of how to remove algebraic loops using unit
delays, see “Remove Algebraic Loops”. For further information about algebraic loops, see “Identify
Algebraic Loops in Your Model”.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
3DOF (Body Axes) | Incidence & Airspeed | Simple Variable Mass 3DOF (Body Axes)
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Custom Variable Mass 3DOF (Wind Axes)
Implement three-degrees-of-freedom equations of motion of custom variable mass with respect to
wind axes
Library: Aerospace Blockset / Equations of Motion / 3DOF

Description
The Custom Variable Mass 3DOF (Wind Axes) block implements three-degrees-of-freedom equations
of motion of custom variable mass with respect to wind axes. It considers the rotation in the vertical
plane of a wind-fixed coordinate frame about a flat Earth reference frame. For more information
about the rotation and equations of motion, see “Algorithms” on page 5-228.

Ports
Input

Fx — Applied force along wind x-axis
scalar

Applied force along the wind x-axis, specified as a scalar, in the units selected in Units.
Data Types: double

Fz — Applied force along wind z-axis
scalar

Applied force along the wind z-axis, specified as a scalar.
Data Types: double

M — Applied pitching moment
scalar

Applied pitching moment, specified as a scalar.
Data Types: double

dm/dt — Rate of change of mass
scalar

Rate of change of mass (positive if accreted, negative if ablated), specified as a scalar.
Data Types: double

m — Mass
scalar
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Mass, specified as a scalar.
Data Types: double

dI/dt — Rate of change of inertia tensor
scalar

Rate of change of inertia tensor, Iyy, specified as scalar.

Dependencies

To enable this port, set Mass type to Custom Variable.
Data Types: double

I — Inertia tensor
scalar

Inertia tensor, specified as a scalar.

Dependencies

To enable this port, set Mass type to Custom Variable.
Data Types: double

g — Gravity
scalar

Gravity, specified as a scalar.

Dependencies

To enable this port, set Gravity source to External.
Data Types: double

Vre — Relative velocity
two-element vector

Relative velocity at which mass is accreted to or ablated from the body in body-fixed axes, specified
as a two-element vector.

Dependencies

To enable this port, select Include mass flow relative velocity.
Data Types: double

Output

γ — Flight path angle
scalar

Flight path angle, within ±pi, returned as a scalar, in radians.
Data Types: double

q — Pitch angular rate
scalar
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Pitch angular rate, returned as a scalar, in radians per second.
Data Types: double

dq/dt — Pitch angular acceleration
scalar

Pitch angular acceleration, returned as a scalar, in radians per second squared.
Data Types: double

XeZe — Location of body
two-element vector

Location of the body in the flat Earth reference frame, (Xe, Ze), returned as a two-element vector.
Data Types: double

Vw — Velocity in wind-fixed frame
two-element vector

Velocity of the body resolved into the wind-fixed coordinate frame, (V, 0), returned as a two-element
vector.
Data Types: double

AxbAzb — Acceleration of body
two-element vector

Acceleration of the body with respect to the body-fixed coordinate frame, (Ax, Az), returned as a two-
element vector.
Data Types: double

α — Angle of attack
scalar

Angle of attack, returned as a scalar, in radians.
Data Types: double

AxeAze — Acceleration of body
two-element vector

Accelerations of the body with respect to the inertial (flat Earth) coordinate frame, returned as a two-
element vector. You typically connect this signal to the accelerometer.
Dependencies

To enable this port, select the Include inertial acceleration check box.
Data Types: double

Parameters
Main

Units — Input and output units
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Metric (MKS) (default) | English (Velocity in ft/s) | English (Velocity in kts)

Input and output units, specified as Metric (MKS), English (Velocity in ft/s), or English
(Velocity in kts).

Units Forces Moment Acceleration Velocity Position Mass Inertia
Metric
(MKS)

Newton Newton-
meter

Meters per second
squared

Meters per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in ft/s)

Pound Foot-pound Feet per second
squared

Feet per
second

Feet Slug Slug foot
squared

English
(Velocity
in kts)

Pound Foot-pound Feet per second
squared

Knots Feet Slug Slug foot
squared

Programmatic Use
Block Parameter: units
Type: character vector
Values: Metric (MKS) | English (Velocity in ft/s) | English (Velocity in kts)
Default: Metric (MKS)

Axes — Body or wind axes

Wind (default) | Body

Body or wind axes, specified as Wind or Body

Programmatic Use
Block Parameter: axes
Type: character vector
Values: Wind | Body
Default: Wind

Mass type — Mass type

Custom Variable (default) | Simple Variable | Fixed

Mass type, specified according to the following table.

Mass Type Description Default for
Fixed Mass is constant throughout the

simulation.
• 3DOF (Body Axes)
• 3DOF (Wind Axes)

Simple Variable Mass and inertia vary linearly as
a function of mass rate.

• Simple Variable Mass 3DOF
(Body Axes)

• Simple Variable Mass 3DOF
(Wind Axes)
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Mass Type Description Default for
Custom Variable Mass and inertia variations are

customizable.
• Custom Variable Mass 3DOF

(Body Axes)
• Custom Variable Mass 3DOF

(Wind Axes)

The Custom Variable selection conforms to the previously described equations of motion.
Programmatic Use
Block Parameter: mtype
Type: character vector
Values: Fixed | Simple Variable | Custom Variable
Default: 'Custom Variable'

Initial airspeed — Initial speed

100 (default) | scalar

Initial speed of the body, (V0), specified as a scalar.
Programmatic Use
Block Parameter: V_ini
Type: character vector
Values: '100' | scalar
Default: '100'

Initial flight path angle — Initial flight path angle

0 (default) | scalar

Initial flight path angle of the body, (γ0), specified as a scalar.
Programmatic Use
Block Parameter: gamma_ini
Type: character vector
Values: '0' | scalar
Default: '0'

Initial body rotation rate — Initial pitch rotation rate

0 (default) | scalar

Initial pitch rotation rate, (q0), specified as a scalar.
Programmatic Use
Block Parameter: q_ini
Type: character vector
Values: '0' | scalar
Default: '0'

Initial incidence — Initial angle

0 (default) | scalar

Initial angle between the velocity vector and the body, (α0), specified as a scalar.
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Programmatic Use
Block Parameter: alpha_ini
Type: character vector
Values: '0' | scalar
Default: '0'

Initial position (x,z) — Initial location

[0 0] (default) | two-element vector

Initial location of the body in the flat Earth reference frame, specified as a two-element vector.
Programmatic Use
Block Parameter: pos_ini
Type: character vector
Values: '[0 0]' | two-element vector
Default: '[0 0]'

Gravity Source — Gravity source

Internal (default) | External

Gravity source, specified as:

External Variable gravity input to block
Internal Constant gravity specified in mask

Programmatic Use
Block Parameter: g_in
Type: character vector
Values: 'Internal' | 'External'
Default: 'Internal'

Acceleration due to gravity — Gravity source

9.81 (default) | scalar

Acceleration due to gravity, specified as a double scalar and used if internal gravity source is
selected. If gravity is to be neglected in the simulation, this value can be set to 0.
Dependencies

• To enable this parameter, set Gravity Source to Internal.

Programmatic Use
Block Parameter: g
Type: character vector
Values: '9.81' | scalar
Default: '9.81'

Include mass flow relative velocity — Mass flow relative velocity port

off (default) | on

Select this check box to add a mass flow relative velocity port. This is the relative velocity at which
the mass is accreted or ablated.
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Programmatic Use
Block Parameter: vre_flag
Type: character vector
Values: off | on
Default: 'off'

Include inertial acceleration — Include inertial acceleration port

off (default) | on

Select this check box to add an inertial acceleration in flat Earth frame output port. You typically
connect this signal to the accelerometer.

Dependencies

To enable the AxeAze port, select this parameter.

Programmatic Use
Block Parameter: abi_flag
Type: character vector
Values: 'off' | 'on'
Default: 'off'

State Attributes

Assign a unique name to each state. You can use state names instead of block paths during
linearization.

• To assign a name to a single state, enter a unique name between quotes, for example,
'velocity'.

• To assign names to multiple states, enter a comma-separated list surrounded by braces, for
example, {'a', 'b', 'c'}. Each name must be unique.

• If a parameter is empty (' '), no name is assigned.
• The state names apply only to the selected block with the name parameter.
• The number of states must divide evenly among the number of state names.
• You can specify fewer names than states, but you cannot specify more names than states.

For example, you can specify two names in a system with four states. The first name applies to the
first two states and the second name to the last two states.

• To assign state names with a variable in the MATLAB workspace, enter the variable without
quotes. A variable can be a character vector, cell array, or structure.

Velocity: e.g., 'V' — Velocity state name

'' (default) | character vector

Velocity state name, specified as a character vector or string.

Programmatic Use
Block Parameter: V_statename
Type: character vector | string
Values: '' | scalar
Default: ''
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Position: e.g., {'Xe', 'Ze'} — Position state name

'' (default) | comma-separated list surrounded by braces

Position state names, specified as a comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: pos_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Body rotation rate: e.g., 'q' — Body rotation state name

'' (default) | scalar

Body rotation rate state names, specified as a character vector or string.

Programmatic Use
Block Parameter: q_statename
Type: character vector | string
Values: '' | scalar
Default: ''

Flight path angle: e.g., 'gamma' — Flight path angle state name

'' (default)

Flight path angle state name, specified as a character vector or string.

Programmatic Use
Block Parameter: gamma_statename
Type: character vector | string
Values: '' | scalar
Default: ''

Incidence angle e.g., 'alpha' — Incidence angle state name

'' (default) | scalar

Incidence angle state name, specified as a character vector or string.

Programmatic Use
Block Parameter: alpha_statename
Type: character vector | string
Values: '' | scalar
Default: ''

Algorithms
The block considers the rotation in the vertical plane of a wind-fixed coordinate frame about a flat
Earth reference frame.
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The equations of motion are

Axb = Axe− qVsinα
Azb = Aze + qVcosα

Axe =
Fx
m − gsinγ cosα−

Fz
m + gcosγ sinα

Aze =
Fx
m − gsinγ sinα +

Fz
m + gcosγ cosα

V̇ =
Fx + ṁure

m − gsinγ

Ẋe = Vcosγ

Że = − Vsinγ

q̇ =
My − İ yyq

Iyy

γ̇ = q− α̇

α̇ =
Fz + ṁwre

mV + g
V cosγ + q

where the applied forces are assumed to act at the center of gravity of the body. Input variables are
wind-axes forces Fx and Fz, body moment My, ṁ (dm/dt), m, İ  (dIyy/dt), and Iyy . ure, wre, and g are
optional input variables.

Version History
Introduced in R2006a

Custom Variable Mass 3DOF (Wind Axes) Block Changes
Behavior changed in R2021b

The 3DOF equations of motion have been updated. Existing models created prior to R2021b that
contain 3DOF equations of motion blocks continue to run. If you replace a pre-R2021b version of a
3DOF equation of motion block with an R2021b or later version, your updated model might have a
higher tendency for algebraic loops. For an example of how to remove algebraic loops using unit
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delays, see “Remove Algebraic Loops”. For further information about algebraic loops, see “Identify
Algebraic Loops in Your Model”.

References
[1] Stevens, Brian, and Frank Lewis. Aircraft Control and Simulation. New York: John Wiley & Sons,

1992.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
3DOF (Body Axes) | 3DOF (Wind Axes) | 4th Order Point Mass (Longitudinal) | Custom Variable Mass
3DOF (Body Axes) | Simple Variable Mass 3DOF (Body Axes) | Simple Variable Mass 3DOF (Wind
Axes)
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Custom Variable Mass 6DOF (Euler Angles)
Implement Euler angle representation of six-degrees-of-freedom equations of motion of custom
variable mass
Library: Aerospace Blockset / Equations of Motion / 6DOF

Description
The Custom Variable Mass 6DOF (Euler Angles) block implements the Euler angle representation of
six-degrees-of-freedom equations of motion of custom variable mass. It considers the rotation of a
body-fixed coordinate frame (Xb, Yb, Zb) about a flat Earth reference frame (Xe, Ye, Ze). For more
information on Euler angles, see “Algorithms” on page 5-238.

Limitations
The block assumes that the applied forces act at the center of gravity of the body.

Ports
Input

Fxyz — Applied forces
three-element vector

Applied forces, specified as a three-element vector.
Data Types: double

Mxyz — Applied moments
three-element vector

Applied moments, specified as a three-element vector.
Data Types: double

dm/dt — Rates of change of mass
three-element vector

One or more rates of change of mass (positive if accreted, negative if ablated), specified as a three-
element vector.

Dependencies

To enable this port, select Include mass flow relative velocity.
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Data Types: double

m — Mass
scalar

Mass, specified as a scalar.
Data Types: double

dI/dt — Rate of change of inertia tensor matrix
3-by-3 matrix

Rate of change of inertia tensor matrix, specified as a 3-by-3 matrix.
Data Types: double

I — Inertia tensor matrix
3-by-3 matrix

Inertia tensor matrix, specified as a 3-by-3 matrix.
Data Types: double

Vre — Relative velocities
three-element vector

One or more relative velocities at which the mass is accreted to or ablated from the body in body-
fixed axes, specified as a three-element vector.
Dependencies

To enable this port, select Include mass flow relative velocity.
Data Types: double

Output

Ve — Velocity in flat Earth reference frame
three-element vector

Velocity in the flat Earth reference frame, returned as a three-element vector.
Data Types: double

Xe — Position in flat Earth reference frame
three-element vector

Position in the flat Earth reference frame, returned as a three-element vector.
Data Types: double

φ θ ψ (rad) — Euler rotation angles
three-element vector

Euler rotation angles [roll, pitch, yaw], returned as a three-element vector, in radians.
Data Types: double

DCMbe — Coordinate transformation
3-by-3 matrix
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Coordinate transformation from flat Earth axes to body-fixed axes, returned as a 3-by-3 matrix.
Data Types: double

Vb — Velocity in body-fixed frame
three-element vector

Velocity in body-fixed frame, returned as a three-element vector.
Data Types: double

ωb (rad/s) — Angular rates in body-fixed axes
three-element vector

Angular rates in body-fixed axes, returned as a three-element vector, in radians per second.
Data Types: double

dωb/dt — Angular accelerations
three-element vector

Angular accelerations in body-fixed axes, returned as a three-element vector, in radians per second
squared.
Data Types: double

Abb — Accelerations in body-fixed axes
three-element vector

Accelerations in body-fixed axes with respect to body frame, returned as a three-element vector.
Data Types: double

Abe — Accelerations with respect to inertial frame
three-element vector

Accelerations in body-fixed axes with respect to inertial frame (flat Earth), returned as a three-
element vector. You typically connect this signal to the accelerometer.

Dependencies

This port appears only when the Include inertial acceleration check box is selected.
Data Types: double

Parameters
Main

Units — Input and output units

Metric (MKS) (default) | English (Velocity in ft/s) | English (Velocity in kts)

Input and output units, specified as Metric (MKS), English (Velocity in ft/s), or English
(Velocity in kts).
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Units Forces Moment Acceleration Velocity Position Mass Inertia
Metric
(MKS)

Newton Newton-
meter

Meters per second
squared

Meters per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in ft/s)

Pound Foot-pound Feet per second
squared

Feet per
second

Feet Slug Slug foot
squared

English
(Velocity
in kts)

Pound Foot-pound Feet per second
squared

Knots Feet Slug Slug foot
squared

Programmatic Use
Block Parameter: units
Type: character vector
Values: Metric (MKS) | English (Velocity in ft/s) | English (Velocity in kts)
Default: Metric (MKS)

Mass type — Mass type

Custom Variable (default) | Simple Variable | Fixed

Mass type, specified according to the following table.

Mass Type Description Default for
Fixed Mass is constant throughout the

simulation.
• 6DOF (Euler Angles)
• 6DOF (Quaternion)
• 6DOF Wind (Wind Angles)
• 6DOF Wind (Quaternion)
• 6DOF ECEF (Quaternion)

Simple Variable Mass and inertia vary linearly as
a function of mass rate.

• Simple Variable Mass 6DOF
(Euler Angles)

• Simple Variable Mass 6DOF
(Quaternion)

• Simple Variable Mass 6DOF
Wind (Wind Angles)

• Simple Variable Mass 6DOF
Wind (Quaternion)

• Simple Variable Mass 6DOF
ECEF (Quaternion)
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Mass Type Description Default for
Custom Variable Mass and inertia variations are

customizable.
• Custom Variable Mass 6DOF

(Euler Angles)
• Custom Variable Mass 6DOF

(Quaternion)
• Custom Variable Mass 6DOF

Wind (Wind Angles)
• Custom Variable Mass 6DOF

Wind (Quaternion)
• Custom Variable Mass 6DOF

ECEF (Quaternion)

The Custom Variable selection conforms to the previously described equations of motion.
Programmatic Use
Block Parameter: mtype
Type: character vector
Values: Fixed | Simple Variable | Custom Variable
Default: 'Custom Variable'

Representation — Equations of motion representation

Euler Angles (default) | Quaternion

Equations of motion representation, specified according to the following table.

Representation Description
Euler Angles Use Euler angles within equations of motion.
Quaternion Use quaternions within equations of motion.

The Quaternion selection conforms to the equations of motion in “Algorithms” on page 5-238.
Programmatic Use
Block Parameter: rep
Type: character vector
Values: Euler Angles | Quaternion
Default: 'Euler Angles'

Initial position in inertial axes [Xe,Ye,Ze] — Position in inertial axes

[0 0 0] (default) | three-element vector

Initial location of the body in the flat Earth reference frame, specified as a three-element vector.
Programmatic Use
Block Parameter: xme_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Initial velocity in body axes [U,v,w] — Velocity in body axes
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[0 0 0] (default) | three-element vector

Initial velocity in body axes, specified as a three-element vector, in the body-fixed coordinate frame.

Programmatic Use
Block Parameter: Vm_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Initial Euler orientation [roll, pitch, yaw] — Initial Euler orientation

[0 0 0] (default) | three-element vector

Initial Euler orientation angles [roll, pitch, yaw], specified as a three-element vector, in radians. Euler
rotation angles are those between the body and north-east-down (NED) coordinate systems.

Programmatic Use
Block Parameter: eul_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Initial body rotation rates [p,q,r] — Initial body rotation

[0 0 0] (default) | three-element vector

Initial body-fixed angular rates with respect to the NED frame, specified as a three-element vector, in
radians per second.

Programmatic Use
Block Parameter: pm_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Include mass flow relative velocity — Mass flow relative velocity port

off (default) | on

Select this check box to add a mass flow relative velocity port. This is the relative velocity at which
the mass is accreted or ablated.

Programmatic Use
Block Parameter: vre_flag
Type: character vector
Values: off | on
Default: off

Include inertial acceleration — Include inertial acceleration port

off (default) | on

Select this check box to add an inertial acceleration port.
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Dependencies

To enable the Abe port, select this parameter.

Programmatic Use
Block Parameter: abi_flag
Type: character vector
Values: 'off' | 'on'
Default: off

State Attributes

Assign a unique name to each state. You can use state names instead of block paths during
linearization.

• To assign a name to a single state, enter a unique name between quotes, for example,
'velocity'.

• To assign names to multiple states, enter a comma-separated list surrounded by braces, for
example, {'a', 'b', 'c'}. Each name must be unique.

• If a parameter is empty (' '), no name is assigned.
• The state names apply only to the selected block with the name parameter.
• The number of states must divide evenly among the number of state names.
• You can specify fewer names than states, but you cannot specify more names than states.

For example, you can specify two names in a system with four states. The first name applies to the
first two states and the second name to the last two states.

• To assign state names with a variable in the MATLAB workspace, enter the variable without
quotes. A variable can be a character vector, cell array, or structure.

Position: e.g., {'Xe', 'Ye', 'Ze'} — Position state name

'' (default) | comma-separated list surrounded by braces

Position state names, specified as a comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: xme_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Velocity: e.g., {'U', 'v', 'w'} — Velocity state name

'' (default) | comma-separated list surrounded by braces

Velocity state names, specified as comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: Vm_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''
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Euler rotation angles: e.g., {'phi', 'theta', 'psi'} — Euler rotation state name

'' (default) | comma-separated list surrounded by braces

Euler rotation angle state names, specified as a comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: eul_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Body rotation rates: e.g., {'p', 'q', 'r'} — Body rotation state names

'' (default) | comma-separated list surrounded by braces

Body rotation rate state names, specified comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: pm_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Algorithms
The origin of the body-fixed coordinate frame is the center of gravity of the body. The body is
assumed to be rigid, which eliminates the need to consider the forces acting between individual
elements of mass. The flat Earth reference frame is considered inertial, an excellent approximation
that allows the forces due to the Earth's motion relative to the “fixed stars” to be neglected.

The translational motion of the body-fixed coordinate frame is given below, where the applied forces
[Fx Fy Fz]T are in the body-fixed frame. Vreb is the relative velocity in the body axes at which the mass
flow (ṁ) is ejected or added to the body-fixed axes.
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Fb =
Fx
Fy
Fz

= m(V̇b + ω × Vb) + ṁVreb

Abe =
Fb− ṁVreb

m

Abb =
u̇b

v̇b

ẇb

=
Fb− ṁVreb

m − ω × Vb

Vb =
ub
vb
wb

, ω =
p
q
r

The rotational dynamics of the body-fixed frame are given below, where the applied moments are [L
M N]T, and the inertia tensor I is with respect to the origin O.

MB =
L
M
N

= Iω̇ + ω × (Iω) + İ ω

I =
Ixx −Ixy −Ixz
−Iyx Iyy −Iyz
−Izx −Izy Izz

İ =

İ xx − İ xy − İ xz

− İ yx İ yy − İ yz

− İ zx − İ zy İ zz

The relationship between the body-fixed angular velocity vector, [p q r]T, and the rate of change of the
Euler angles, [ϕ̇θ̇ψ̇]T, can be determined by resolving the Euler rates into the body-fixed coordinate
frame.

p
q
r

=
ϕ̇
0
0

+
1 0 0
0 cosϕ sinϕ
0 −sinϕ cosϕ

0
θ̇
0

+
1 0 0
0 cosϕ sinϕ
0 −sinϕ cosϕ

cosθ 0 −sinθ
0 1 0

sinθ 0 cosθ

0
0
ψ̇

= J−1
ϕ̇
θ̇
ψ̇

Inverting J then gives the required relationship to determine the Euler rate vector.

ϕ̇
θ̇
ψ̇

= J
p
q
r

=

1 (sinϕtanθ) (cosϕtanθ)
0 cosϕ −sinϕ

0 sinϕ
cosθ

cosϕ
cosθ

p
q
r

For more information on aerospace coordinate systems, see “About Aerospace Coordinate Systems”
on page 2-7.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
6DOF (Euler Angles) | 6DOF (Quaternion) | 6DOF ECEF (Quaternion) | 6DOF Wind (Quaternion) |
6DOF Wind (Wind Angles) | Custom Variable Mass 6DOF (Quaternion) | Custom Variable Mass 6DOF
ECEF (Quaternion) | Custom Variable Mass 6DOF Wind (Quaternion) | Custom Variable Mass 6DOF
Wind (Wind Angles) | Simple Variable Mass 6DOF (Euler Angles) | Simple Variable Mass 6DOF
(Quaternion) | Simple Variable Mass 6DOF ECEF (Quaternion) | Simple Variable Mass 6DOF Wind
(Quaternion) | Simple Variable Mass 6DOF Wind (Wind Angles)

Topics
“About Aerospace Coordinate Systems” on page 2-7
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Custom Variable Mass 6DOF (Quaternion)
Implement quaternion representation of six-degrees-of-freedom equations of motion of custom
variable mass with respect to body axes
Library: Aerospace Blockset / Equations of Motion / 6DOF

Description
The Custom Variable Mass 6DOF (Quaternion) block implements a quaternion representation of six-
degrees-of-freedom equations of motion of custom variable mass with respect to body axes. For a
description of the coordinate system and the translational dynamics, see the block description for the
Custom Variable Mass 6DOF (Euler Angles) block.

Aerospace Blockset uses quaternions that are defined using the scalar-first convention. For more
information on the integration of the rate of change of the quaternion vector, see “Algorithms” on
page 5-248.

Limitations
The block assumes that the applied forces act at the center of gravity of the body.

Ports
Input

Fxyz — Applied forces
three-element vector

Applied forces, specified as a three-element vector.
Data Types: double

Mxyz — Applied moments
three-element vector

Applied moments, specified as a three-element vector.
Data Types: double

dm/dt — Rates of change of mass
three-element vector

One or more rates of change of mass (positive if accreted, negative if ablated), specified as a three-
element vector.
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Dependencies

To enable this port, select Include mass flow relative velocity.
Data Types: double

m — Mass
scalar

Mass, specified as a scalar.
Data Types: double

dI/dt — Rate of change of inertia tensor matrix
3-by-3 matrix

Rate of change of inertia tensor matrix, specified as a 3-by-3 matrix.
Data Types: double

I — Inertia tensor matrix
3-by-3 matrix

Inertia tensor matrix, specified as a 3-by-3 matrix.
Data Types: double

Vre — Relative velocities
three-element vector

One or more relative velocities at which the mass is accreted to or ablated from the body in body-
fixed axes, specified as a three-element vector.

Dependencies

To enable this port, select Include mass flow relative velocity.
Data Types: double

Output

Ve — Velocity in flat Earth reference frame
three-element vector

Velocity in the flat Earth reference frame, returned as a three-element vector.
Data Types: double

Xe — Position in flat Earth reference frame
three-element vector

Position in the flat Earth reference frame, returned as a three-element vector.
Data Types: double

φ θ ψ (rad) — Euler rotation angles
three-element vector

Euler rotation angles [roll, pitch, yaw], returned as a three-element vector, in radians.
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Data Types: double

DCMbe — Coordinate transformation
3-by-3 matrix

Coordinate transformation from flat Earth axes to body-fixed axes, returned as a 3-by-3 matrix.
Data Types: double

Vb — Velocity in body-fixed frame
three-element vector

Velocity in body-fixed frame, returned as a three-element vector.
Data Types: double

ωb (rad/s) — Angular rates in body-fixed axes
three-element vector

Angular rates in body-fixed axes, returned as a three-element vector, in radians per second.
Data Types: double

dωb/dt — Angular accelerations
three-element vector

Angular accelerations in body-fixed axes, returned as a three-element vector, in radians per second
squared.
Data Types: double

Abb — Accelerations in body-fixed axes
three-element vector

Accelerations in body-fixed axes with respect to body frame, returned as a three-element vector.
Data Types: double

Abe — Accelerations with respect to inertial frame
three-element vector

Accelerations in body-fixed axes with respect to inertial frame (flat Earth), returned as a three-
element vector. You typically connect this signal to the accelerometer.

Dependencies

This port appears only when the Include inertial acceleration check box is selected.
Data Types: double

Parameters
Main

Units — Input and output units

Metric (MKS) (default) | English (Velocity in ft/s) | English (Velocity in kts)
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Input and output units, specified as Metric (MKS), English (Velocity in ft/s), or English
(Velocity in kts).

Units Forces Moment Acceleration Velocity Position Mass Inertia
Metric
(MKS)

Newton Newton-
meter

Meters per second
squared

Meters per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in ft/s)

Pound Foot-pound Feet per second
squared

Feet per
second

Feet Slug Slug foot
squared

English
(Velocity
in kts)

Pound Foot-pound Feet per second
squared

Knots Feet Slug Slug foot
squared

Programmatic Use
Block Parameter: units
Type: character vector
Values: Metric (MKS) | English (Velocity in ft/s) | English (Velocity in kts)
Default: Metric (MKS)

Mass type — Mass type

Custom Variable (default) | Simple Variable | Fixed

Mass type, specified according to the following table.

Mass Type Description Default for
Fixed Mass is constant throughout the

simulation.
• 6DOF (Euler Angles)
• 6DOF (Quaternion)
• 6DOF Wind (Wind Angles)
• 6DOF Wind (Quaternion)
• 6DOF ECEF (Quaternion)

Simple Variable Mass and inertia vary linearly as
a function of mass rate.

• Simple Variable Mass 6DOF
(Euler Angles)

• Simple Variable Mass 6DOF
(Quaternion)

• Simple Variable Mass 6DOF
Wind (Wind Angles)

• Simple Variable Mass 6DOF
Wind (Quaternion)

• Simple Variable Mass 6DOF
ECEF (Quaternion)
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Mass Type Description Default for
Custom Variable Mass and inertia variations are

customizable.
• Custom Variable Mass 6DOF

(Euler Angles)
• Custom Variable Mass 6DOF

(Quaternion)
• Custom Variable Mass 6DOF

Wind (Wind Angles)
• Custom Variable Mass 6DOF

Wind (Quaternion)
• Custom Variable Mass 6DOF

ECEF (Quaternion)

The Custom Variable selection conforms to the previously described equations of motion.
Programmatic Use
Block Parameter: mtype
Type: character vector
Values: Fixed | Simple Variable | Custom Variable
Default: 'Custom Variable'

Representation — Equations of motion representation

Quaternion (default) | Euler Angles

Equations of motion representation, specified according to the following table.

Representation Description
Quaternion Use quaternions within equations of motion.
Euler Angles Use Euler angles within equations of motion.

The Quaternion selection conforms to the equations of motion in “Algorithms” on page 5-248.
Programmatic Use
Block Parameter: rep
Type: character vector
Values: Euler Angles | Quaternion
Default: 'Euler Angles'

Initial position in inertial axes [Xe,Ye,Ze] — Position in inertial axes

[0 0 0] (default) | three-element vector

Initial location of the body in the flat Earth reference frame, specified as a three-element vector.
Programmatic Use
Block Parameter: xme_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Initial velocity in body axes [U,v,w] — Velocity in body axes
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[0 0 0] (default) | three-element vector

Initial velocity in body axes, specified as a three-element vector, in the body-fixed coordinate frame.

Programmatic Use
Block Parameter: Vm_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Initial Euler orientation [roll, pitch, yaw] — Initial Euler orientation

[0 0 0] (default) | three-element vector

Initial Euler orientation angles [roll, pitch, yaw], specified as a three-element vector, in radians. Euler
rotation angles are those between the body and north-east-down (NED) coordinate systems.

Programmatic Use
Block Parameter: eul_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Initial body rotation rates [p,q,r] — Initial body rotation

[0 0 0] (default) | three-element vector

Initial body-fixed angular rates with respect to the NED frame, specified as a three-element vector, in
radians per second.

Programmatic Use
Block Parameter: pm_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Gain for quaternion normalization — Gain

1.0 (default) | scalar

Gain to maintain the norm of the quaternion vector equal to 1.0, specified as a double scalar.

Programmatic Use
Block Parameter: k_quat
Type: character vector
Values: 1.0 | double scalar
Default: 1.0

Include mass flow relative velocity — Mass flow relative velocity port

off (default) | on

Select this check box to add a mass flow relative velocity port. This is the relative velocity at which
the mass is accreted or ablated.
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Programmatic Use
Block Parameter: vre_flag
Type: character vector
Values: off | on
Default: off

Include inertial acceleration — Include inertial acceleration port

off (default) | on

Select this check box to add an inertial acceleration port.

Dependencies

To enable the Abe port, select this parameter.

Programmatic Use
Block Parameter: abi_flag
Type: character vector
Values: 'off' | 'on'
Default: off

State Attributes

Assign a unique name to each state. You can use state names instead of block paths during
linearization.

• To assign a name to a single state, enter a unique name between quotes, for example,
'velocity'.

• To assign names to multiple states, enter a comma-separated list surrounded by braces, for
example, {'a', 'b', 'c'}. Each name must be unique.

• If a parameter is empty (' '), no name is assigned.
• The state names apply only to the selected block with the name parameter.
• The number of states must divide evenly among the number of state names.
• You can specify fewer names than states, but you cannot specify more names than states.

For example, you can specify two names in a system with four states. The first name applies to the
first two states and the second name to the last two states.

• To assign state names with a variable in the MATLAB workspace, enter the variable without
quotes. A variable can be a character vector, cell array, or structure.

Position: e.g., {'Xe', 'Ye', 'Ze'} — Position state name

'' (default) | comma-separated list surrounded by braces

Position state names, specified as a comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: xme_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''
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Velocity: e.g., {'U', 'v', 'w'} — Velocity state name

'' (default) | comma-separated list surrounded by braces

Velocity state names, specified as comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: Vm_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Quaternion vector: e.g., {'qr', 'qi', 'qj', 'qk'} — Quaternion vector state name

'' (default) | comma-separated list surrounded by braces

Quaternion vector state names, specified as a comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: quat_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Body rotation rates: e.g., {'p', 'q', 'r'} — Body rotation state names

'' (default) | comma-separated list surrounded by braces

Body rotation rate state names, specified comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: pm_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Algorithms
The integration of the rate of change of the quaternion vector is given below. The gain K drives the
norm of the quaternion state vector to 1.0 should ε become nonzero. You must choose the value of
this gain with care, because a large value improves the decay rate of the error in the norm, but also
slows the simulation because fast dynamics are introduced. An error in the magnitude in one element
of the quaternion vector is spread equally among all the elements, potentially increasing the error in
the state vector.

q̇0

q̇1

q̇2

q̇3

= 1 2

0 −p −q −r
p 0 r −q
q −r 0 p
r q −p 0

q0
q1
q2
q3

+ Kε

q0
q1
q2
q3

ε = 1− (q0
2 + q1

2 + q2
2 + q3

2) .
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
6DOF (Euler Angles) | 6DOF (Quaternion) | 6DOF ECEF (Quaternion) | 6DOF Wind (Quaternion) |
6DOF Wind (Wind Angles) | Custom Variable Mass 6DOF (Euler Angles) | Custom Variable Mass
6DOF (Quaternion) | Custom Variable Mass 6DOF ECEF (Quaternion) | Custom Variable Mass 6DOF
Wind (Quaternion) | Custom Variable Mass 6DOF Wind (Wind Angles) | Simple Variable Mass 6DOF
(Euler Angles) | Simple Variable Mass 6DOF ECEF (Quaternion) | Simple Variable Mass 6DOF Wind
(Quaternion) | Simple Variable Mass 6DOF Wind (Wind Angles)
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Custom Variable Mass 6DOF ECEF (Quaternion)
Implement quaternion representation of six-degrees-of-freedom equations of motion of custom
variable mass in Earth-centered Earth-fixed (ECEF) coordinates
Library: Aerospace Blockset / Equations of Motion / 6DOF

Description
The Custom Variable Mass 6DOF ECEF (Quaternion) block implements a quaternion representation
of six-degrees-of-freedom equations of motion of custom variable mass in Earth-centered Earth-fixed
(ECEF) coordinates. It considers the rotation of a Earth-centered Earth-fixed (ECEF) coordinate
frame (XECEF, YECEF, ZECEF) about an Earth-centered inertial (ECI) reference frame (XECI, YECI, ZECI).
The origin of the ECEF coordinate frame is the center of the Earth. For more information on the
ECEF coordinate frame, see “Algorithms” on page 5-260.

Aerospace Blockset uses quaternions that are defined using the scalar-first convention.

Limitations
• This implementation assumes that the applied forces act at the center of gravity of the body.
• This implementation generates a geodetic latitude that lies between ±90 degrees, and longitude

that lies between ±180 degrees. Additionally, the MSL altitude is approximate.
• The Earth is assumed to be ellipsoidal. By setting flattening to 0.0, a spherical planet can be

achieved. The Earth's precession, nutation, and polar motion are neglected. The celestial
longitude of Greenwich is Greenwich Mean Sidereal Time (GMST) and provides a rough
approximation to the sidereal time.

• The implementation of the ECEF coordinate system assumes that the origin is at the center of the
planet, the x-axis intersects the Greenwich meridian and the equator, the z-axis is the mean spin
axis of the planet, positive to the north, and the y-axis completes the right-handed system.

• The implementation of the ECI coordinate system assumes that the origin is at the center of the
planet, the x-axis is the continuation of the line from the center of the Earth toward the vernal
equinox, the z-axis points in the direction of the mean equatorial plane's north pole, positive to the
north, and the y-axis completes the right-handed system.

Ports
Input

Fxyz — Applied forces
three-element vector

Applied forces, specified as a three-element vector, in body axes.
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Data Types: double

Mxyz — Applied moments
three-element vector

Applied moments, specified as a three-element vector, in body axes.
Data Types: double

dm/dt — Rates of change of mass
three-element vector

One or more rates of change of mass (positive if accreted, negative if ablated), specified as a three-
element vector.
Data Types: double

m — Mass
scalar

Mass, specified as a scalar.

Dependencies

To enable this port, set Mass type to Custom Variable.
Data Types: double

dI/dt — Rate of change of inertia tensor matrix
3-by-3 matrix

Rate of change of inertia tensor matrix, specified as a 3-by-3 matrix.

Dependencies

To enable this port, set Mass type to Custom Variable.
Data Types: double

I — Inertia tensor matrix
3-by-3 matrix

Inertia tensor matrix, specified as a 3-by-3 matrix.

Dependencies

To enable this port, set Mass type to Custom Variable.
Data Types: double

LG(0) — Initial celestial longitude of Greenwich
scalar

Greenwich meridian initial celestial longitude angle, specified as a scalar.

Dependencies

To enable this port, set Celestial longitude of Greenwich to External.
Data Types: double
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Vre — Relative velocities
three-element vector

One or more relative velocities at which the mass is accreted to or ablated from the body in body-
fixed axes, specified as a three-element vector.

Dependencies

To enable this port, select Include mass flow relative velocity.
Data Types: double

Output

Vecef — Velocity of body with respect to ECEF frame,
three-element vector

Velocity of body with respect to ECEF frame, expressed in ECEF frame, returned as a three-element
vector.
Data Types: double

Xecef — Position in ECEF reference frame
three-element vector

Position in ECEF reference frame, returned as a three-element vector.
Data Types: double

μ l h — Position in geodetic latitude, longitude, and altitude
three-element vector | M-by-3 array

Position in geodetic latitude, longitude, and altitude, in degrees, returned as a three-element vector
or M-by-3 array, in selected units of length, respectively.
Data Types: double

φ θ Ψ (rad) — Body rotation angles
three-element vector

Body rotation angles [roll, pitch, yaw], returned as a three-element vector, in radians. Euler rotation
angles are those between body and NED coordinate systems.
Data Types: double

DCMbi — Coordinate transformation from ECI axes
3-by-3 matrix

Coordinate transformation from ECI axes to body-fixed axes, returned as a 3-by-3 matrix.
Data Types: double

DCMbe — Coordinate transformation from NED axes
3-by-3 matrix

Coordinate transformation from NED axes to body-fixed axes, returned as a 3-by-3 matrix.
Data Types: double
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DCMef — Coordinate transformation from ECEF axes
3-by-3 matrix

Coordinate transformation from ECEF axes to NED axes, returned as a 3-by-3 matrix.
Data Types: double

Vb — Velocity of body with respect to ECEF frame
three-element vector

Velocity of body with respect to ECEF frame, returned as a three-element vector.
Data Types: double

ωrel — Relative angular rates of body with respect to NED frame
three-element vector

Relative angular rates of body with respect to NED frame, expressed in body frame and returned as a
three-element vector, in radians per second.
Data Types: double

ωb — Angular rates of body with respect to ECI frame
three-element vector

Angular rates of the body with respect to ECI frame, expressed in body frame and returned as a
three-element vector, in radians per second.
Data Types: double

dωb/dt — Angular accelerations of the body with respect to ECI frame
three-element vector

Angular accelerations of the body with respect to ECI frame, expressed in body frame and returned
as a three-element vector, in radians per second squared.
Data Types: double

Abb — Accelerations in body-fixed axes
three-element vector

Accelerations of the body with respect to the ECEF coordinate frame, returned as a three-element
vector.
Data Types: double

Ab ecef — Accelerations in body-fixed axes
three-element vector

Accelerations in body-fixed axes with respect to ECEF frame, returned as a three-element vector.

Dependencies

To enable this point, Include inertial acceleration.
Data Types: double
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Parameters
Main

Units — Input and output units

Metric (MKS) (default) | English (Velocity in ft/s) | English (Velocity in kts)

Input and output units, specified as Metric (MKS), English (Velocity in ft/s), or English
(Velocity in kts).

Units Forces Moment Acceleration Velocity Position Mass Inertia
Metric
(MKS)

Newton Newton-
meter

Meters per second
squared

Meters per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in ft/s)

Pound Foot-pound Feet per second
squared

Feet per
second

Feet Slug Slug foot
squared

English
(Velocity
in kts)

Pound Foot-pound Feet per second
squared

Knots Feet Slug Slug foot
squared

Programmatic Use
Block Parameter: units
Type: character vector
Values: Metric (MKS) | English (Velocity in ft/s) | English (Velocity in kts)
Default: Metric (MKS)

Mass type — Mass type

Custom Variable (default) | Fixed | Simple Variable

Select the type of mass to use:

Mass Type Description Default for
Fixed Mass is constant throughout the

simulation.
• 6DOF (Euler Angles)
• 6DOF (Quaternion)
• 6DOF Wind (Wind Angles)
• 6DOF Wind (Quaternion)
• 6DOF ECEF (Quaternion)
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Mass Type Description Default for
Simple Variable Mass and inertia vary linearly as

a function of mass rate.
• Simple Variable Mass 6DOF

(Euler Angles)
• Simple Variable Mass 6DOF

(Quaternion)
• Simple Variable Mass 6DOF

Wind (Wind Angles)
• Simple Variable Mass 6DOF

Wind (Quaternion)
• Simple Variable Mass 6DOF

ECEF (Quaternion)
Custom Variable Mass and inertia variations are

customizable.
• Custom Variable Mass 6DOF

(Euler Angles)
• Custom Variable Mass 6DOF

(Quaternion)
• Custom Variable Mass 6DOF

Wind (Wind Angles)
• Custom Variable Mass 6DOF

Wind (Quaternion)
• Custom Variable Mass 6DOF

ECEF (Quaternion)

The Custom Variable selection conforms to the previously described equations of motion.
Programmatic Use
Block Parameter: mtype
Type: character vector
Values: Fixed | Simple Variable | Custom Variable
Default: 'Custom Variable'

Initial position in geodetic latitude, longitude and altitude [mu,l,h] — Initial
location of the aircraft

[0 0 0] (default) | three-element vector

Initial location of the aircraft in the geodetic reference frame, specified as a three-element vector.
Latitude and longitude values can be any value. However, latitude values of +90 and -90 may return
unexpected values because of singularity at the poles.
Programmatic Use
Block Parameter: xg_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Initial velocity in body axes [U,v,w] — Velocity in body axes

[0 0 0] (default) | three-element vector

Initial velocity of the body with respect to the ECEF frame, expressed in the body frame, specified as
a three-element vector.
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Programmatic Use
Block Parameter: Vm_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Initial Euler orientation [roll, pitch, yaw] — Initial Euler orientation

[0 0 0] (default) | three-element vector

Initial Euler orientation angles [roll, pitch, yaw], specified as a three-element vector, in radians. Euler
rotation angles are those between the body and north-east-down (NED) coordinate systems.

Programmatic Use
Block Parameter: eul_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Initial body rotation rates [p,q,r] — Initial body rotation

[0 0 0] (default) | three-element vector

Initial body-fixed angular rates with respect to the NED frame, specified as a three-element vector, in
radians per second.

Programmatic Use
Block Parameter: pm_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Include mass flow relative velocity — Mass flow relative velocity port

off (default) | on

Select this check box to add a mass flow relative velocity port. This is the relative velocity at which
the mass is accreted or ablated.

Programmatic Use
Block Parameter: vre_flag
Type: character vector
Values: off | on
Default: off

Include inertial acceleration — Include inertial acceleration port

off (default) | on

Select this check box to add an inertial acceleration port.

Dependencies

To enable the Abe port, select this parameter.
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Programmatic Use
Block Parameter: abi_flag
Type: character vector
Values: 'off' | 'on'
Default: off

Planet

Planet model — Planet model

Earth (WGS84) (default) | Custom

Planet model to use, Custom or Earth (WGS84).

Programmatic Use
Block Parameter: ptype
Type: character vector
Values: 'Earth (WGS84)' | 'Custom'
Default: 'Earth (WGS84)'

Equatorial radius of planet — Radius of planet at equator

6378137 (default) | scalar

Radius of the planet at its equator, specified as a double scalar, in the same units as the desired units
for the ECEF position.

Dependencies

To enable this parameter, set Planet model to Custom.

Programmatic Use
Block Parameter: R
Type: character vector
Values: double scalar
Default: '6378137'

Flattening — Flattening of planet

1/298.257223563 (default) | scalar

Flattening of the planet, specified as a double scalar.

Dependencies

To enable this parameter, set Planet model to Custom.

Programmatic Use
Block Parameter: F
Type: character vector
Values: double scalar
Default: '1/298.257223563'

Rotational rate — Rotational rate

7292115e-11 (default) | scalar
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Rotational rate of the planet, specified as a scalar, in rad/s.
Dependencies

To enable this parameter, set Planet model to Custom.
Programmatic Use
Block Parameter: w_E
Type: character vector
Values: double scalar
Default: '7292115e-11'

Celestial longitude of Greenwich source — Source of Greenwich meridian initial
celestial longitude

Internal (default) | External

Source of Greenwich meridian initial celestial longitude, specified as:

Internal Use celestial longitude value from Celestial
longitude of Greenwich.

External Use external input for celestial longitude value.

Dependencies

Setting this parameter to External enables the LG(0) port.
Programmatic Use
Block Parameter: angle_in
Type: character vector
Values: 'Internal' | 'External'
Default: 'Internal'

Celestial longitude of Greenwich [deg] — Initial angle

0 (default) | scalar

Initial angle between Greenwich meridian and the x-axis of the ECI frame, specified as a double
scalar.
Dependencies

To enable this parameter, set Celestial longitude of Greenwich source to Internal.
Programmatic Use
Block Parameter: LG0
Type: character vector
Values: double scalar
Default: '0'

State Attributes

Assign a unique name to each state. Use state names instead of block paths throughout the
linearization process.

• To assign a name to a single state, enter a unique name between quotes, for example,
'velocity'.
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• To assign names to multiple states, enter a comma-separated list surrounded by braces, for
example, {'a', 'b', 'c'}. Each name must be unique.

• If a parameter is empty (' '), no name is assigned.
• The state names apply only to the selected block with the name parameter.
• The number of states must divide evenly among the number of state names.
• You can specify fewer names than states, but you cannot specify more names than states.

For example, you can specify two names in a system with four states. The first name applies to the
first two states and the second name to the last two states.

• To assign state names with a variable in the MATLAB workspace, enter the variable without
quotes. A variable can be a character vector, cell array, or structure.

Quaternion vector: e.g., {'qr', 'qi', 'qj', 'qk'} — Quaternion vector state name

'' (default) | comma-separated list surrounded by braces

Quaternion vector state names, specified as a comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: quat_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Body rotation rates: e.g., {'p', 'q', 'r'} — Body rotation state names

'' (default) | comma-separated list surrounded by braces

Body rotation rate state names, specified comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: pm_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Velocity: e.g., {'U', 'v', 'w'} — Velocity state name

'' (default) | comma-separated list surrounded by braces

Velocity state names, specified as comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: Vm_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

ECEF position: e.g., {'Xecef', 'Yecef', 'Zecef'} — ECEF position state name

'' (default) | comma-separated list surrounded by braces

ECEF position state names, specified as a comma-separated list surrounded by braces.
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Programmatic Use
Block Parameter: posECEF_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Inertial position: e.g., {'Xeci', 'Yeci', 'Zeci'} — Inertial position state names

'' (default) | comma-separated list surrounded by braces

Inertial position state names, specified as a comma-separated list surrounded by braces.

Default value is ''.

Programmatic Use
Block Parameter: posECI_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Celestial longitude of Greenwich: e.g., 'LG' — Celestial longitude state name

'' (default) | character vector

Celestial longitude of Greenwich state name, specified as a character vector.

Programmatic Use
Block Parameter: LG_statename
Type: character vector
Values: '' | scalar
Default: ''

Algorithms
The origin of the ECEF coordinate frame is the center of the Earth. In addition, the body of interest is
assumed to be rigid, an assumption that eliminates the need to consider the forces acting between
individual elements of mass. The representation of the rotation of ECEF frame from ECI frame is
simplified to consider only the constant rotation of the ellipsoid Earth (ωe) including an initial
celestial longitude (LG(0)).
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The translational motion of the ECEF coordinate frame is given below, where the applied forces [Fx Fy
Fz]T are in the body frame. Vreb is the relative velocity in the wind axes at which the mass flow (ṁ) is
ejected or added to the body in body-fixed axes.

Fb =
Fx
Fy
Fz

= m V̇b + ωb × Vb + DCMbfωe × Vb + DCMbf ωe × ωe × Xf

+ṁ Vreb + DCMbf ωe × Xf

Abb =
u̇b

v̇b

ẇb

=
Fb− ṁ Vreb + DCMbf we × Xf

m

− ωb × Vb + DCMωe × Vb + DCMbf ωe ωe × Xf

Abecef =
Fb− ṁ Vreb + DCMbf ωe × Xf

m

where the change of position in ECEF ẋ f  is calculated by

ẋ f = DCMfbVb

and the velocity of the body with respect to ECEF frame, expressed in body frame (Vb), angular rates
of the body with respect to ECI frame, expressed in body frame (ωb). Earth rotation rate (ωe), and
relative angular rates of the body with respect to north-east-down (NED) frame, expressed in body
frame (ωrel) are defined as
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Vb =
u
v
w

, ωrel =
p
q
r

, ωe =
0
0
ωe

, ωb = ωrel + DCMbfωe + DCMbeωned

ωned =
l̇ cosμ
−μ̇

− l̇ sinμ
=

VE/ N + h
−VN/ M + h

−VE • tanμ/ N + h

The rotational dynamics of the body defined in body-fixed frame are given below, where the applied
moments are [L M N]T, and the inertia tensor I is with respect to the origin O.

Mb =
L
M
N

= I ω̇b + ωb × (I ωb) + İ ωb

I =
Ixx −Ixy −Ixz
−Iyx Iyy −Iyz
−Izx −Izy Izz

The rate of change of the inertia tensor is defined by the following equation.

İ =

İ xx − İ xy − İ xz

− İ yx İ yy − İ yz

− İ zx − İ zy İ zz

The integration of the rate of change of the quaternion vector is given below.

q̇0

q̇1

q̇2

q̇3

= − 1 2

0 ωb 1 ωb 2 ωb 3
−ωb 1 0 −ωb 3 ωb 2
−ωb 2 ωb 3 0 −ωb 1
−ωb 3 −ωb 2 ωb 1 0

q0
q1
q2
q3

Version History
Introduced in R2006a

References
[1] Stevens, Brian, and Frank Lewis. Aircraft Control and Simulation, 2nd ed. Hoboken, NJ: John

Wiley & Sons, 2003.

[2] McFarland, Richard E. "A Standard Kinematic Model for Flight at NASA-Ames." NASA CR-2497.

[3] "Supplement to Department of Defense World Geodetic System 1984 Technical Report: Part I -
Methods, Techniques and Data Used in WGS84 Development" DMA TR8350.2-A.

5 Blocks

5-262



Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
6DOF (Euler Angles) | 6DOF (Quaternion) | 6DOF ECEF (Quaternion) | 6DOF Wind (Quaternion) |
6DOF Wind (Wind Angles) | Custom Variable Mass 6DOF (Euler Angles) | Custom Variable Mass
6DOF (Quaternion) | Custom Variable Mass 6DOF Wind (Quaternion) | Custom Variable Mass 6DOF
Wind (Wind Angles) | Simple Variable Mass 6DOF ECEF (Quaternion) | Simple Variable Mass 6DOF
(Euler Angles) | Simple Variable Mass 6DOF (Quaternion) | Simple Variable Mass 6DOF Wind (Wind
Angles)
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Custom Variable Mass 6DOF Wind (Quaternion)
Implement quaternion representation of six-degrees-of-freedom equations of motion of custom
variable mass with respect to wind axes
Library: Aerospace Blockset / Equations of Motion / 6DOF

Description
The Custom Variable Mass 6DOF Wind (Quaternion) block implements a quaternion representation of
six-degrees-of-freedom equations of motion of custom variable mass with respect to wind axes. It
considers the rotation of a wind-fixed coordinate frame (Xw,Yw, Zw) about an flat Earth reference
frame (Xe,Ye, Ze). The origin of the wind-fixed coordinate frame is the center of gravity of the body.
For more information on the wind-fixed coordinate frame, see “Algorithms” on page 5-272.

Aerospace Blockset uses quaternions that are defined using the scalar-first convention.

Limitations
The block assumes that the applied forces act at the center of gravity of the body.

Ports
Input

Fxyz — Applied forces
three-element vector

Applied forces, specified as a three-element vector.
Data Types: double

Mxyz — Applied moments
three-element vector

Applied moments, specified as a three-element vector.
Data Types: double

dm/dt — Rates of change of mass
three-element vector

One or more rates of change of mass (positive if accreted, negative if ablated), specified as a three-
element vector.
Data Types: double
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m — Mass
scalar

Mass, specified as a scalar.

Dependencies

To enable this port, set Mass type to Custom Variable.
Data Types: double

dI/dt — Rate of change of inertia tensor matrix
3-by-3 matrix

Rate of change of inertia tensor matrix, specified as a 3-by-3 matrix.

Dependencies

To enable this port, set Mass type to Custom Variable.
Data Types: double

I — Inertia tensor matrix
3-by-3 matrix

Inertia tensor matrix, specified as a 3-by-3 matrix.

Dependencies

To enable this port, set Mass type to Custom Variable.
Data Types: double

Vre — Relative velocities
three-element vector

One or more relative velocities at which the mass is accreted to or ablated from the body in body-
fixed axes, specified as a three-element vector.

Dependencies

To enable this port, select Include mass flow relative velocity.
Data Types: double

Output

Ve — Velocity in flat Earth reference frame
three-element vector

Velocity in the flat Earth reference frame, returned as a three-element vector.
Data Types: double

Xe — Position in flat Earth reference frame
three-element vector

Position in the flat Earth reference frame, returned as a three-element vector.
Data Types: double
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μ γ x (rad) — Wind rotation angles
three-element vector

Wind rotation angles [bank, flight path, heading], returned as a three-element vector, in radians.
Data Types: double

DCMwe — Coordinate transformation
3-by-3 matrix

Coordinate transformation from flat Earth axes to wind-fixed axes, returned as a 3-by-3 matrix.
Data Types: double

Vw — Velocity in wind-fixed frame
three-element vector

Velocity in wind-fixed frame, returned as a three-element vector.
Data Types: double

α β (rad) — Angle of attack and sideslip angle
two-element vector

Angle of attack and sideslip angle, returned as a two-element vector, in radians.
Data Types: double

dα/dt dβ/dt — Rate of change of angle of attack and rate of change of sideslip angle
two-element vector

Rate of change of angle of attack and rate of change of sideslip angle, returned as a two-element
vector, in radians per second.
Data Types: double

ωb (rad/s) — Angular rates in body-fixed axes
three-element vector

Angular rates in body-fixed axes, returned as a three-element vector, in radians per second.
Data Types: double

dωb/dt — Angular accelerations
three-element vector

Angular accelerations in body-fixed axes, returned as a three-element vector, in radians per second
squared.
Data Types: double

Abb — Accelerations in body-fixed axes
three-element vector

Accelerations of the body with respect to the body-fixed axes with the body-fixed coordinate frame,
returned as a three-element vector.
Data Types: double
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Abe — Accelerations with respect to inertial frame
three-element vector

Accelerations in body-fixed axes with respect to inertial frame (flat Earth), returned as a three-
element vector. You typically connect this signal to the accelerometer.

Dependencies

To enable this point, select Include inertial acceleration.
Data Types: double

Parameters
Main

Units — Input and output units

Metric (MKS) (default) | English (Velocity in ft/s) | English (Velocity in kts)

Input and output units, specified as Metric (MKS), English (Velocity in ft/s), or English
(Velocity in kts).

Units Forces Moment Acceleration Velocity Position Mass Inertia
Metric
(MKS)

Newton Newton-
meter

Meters per second
squared

Meters per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in ft/s)

Pound Foot-pound Feet per second
squared

Feet per
second

Feet Slug Slug foot
squared

English
(Velocity
in kts)

Pound Foot-pound Feet per second
squared

Knots Feet Slug Slug foot
squared

Programmatic Use
Block Parameter: units
Type: character vector
Values: Metric (MKS) | English (Velocity in ft/s) | English (Velocity in kts)
Default: Metric (MKS)

Mass Type — Mass type

Custom Variable (default) | Fixed | Simple Variable

Mass type, specified according to the following table.
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Mass Type Description Default for
Fixed Mass is constant throughout the

simulation.
• 6DOF (Euler Angles)
• 6DOF (Quaternion)
• 6DOF Wind (Wind Angles)
• 6DOF Wind (Quaternion)
• 6DOF ECEF (Quaternion)

Simple Variable Mass and inertia vary linearly as
a function of mass rate.

• Simple Variable Mass 6DOF
(Euler Angles)

• Simple Variable Mass 6DOF
(Quaternion)

• Simple Variable Mass 6DOF
Wind (Wind Angles)

• Simple Variable Mass 6DOF
Wind (Quaternion)

• Simple Variable Mass 6DOF
ECEF (Quaternion)

Custom Variable Mass and inertia variations are
customizable.

• Custom Variable Mass 6DOF
(Euler Angles)

• Custom Variable Mass 6DOF
(Quaternion)

• Custom Variable Mass 6DOF
Wind (Wind Angles)

• Custom Variable Mass 6DOF
Wind (Quaternion)

• Custom Variable Mass 6DOF
ECEF (Quaternion)

The Custom Variable selection conforms to the previously described equations of motion.

Programmatic Use
Block Parameter: mtype
Type: character vector
Values: Fixed | Simple Variable | Custom Variable
Default: 'Custom Variable'

Representation — Equations of motion representation

Quaternion (default) | Wind Angles

Equations of motion representation, specified according to the following table.

Quaternion Use quaternions within equations of motion.
Wind Angles Use wind angles within equations of motion.

The Quaternion selection conforms to the equations of motion in “Algorithms” on page 5-272.
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Programmatic Use
Block Parameter: rep
Type: character vector
Values: Wind Angles | Quaternion
Default: 'Quaternion'

Initial position in inertial axes [Xe,Ye,Ze] — Position in inertial axes

[0 0 0] (default) | three-element vector

Initial location of the body in the flat Earth reference frame, specified as a three-element vector.

Programmatic Use
Block Parameter: xme_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Initial airspeed, angle of attack, and sideslip angle [V,alpha,beta] — Initial
airspeed, angle of attack, and sideslip angle

[0 0 0] (default) | three-element vector

Initial airspeed, angle of attack, and sideslip angle, specified as a three-element vector.

Programmatic Use
Block Parameter: Vm_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Initial wind orientation [bank angle,flight path angle,heading angle] — Initial
wind orientation

[0 0 0] (default) | three-element vector

Initial wind angles [bank, flight path, and heading], specified as a three-element vector in radians.

Programmatic Use
Block Parameter: wind_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Initial body rotation rates [p,q,r] — Initial body rotation

[0 0 0] (default) | three-element vector

Initial body-fixed angular rates with respect to the NED frame, specified as a three-element vector, in
radians per second.

Programmatic Use
Block Parameter: pm_0
Type: character vector
Values: '[0 0 0]' | three-element vector
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Default: '[0 0 0]'

Include mass flow relative velocity — Mass flow relative velocity port

off (default) | on

Select this check box to add a mass flow relative velocity port. This is the relative velocity at which
the mass is accreted or ablated.

Programmatic Use
Block Parameter: vre_flag
Type: character vector
Values: off | on
Default: off

Include inertial acceleration — Include inertial acceleration port

off (default) | on

Select this check box to add an inertial acceleration port.

Dependencies

To enable the Abe port, select this parameter.

Programmatic Use
Block Parameter: abi_flag
Type: character vector
Values: 'off' | 'on'
Default: off

State Attributes

Assign a unique name to each state. Use state names instead of block paths throughout the
linearization process.

• To assign a name to a single state, enter a unique name between quotes, for example,
'velocity'.

• To assign names to multiple states, enter a comma-separated list surrounded by braces, for
example, {'a', 'b', 'c'}. Each name must be unique.

• If a parameter is empty (' '), no name is assigned.
• The state names apply only to the selected block with the name parameter.
• The number of states must divide evenly among the number of state names.
• You can specify fewer names than states, but you cannot specify more names than states.

For example, you can specify two names in a system with four states. The first name applies to the
first two states and the second name to the last two states.

• To assign state names with a variable in the MATLAB workspace, enter the variable without
quotes. A variable can be a character vector, cell array, or structure.

Position: e.g., {'Xe', 'Ye', 'Ze'} — Position state name

'' (default) | comma-separated list surrounded by braces
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Position state names, specified as a comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: xme_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Velocity: e.g., 'V' — Velocity state name

'' (default) | character vector

Velocity state names, specified as a character vector.

Programmatic Use
Block Parameter: Vm_statename
Type: character vector
Values: '' | character vector
Default: ''

Incidence angle e.g., 'alpha' — Incidence angle state name

'' (default) | character vector

Incidence angle state name, specified as a character vector.

Programmatic Use
Block Parameter: alpha_statename
Type: character vector
Values: ''
Default: ''

Sideslip angle e.g., 'beta' — Sideslip angle state name

'' (default) | character vector

Sideslip angle state name, specified as a character vector.

Programmatic Use
Block Parameter: beta_statename
Type: character vector
Values: ''
Default: ''

Quaternion vector: e.g., {'qr', 'qi', 'qj', 'qk'} — Quaternion vector state name

'' (default) | comma-separated list surrounded by braces

Quaternion vector state names, specified as a comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: quat_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''
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Body rotation rates: e.g., {'p', 'q', 'r'} — Body rotation state names

'' (default) | comma-separated list surrounded by braces

Body rotation rate state names, specified comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: pm_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Algorithms
The origin of the wind-fixed coordinate frame is the center of gravity of the body, and the body is
assumed to be rigid, an assumption that eliminates the need to consider the forces acting between
individual elements of mass. The flat Earth reference frame is considered inertial, an excellent
approximation that allows the forces due to the Earth's motion relative to the “fixed stars” to be
neglected.

The translational motion of the wind-fixed coordinate frame is given below, where the applied forces
[Fx, Fy, Fz]T are in the wind-fixed frame. Vrew is the relative velocity in the wind axes at which the
mass flow (ṁ) is ejected or added to the body.
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Fw =
Fx
Fy
Fz

= m(V̇w + ωw × Vw) + ṁVrew

Abe = DCMwb
Fw− ṁVre

m

Vw =
V
0
0

, ωw =
pw
qw
rw

= DMCwb

pb− β̇sinα
qb− α̇

rb + β̇cosα

, wb =
pb
qb
rb

Abb = DCMwb
Fw− ṁVre

m − ωw × Vw

The rotational dynamics of the body-fixed frame are given below, where the applied moments are [L
M N]T, and the inertia tensor I is with respect to the origin O. Inertia tensor I is easier to define in
body-fixed frame.

Mb =
L
M
N

= Iω̇b + ωb × (Iωb) + İ ωb

Abb =

U̇b

V̇b

Ẇb

= DCMwb
Fw− ṁVre

m − ωw × Vw

I =
Ixx −Ixy −Ixz
−Iyx Iyy −Iyz
−Izx −Izy Izz

The integration of the rate of change of the quaternion vector is given below.

q̇0

q̇1

q̇2

q̇3

= − 1
2

0 p q r
−p 0 −r q
−q r 0 −p
−r −q p 0

q0
q1
q2
q3

Version History
Introduced in R2006a

References
[1] Stevens, Brian, and Frank Lewis. Aircraft Control and Simulation, 2nd ed. Hoboken, NJ: John

Wiley & Sons, 2003.

[2] Zipfel, Peter H. Modeling and Simulation of Aerospace Vehicle Dynamics. 2nd ed. Reston, VA:
AIAA Education Series, 2007.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
6DOF (Euler Angles) | 6DOF (Quaternion) | 6DOF ECEF (Quaternion) | 6DOF Wind (Quaternion) |
6DOF Wind (Wind Angles) | Custom Variable Mass 6DOF (Euler Angles) | Custom Variable Mass
6DOF (Quaternion) | Custom Variable Mass 6DOF ECEF (Quaternion) | Custom Variable Mass 6DOF
Wind (Wind Angles) | Simple Variable Mass 6DOF ECEF (Quaternion) | Simple Variable Mass 6DOF
(Euler Angles) | Simple Variable Mass 6DOF (Quaternion) | Simple Variable Mass 6DOF Wind (Wind
Angles)
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Custom Variable Mass 6DOF Wind (Wind Angles)
Implement wind angle representation of six-degrees-of-freedom equations of motion of custom
variable mass
Library: Aerospace Blockset / Equations of Motion / 6DOF

Description
The Custom Variable Mass 6DOF Wind (Wind Angles) block implements a wind angle representation
of six-degrees-of-freedom equations of motion of custom variable mass. For a description of the
coordinate system employed and the translational dynamics, see the block description for the Custom
Variable Mass 6DOF Wind (Quaternion) block.

For more information of the relationship between the wind angles, see “Algorithms” on page 5-283

Limitations
The block assumes that the applied forces act at the center of gravity of the body.

Ports
Input

Fxyz — Applied forces
three-element vector

Applied forces, specified as a three-element vector.
Data Types: double

Mxyz — Applied moments
three-element vector

Applied moments, specified as a three-element vector.
Data Types: double

dm/dt — Rates of change of mass
three-element vector

One or more rates of change of mass (positive if accreted, negative if ablated), specified as a three-
element vector.
Data Types: double
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m — Mass
scalar

Mass, specified as a scalar.

Dependencies

To enable this port, set Mass type to Custom Variable.
Data Types: double

dI/dt — Rate of change of inertia tensor matrix
3-by-3 matrix

Rate of change of inertia tensor matrix, specified as a 3-by-3 matrix.

Dependencies

To enable this port, set Mass type to Custom Variable.
Data Types: double

I — Inertia tensor matrix
3-by-3 matrix

Inertia tensor matrix, specified as a 3-by-3 matrix.

Dependencies

To enable this port, set Mass type to Custom Variable.
Data Types: double

Vre — Relative velocities
three-element vector

One or more relative velocities at which the mass is accreted to or ablated from the body in body-
fixed axes, specified as a three-element vector.

Dependencies

To enable this port, select Include mass flow relative velocity.
Data Types: double

Output

Ve — Velocity in flat Earth reference frame
three-element vector

Velocity in the flat Earth reference frame, returned as a three-element vector.
Data Types: double

Xe — Position in flat Earth reference frame
three-element vector

Position in the flat Earth reference frame, returned as a three-element vector.
Data Types: double
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μ γ x (rad) — Wind rotation angles
three-element vector

Wind rotation angles [bank, flight path, heading], returned as a three-element vector, in radians.
Data Types: double

DCMwe — Coordinate transformation
3-by-3 matrix

Coordinate transformation from flat Earth axes to wind-fixed axes, returned as a 3-by-3 matrix.
Data Types: double

Vw — Velocity in wind-fixed frame
three-element vector

Velocity in wind-fixed frame, returned as a three-element vector.
Data Types: double

α β (rad) — Angle of attack and sideslip angle
two-element vector

Angle of attack and sideslip angle, returned as a two-element vector, in radians.
Data Types: double

dα/dt dβ/dt — Rate of change of angle of attack and rate of change of sideslip angle
two-element vector

Rate of change of angle of attack and rate of change of sideslip angle, returned as a two-element
vector, in radians per second.
Data Types: double

ωb (rad/s) — Angular rates in body-fixed axes
three-element vector

Angular rates in body-fixed axes, returned as a three-element vector, in radians per second.
Data Types: double

dωb/dt — Angular accelerations
three-element vector

Angular accelerations in body-fixed axes, returned as a three-element vector, in radians per second
squared.
Data Types: double

Abb — Accelerations in body-fixed axes
three-element vector

Accelerations of the body with respect to the body-fixed axes with the body-fixed coordinate frame,
returned as a three-element vector.
Data Types: double
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Abe — Accelerations with respect to inertial frame
three-element vector

Accelerations in body-fixed axes with respect to inertial frame (flat Earth), returned as a three-
element vector. You typically connect this signal to the accelerometer.

Dependencies

To enable this point, select Include inertial acceleration.
Data Types: double

Parameters
Main

Units — Input and output units

Metric (MKS) (default) | English (Velocity in ft/s) | English (Velocity in kts)

Input and output units, specified as Metric (MKS), English (Velocity in ft/s), or English
(Velocity in kts).

Units Forces Moment Acceleration Velocity Position Mass Inertia
Metric
(MKS)

Newton Newton-
meter

Meters per second
squared

Meters per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in ft/s)

Pound Foot-pound Feet per second
squared

Feet per
second

Feet Slug Slug foot
squared

English
(Velocity
in kts)

Pound Foot-pound Feet per second
squared

Knots Feet Slug Slug foot
squared

Programmatic Use
Block Parameter: units
Type: character vector
Values: Metric (MKS) | English (Velocity in ft/s) | English (Velocity in kts)
Default: Metric (MKS)

Mass type — Mass type

Custom Variable (default) | Simple Variable | Fixed

Mass type, specified according to the following table.
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Mass Type Description Default for
Fixed Mass is constant throughout the

simulation.
• 6DOF (Euler Angles)
• 6DOF (Quaternion)
• 6DOF Wind (Wind Angles)
• 6DOF Wind (Quaternion)
• 6DOF ECEF (Quaternion)

Simple Variable Mass and inertia vary linearly as
a function of mass rate.

• Simple Variable Mass 6DOF
(Euler Angles)

• Simple Variable Mass 6DOF
(Quaternion)

• Simple Variable Mass 6DOF
Wind (Wind Angles)

• Simple Variable Mass 6DOF
Wind (Quaternion)

• Simple Variable Mass 6DOF
ECEF (Quaternion)

Custom Variable Mass and inertia variations are
customizable.

• Custom Variable Mass 6DOF
(Euler Angles)

• Custom Variable Mass 6DOF
(Quaternion)

• Custom Variable Mass 6DOF
Wind (Wind Angles)

• Custom Variable Mass 6DOF
Wind (Quaternion)

• Custom Variable Mass 6DOF
ECEF (Quaternion)

The Custom Variable selection conforms to the previously described equations of motion.

Programmatic Use
Block Parameter: mtype
Type: character vector
Values: Fixed | Simple Variable | Custom Variable
Default: 'Custom Variable'

Representation — Equations of motion representation

Wind Angles (default) | Quaternion

Equations of motion representation, specified according to the following table.

Representation Description
Wind Angles Use Wind angles within equations of motion.
Quaternion Use quaternions within equations of motion.

The Quaternion selection conforms to the equations of motion in “Algorithms” on page 5-283.
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Programmatic Use
Block Parameter: rep
Type: character vector
Values: Wind Angles | Quaternion
Default: 'Wind Angles'

Initial position in inertial axes [Xe,Ye,Ze] — Position in inertial axes

[0 0 0] (default) | three-element vector

Initial location of the body in the flat Earth reference frame, specified as a three-element vector.

Programmatic Use
Block Parameter: xme_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Initial airspeed, angle of attack, and sideslip angle [V,alpha,beta] — Initial
airspeed, angle of attack, and sideslip angle

[0 0 0] (default) | three-element vector

Initial airspeed, angle of attack, and sideslip angle, specified as a three-element vector.

Programmatic Use
Block Parameter: Vm_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Initial wind orientation [bank angle,flight path angle,heading angle] — Initial
wind orientation

[0 0 0] (default) | three-element vector

Initial wind angles [bank, flight path, and heading], specified as a three-element vector in radians.

Programmatic Use
Block Parameter: wind_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Initial body rotation rates [p,q,r] — Initial body rotation

[0 0 0] (default) | three-element vector

Initial body-fixed angular rates with respect to the NED frame, specified as a three-element vector, in
radians per second.

Programmatic Use
Block Parameter: pm_0
Type: character vector
Values: '[0 0 0]' | three-element vector
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Default: '[0 0 0]'

Include mass flow relative velocity — Mass flow relative velocity port

off (default) | on

Select this check box to add a mass flow relative velocity port. This is the relative velocity at which
the mass is accreted or ablated.

Programmatic Use
Block Parameter: vre_flag
Type: character vector
Values: off | on
Default: off

Include inertial acceleration — Include inertial acceleration port

off (default) | on

Select this check box to add an inertial acceleration port.

Dependencies

To enable the Abe port, select this parameter.

Programmatic Use
Block Parameter: abi_flag
Type: character vector
Values: 'off' | 'on'
Default: off

State Attributes

Assign a unique name to each state. Use state names instead of block paths throughout the
linearization process.

• To assign a name to a single state, enter a unique name between quotes, for example,
'velocity'.

• To assign names to multiple states, enter a comma-separated list surrounded by braces, for
example, {'a', 'b', 'c'}. Each name must be unique.

• If a parameter is empty (' '), no name is assigned.
• The state names apply only to the selected block with the name parameter.
• The number of states must divide evenly among the number of state names.
• You can specify fewer names than states, but you cannot specify more names than states.

For example, you can specify two names in a system with four states. The first name applies to the
first two states and the second name to the last two states.

• To assign state names with a variable in the MATLAB workspace, enter the variable without
quotes. A variable can be a character vector, cell array, or structure.

Position: e.g., {'Xe', 'Ye', 'Ze'} — Position state name

'' (default) | comma-separated list surrounded by braces
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Position state names, specified as a comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: xme_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Velocity: e.g., 'V' — Velocity state name

'' (default) | character vector

Velocity state names, specified as a character vector.

Programmatic Use
Block Parameter: Vm_statename
Type: character vector
Values: '' | character vector
Default: ''

Incidence angle e.g., 'alpha' — Incidence angle state name

'' (default) | character vector

Incidence angle state name, specified as a character vector.

Programmatic Use
Block Parameter: alpha_statename
Type: character vector
Values: ''
Default: ''

Sideslip angle e.g., 'beta' — Sideslip angle state name

'' (default) | character vector

Sideslip angle state name, specified as a character vector.

Programmatic Use
Block Parameter: beta_statename
Type: character vector
Values: ''
Default: ''

Wind orientation e.g., {'mu', 'gamma', 'chi'} — Wind orientation state names

'' (default) | comma-separated list surrounded by braces

Wind orientation state names, specified as a comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: wind_statename
Type: character vector
Values: ''
Default: ''
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Body rotation rates: e.g., {'p', 'q', 'r'} — Body rotation state names

'' (default) | comma-separated list surrounded by braces

Body rotation rate state names, specified comma-separated list surrounded by braces.
Programmatic Use
Block Parameter: pm_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Algorithms
The relationship between the wind angles, [μ γ χ]T, can be determined by resolving the wind rates
into the wind-fixed coordinate frame.

pw
qw
rw

=
μ̇
0
0

+
1 0 0
0 cosμ sinμ
0 −sinμ cosμ

0
γ̇
0

+
1 0 0
0 cosμ sinμ
0 −sinμ cosμ

cosγ 0 −sinγ
0 1 0
sinγ 0 cosγ

0
0
χ̇
≡ J−1

μ̇
γ̇
χ̇

Inverting J then gives the required relationship to determine the wind rate vector.

μ̇
γ̇
χ̇

= J
pw
qw
rw

=

1 (sinμtanγ) (cosμtanγ)
0 cosμ −sinμ

0 sinμ
cosγ

cosμ
cosγ

pw
qw
rw

The body-fixed angular rates are related to the wind-fixed angular rate by the following equation.

pw
qw
rw

= DMCwb

pb− β̇sinα
qb− α̇

rb + β̇cosα

Using this relationship in the wind rate vector equations, gives the relationship between the wind
rate vector and the body-fixed angular rates.

μ̇
γ̇
χ̇

= J
pw
qw
rw

=

1 (sinμtanγ) (cosμtanγ)
0 cosμ −sinμ

0 sinμ
cosγ

cosμ
cosγ

DMCwb

pb− β̇sinα
qb− α̇

rb + β̇cosα

Version History
Introduced in R2006a

References
[1] Stevens, Brian, and Frank Lewis. Aircraft Control and Simulation, 2nd ed. Hoboken, NJ: John

Wiley & Sons, 2003.
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AIAA Education Series, 2007.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
6DOF (Euler Angles) | 6DOF (Quaternion) | 6DOF ECEF (Quaternion) | 6DOF Wind (Quaternion) |
6DOF Wind (Wind Angles) | Custom Variable Mass 6DOF (Euler Angles) | Custom Variable Mass
6DOF (Quaternion) | Custom Variable Mass 6DOF ECEF (Quaternion) | Custom Variable Mass 6DOF
Wind (Quaternion) | Simple Variable Mass 6DOF ECEF (Quaternion) | Simple Variable Mass 6DOF
(Euler Angles) | Simple Variable Mass 6DOF (Quaternion) | Simple Variable Mass 6DOF Wind (Wind
Angles)
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Delta UT1
Calculate difference between principal Universal Time (UT1) and Coordinated Universal Time (UTC)
according to International Astronomical Union (IAU) 2000A reference system
Library: Aerospace Blockset / Environment / Celestial Phenomena

Aerospace Blockset / Utilities / Axes Transformations

Description
The Delta UT1 block calculates the difference between principal UT1 and UTC according to the IAU
2000A reference system and Earth orientation data. By default, this block uses a prepopulated list of
International Earth Rotation and Reference Systems Service (IERS) data. This list contains measured
and calculated (predicted) data supplied by the IERS. The IERS measures and calculates this data for
a set of predetermined dates. For dates after those listed in the prepopulated list, Delta UT1
calculates the data using this equation, limiting the values to +/- .9s:

UT1-UTC=0.5309-0.00123(MJD-57808)-(UT2-UT1) 

Ports
Input

UTC — UT1 for UTC
modified Julian date

UT1 for UTC, specified as a modified Julian date. Use the mjuliandate function to convert the UTC
date to a modified Julian date.
Data Types: double

Output Arguments

ΔUT1 — Difference between UT1 and UTC
double

Difference between UT1 and UTC.
Data Types: double

Parameters
IERS data file — Earth orientation data
aeroiersdata.mat (default) | MAT-file

Custom list of Earth orientation data, specified in a MAT-file.
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Programmatic Use
Block Parameter: FileName
Type: character vector
Values: 'aeroiersdata.mat' | MAT-file
Default: 'aeroiersdata.mat'

Action for out-of-range input — Out-of-range block behavior

Warning (default) | None | Error

Out-of-range block behavior, specified as follows.

Action Description
None No action.
Warning Warning in the MATLAB Command Window, model simulation

continues.
Error (default) MATLAB returns an exception, model simulation stops.

Programmatic Use
Block Parameter: action
Type: character vector
Values: 'None' | 'Warning' | 'Error'
Default: 'Warning'

IERS data URL — Web site or Earth orientation data file
https://maia.usno.navy.mil/ser7/finals2000A.data (default) | web site address | file name

Web site or Earth orientation data file containing the Earth orientation data according to the IAU
2000A, specified as a web site address or file name.

Note If you receive an error message while accessing the default site, use one of these alternate
sites:

• https://datacenter.iers.org/data/latestVersion/
10_FINALS.DATA_IAU2000_V2013_0110.txt

• ftp://cddis.gsfc.nasa.gov/pub/products/iers/finals2000A.data

Programmatic Use
Block Parameter: iersurl
Type: character vector
Values: 'https://maia.usno.navy.mil/ser7/finals2000A.data' | web site address | file
name
Default: 'https://maia.usno.navy.mil/ser7/finals2000A.data'

Destination folder — Folder for IERS data file
Current Folder (default)

Folder for IERS data file, specified as a character array or string. Before running this function, create
foldername with write permission.
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To create the IERS data file in the destination folder, click the Create button.

Programmatic Use
Block Parameter: folder
Type: character vector
Values: 'Current Folder' | folder name
Default: 'Current Folder'

Version History
Introduced in R2017b

Updated aeroiersdata.mat file
Behavior changed in R2020b

The contents of the aeroiersdata.mat file have been updated. Correspondingly, the output of this
block will have different results when using the default value ('aeroiersdata.mat') as the value of
the IERS data file parameter. The results reflect more accurate external data from the International
Earth Rotation and Reference Systems Service (IERS).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
aeroReadIERSData | Direction Cosine Matrix ECI to ECEF | Earth Orientation Parameters

Topics
“Calculate UT1 to UTC Values” on page 2-54
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Density Conversion
Convert from density units to desired density units
Library: Aerospace Blockset / Utilities / Unit Conversions

Description
The Density Conversion block computes the conversion factor from specified input density units to
specified output density units and applies the conversion factor to the input signal.

The Density Conversion block port labels change based on the input and output units selected from
the Initial unit and the Final unit lists.

Ports
Input

Port_1 — Density
scalar | array

Contains the density, specified as a scalar or array, in initial density units.

Dependencies

The input port label depends on the Initial unit setting.
Data Types: double

Output

Port_1 — Density
scalar | array

Contains the density, returned as a scalar or array, in initial density units.

Dependencies

The output port label depends on the Final unit setting.
Data Types: double

Parameters
Initial unit — Input units

lbm/ft^3 (default) | kg/m^3 | slug/ft^3 | lbm/in^3

Input units, specified as:

5 Blocks

5-288



lbm/ft^3 Pound mass per cubic foot
kg/m^3 Kilograms per cubic meter
slug/ft^3 Slugs per cubic foot
lbm/in^3 Pound mass per cubic inch

Dependencies

The input port label depends on the Initial unit setting.

Programmatic Use
Block Parameter: IU
Type: character vector
Values: 'lbm/ft^3' | 'kg/m^3' | 'slug/ft^3' | 'lbm/in^3'
Default: 'lbm/ft^3'

Final unit — Output units

kg/m^3 (default) | lbm/ft^3 | slug/ft^3 | lbm/in^3

Output units, specified as:

lbm/ft^3 Pound mass per cubic foot
kg/m^3 Kilograms per cubic meter
slug/ft^3 Slugs per cubic foot
lbm/in^3 Pound mass per cubic inch

Dependencies

The output port label depends on the Final unit setting.

Programmatic Use
Block Parameter: OU
Type: character vector
Values: 'lbm/ft^3' | 'kg/m^3' | 'slug/ft^3' | 'lbm/in^3'
Default: 'kg/m^3'

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Acceleration Conversion | Angle Conversion | Angular Acceleration Conversion | Angular Velocity
Conversion | Force Conversion | Length Conversion | Mass Conversion | Pressure Conversion |
Temperature Conversion
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Determinant of 3x3 Matrix
Compute determinant of matrix
Library: Aerospace Blockset / Utilities / Math Operations

Description
The Determinant of 3x3 Matrix block computes the determinant for the input matrix. For related
equations, see “Algorithms” on page 5-290.

Ports
Input

Port_1 — Input matrix
3-by-3 matrix

Input matrix, specified as a 3-by-3 matrix.
Data Types: double

Output

Port_1 — Determinant
scalar

Determinant, output as a scalar.
Data Types: double

Algorithms
The input matrix has the form of

A =
A11 A12 A13
A21 A22 A23
A31 A32 A33

The determinant of the matrix has the form of

det(A) = A11(A22A33− A23A32)− A12(A21A33− A23A31) + A13(A21A32− A22A31)

Version History
Introduced before R2006a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Adjoint of 3x3 Matrix | Create 3x3 Matrix | Invert 3x3 Matrix
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Digital DATCOM Forces and Moments
Compute aerodynamic forces and moments using Digital DATCOM static and dynamic stability
derivatives
Library: Aerospace Blockset / Aerodynamics

Description
The Digital DATCOM Forces and Moments block computes the aerodynamic forces and moments
about the center of gravity using aerodynamic coefficients from Digital DATCOM.

The Digital DATCOM Forces and Moments block port labels change based on the input and output
units selected from the Units list.

Limitations
• The Digital DATCOM Forces and Moments block supports only Digital DATCOM, which is the 1976

version of DATCOM.
• The operational limitations of Digital DATCOM apply to the data contained in the Digital

DATCOM structure parameter. For more information on Digital DATCOM limitations, see Section
2.4.5 of reference [1].

• The Digital DATCOM structure parameters alpha, mach, alt, grndht, and delta must be
strictly monotonically increasing to be used with the Digital DATCOM Forces and Moments block.

• The Digital DATCOM structure coefficients must correspond to the dimensions of the
breakpoints (alpha, mach, alt, grndht, and delta) to be used with the Digital DATCOM Forces
and Moments block.

Ports
Input

Port_1 — Angle of attack
scalar

Angle of attack, specified as a scalar.
Data Types: double

Port_2 — Sideslip angle
scalar

Sideslip angle, specified as a scalar, in radians.
Data Types: double
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Port_3 — Mach number
scalar

Mach number, specified as a scalar.
Data Types: double

Port_4 — Altitude
scalar

Altitude, specified as a scalar, in selected length units.
Data Types: double

Port_5 — Dynamic pressure
scalar

Dynamic pressure, specified as a scalar, in selected pressure units.
Data Types: double

Port_6 — Velocity
three-element vector

Velocity, specified as a three-element vector, in selected velocity units and selected force axes.
Data Types: double

Port_7 — Angle of attack rate
scalar

Angle of attack rate, specified as a scalar, in radians per second.

Dependencies

Appears when DAMP Control Card is used in input to Digital DATCOM.
Data Types: double

Port_8 — Body angular rates
three-element vector

Body angular rates, specified as a three-element vector, in radians per second.

Dependencies

Appears when DAMP Control Card is used in input to Digital DATCOM.
Data Types: double

Port_9 — Ground height
scalar

Ground height, specified as a scalar, in select units of length.

Dependencies

Appears when GRNDEF Namelist is used in input to Digital DATCOM.
Data Types: double
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Port_10 — Control surface deflection
scalar

Control surface deflection, specified as a scalar, in radians.

Dependencies

Appears when ASYFLP or SYMFLP and GRNDEF namelists are used in input to Digital DATCOM.
Data Types: double

Output

Port_1 — Aerodynamic forces at the center of gravity
three-element vector

Aerodynamic forces at the center of gravity, returned as a three-element vector, in selected
coordinate system: Body (F, Fyx

, and Fz), or Wind (FD, Fy, and FL).
Data Types: double

Port_2 — Aerodynamic moments at the center of gravity
three-element vector

Aerodynamic moments at the center of gravity, returned as a three-element vector, in body
coordinates (Mx, My, and Mz).
Data Types: double

Parameters
Units — Units

Metric (MKS) (default) | English (Velocity in ft/s) | English (Velocity in kts)

Input and output units, specified as:

Units Force Moment Length Velocity Pressure
Metric (MKS) Newton Newton-

meter
Meters Meters per second Pascal

English
(Velocity in
ft/s)

Pound Foot-pound Feet Feet per second Pound per square
inch

English
(Velocity in
kts)

Pound Foot-pound Feet Knots Pound per square
inch

Programmatic Use
Block Parameter: units
Type: character vector
Values: 'Metric (MKS)' | 'English (Velocity in ft/s)' | 'English (Velocity in
kts)'
Default: 'Metric (MKS)'
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Digital DATCOM structure — Digital DATCOM data structure

factstruct{1} (default) | structure

MATLAB structure containing the digital DATCOM data. This structure is generated by the
datcomimport function. To include dynamic derivatives in the generated output file, call the
datomimport function with the damp keyword.

For more information on creating the digital DATCOM structure, see “Import from USAF Digital
DATCOM Files”. This example shows how to bring United States Air Force (USAF) Digital DATCOM
files into the MATLAB environment using the Aerospace Toolbox software.

Programmatic Use
Block Parameter: dcase
Type: character vector
Values: factstruct{1} | structure
Default: factstruct{1}

Force axes — Coordinate system for aerodynamic force

Body (default) | Wind

Coordinate system for aerodynamic force, specified as Body or Wind.

Programmatic Use
Block Parameter: fmode
Type: character vector
Values: 'Body' | 'Wind'
Default: 'Body'

Interpolation method — Interpolation method

None - flat (default) | Linear

Interpolation method, specified as None (flat) or Linear. The block uses the interpolation method
to interpolate the static and dynamic stability coefficients in the Digital DATCOM structure.

Programmatic Use
Block Parameter: imethod
Type: character vector
Values: 'None (flat)' | 'Linear'
Default: 'None (flat)'

Extrapolation method — Extrapolation method

None - clip (default) | Linear

Extrapolation method, specified as None (clip) or Linear. The block uses the extrapolation
method to extrapolate the static and dynamic stability coefficients in the Digital DATCOM
structure.

Programmatic Use
Block Parameter: emethod
Type: character vector
Values: 'None (flat)' | 'Linear'
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Default: 'None (flat)'

Process out-of-range input — Handle out-of-range input

Clip to Range (default) | Linear Extrapolation

Handle out-of-range input action, Linear Extrapolation or Clip to Range.

Programmatic Use
Block Parameter: rmethod
Type: character vector
Values: 'Clip to Range' | 'Linear Extrapolation'
Default: 'Clip to Range'

Action for out-of-range input — Out-of-range block behavior

None (default) | Warning | Error

Out-of-range block behavior, specified as follows.

Action Description
None No action.
Warning Warning in the MATLAB Command Window, model simulation

continues.
Error (default) MATLAB returns an exception, model simulation stops.

Programmatic Use
Block Parameter: action
Type: character vector
Values: 'None' | 'Warning' | 'Error'
Default: 'None'

Algorithms
Algorithms for calculating forces and moments build up the overall aerodynamic forces and moments
(F and M) from data contained in the Digital DATCOM structure parameter:

F = F static + F dyn (5-1)

M = M static + M dyn (5-2)

Fstatic and Mstatic are the static contribution, and Fdyn and Mdyn the dynamic contribution, to the
aerodynamic coefficients. If the dynamic characteristics are not contained in the Digital DATCOM
structure parameter, their contribution is set to zero.

Static Stability Characteristics

Static stability characteristics include the following.

Coefficient Meaning
C D Matrix of drag coefficients. These coefficients are defined positive for an aft-

acting load.
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Coefficient Meaning
C L Matrix of lift coefficients. These coefficients are defined positive for an up-acting

load.
C m Matrix of pitching-moment coefficients. These coefficients are defined positive

for a nose-up rotation.
C Yβ Matrix of derivatives of side-force coefficients with respect to sideslip angle
C nβ Matrix of derivatives of yawing-moment coefficients with respect to sideslip

angle
C lβ Matrix of derivatives of rolling-moment coefficients with respect to sideslip

angle

These are the static contributions to the aerodynamic coefficients in stability axes.

C D static = C D (5-3)

C y static = C Yβ β (5-4)

C L static = C L (5-5)

C l static = C lβ β (5-6)

C m static = C M (5-7)

C n static = C nβ β (5-8)

Dynamic Stability Characteristics

Dynamic stability characteristics include the following.

Coefficient Meaning
C Lq Matrix of lift force derivatives due to pitch rate
C mq Matrix of pitching-moment derivatives due to pitch rate
C Ldα/dt Matrix of lift force derivatives due to rate of angle of attack
C mdα/dt Matrix of pitching-moment derivatives due to rate of angle of attack
C lp Matrix of rolling-moment derivatives due to roll rate
C Yp Matrix of lateral force derivatives due to roll rate
C np Matrix of yawing-moment derivatives due to roll rate
C nr Matrix of yawing-moment derivatives due to yaw rate
C lr Matrix of rolling-moment derivatives due to yaw rate

These are the dynamic contributions to the aerodynamic coefficients in stability axes.

CD dyn = 0
Cy dyn = Cypp(bref /2V)
CL dyn = (CLqq + CLα̇α̇)(cbar/2V)
Cl dyn = (Clpp + Clrr)(bref /2V)
Cm dyn = (Cmqq + Cmȧȧ)(cbar/2V)
Cn dyn = (Cnpp + Cnrr)(bref /2V)
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Version History
Introduced in R2006b

References
[1] The USAF Stability and Control Digital Datcom, AFFDL-TR-79-3032, 1979.

[2] Etkin, B., and L. D. Reid. Dynamics of Flight Stability and Control, Hoboken, NJ: John Wiley &
Sons, 1996.

[3] Roskam, J. "Airplane Design Part VI: Preliminary Calculation of Aerodynamic, Thrust and Power
Characteristics", Roskam Aviation and Engineering Corporation, Ottawa, Kansas: 1987.

[4] Stevens, B. L., and F. L. Lewis. Aircraft Control and Simulation, Hoboken, NJ: John Wiley & Sons,
1992.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Aerodynamic Forces and Moments | datcomimport

Topics
“Import from USAF Digital DATCOM Files”
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Direction Cosine Matrix Body to Wind
Convert angle of attack and sideslip angle to direction cosine matrix
Library: Aerospace Blockset / Utilities / Axes Transformations

Description
The Direction Cosine Matrix Body to Wind block converts angle of attack and sideslip angles into a 3-
by-3 direction cosine matrix (DCM). This direction cosine matrix is helpful for vector body axes to
wind axes coordinate transformations. To transform the coordinates of a vector in body axes (ox0, oy0,
oz0) to a vector in wind axes (ox2, oy2, oz2), multiply the block output direction cosine matrix with a
vector in body axes. For information on the axis rotations for this transformation, see “Algorithms” on
page 5-299.

Ports
Input

ɑ β — Angle of attack and sideslip angle
2-by-1 vector

Angle of attack and sideslip angle, specified as a 2-by-1 vector, in radians.
Data Types: double

Output

DCMwb — Direction cosine matrix
3-by-3 direction cosine matrix

Direction cosine matrix, returned as 3-by-3 direction cosine matrix.
Data Types: double

Algorithms
The order of the axis rotations required to bring this transformation about is:

1 A rotation about oy0 through the angle of attack (α) to axes (ox1, oy1, oz1)
2 A rotation about oz1 through the sideslip angle (β) to axes (ox2, oy2, oz2)

ox2
oy2
oz2

= DCMwb

ox0
oy0
oz0

ox2
oy2
oz2

=
cosβ sinβ 0
−sinβ cosβ 0

0 0 1

cosα 0 sinα
0 1 0

−sinα 0 cosα

ox0
oy0
oz0
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Combining the two axis transformation matrices defines the following DCM.

DCMwb =
cosαcosβ sinβ sinαcosβ
−cosαsinβ cosβ −sinαsinβ
−sinα 0 cosα

Version History
Introduced before R2006a

References
[1] Stevens, B. L., and F. L. Lewis. Aircraft Control and Simulation. Hoboken, NJ: John Wiley & Sons,

1992.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Direction Cosine Matrix Body to Wind to Alpha and Beta | Direction Cosine Matrix to Rotation Angles
| Direction Cosine Matrix to Wind Angles | Rotation Angles to Direction Cosine Matrix | Wind Angles
to Direction Cosine Matrix
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Direction Cosine Matrix Body to Wind to Alpha and
Beta
Convert direction cosine matrix to angle of attack and sideslip angle
Library: Aerospace Blockset / Utilities / Axes Transformations

Description
The Direction Cosine Matrix Body to Wind to Alpha and Beta block converts a 3-by-3 direction cosine
matrix (DCM) to angle of attack and sideslip angle. The DCM performs the coordinate transformation
of a vector in body axes (ox0, oy0, oz0) into a vector in wind axes (ox2, oy2, oz2). For more information
on the direction cosine matrix, see “Algorithms” on page 5-302.

Limitations
• This implementation generates angles that lie between ±90 degrees.

Ports
Input

DCMwb — Direction cosine matrix
3-by-3 direction cosine matrix

Direction cosine matrix to transform body-fixed vectors to wind-fixed vectors, specified as a 3-by-3
direct cosine matrix.
Data Types: double

Output

α β — Angle of attack and sideslip angle
2-by-1 vector

Angle of attack and sideslip angle, returned as a vector, in radians.
Data Types: double

Parameters
Action for invalid DCM — Block behavior
None (default) | Warning | Error

Block behavior when the direction cosine matrix is invalid (not orthogonal).
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• Warning — Displays warning indicating that the direction cosine matrix is invalid.
• Error — Displays error indicating that the direction cosine matrix is invalid.
• None — Does not display warning or error (default).

Programmatic Use
Block Parameter: action
Type: character vector
Values: 'None' | 'Warning' | 'Error'
Default: 'None'
Data Types: char | string

Tolerance for DCM validation — Tolerance

eps(2) (default) | scalar

Tolerance of the direction cosine matrix validity, specified as a scalar. The block considers the
direction cosine matrix valid if these conditions are true:

• The transpose of the direction cosine matrix times itself equals 1 within the specified tolerance
(transpose(n)*n == 1±tolerance).

• The determinant of the direction cosine matrix equals 1 within the specified tolerance (det(n)
== 1±tolerance).

Programmatic Use
Block Parameter: tolerance
Type: character vector
Values: 'eps(2)' | scalar
Default: 'eps(2)'
Data Types: double

Algorithms
The DCM matrix performs the coordinate transformation of a vector in body axes (ox0, oy0, oz0) into a
vector in wind axes (ox2, oy2, oz2). The order of the axis rotations required to bring this about is:

1 A rotation about oy0 through the angle of attack (α) to axes (ox1, oy1, oz1)
2 A rotation about oz1 through the sideslip angle (β) to axes (ox2, oy2, oz2)

ox2
oy2
oz2

= DCMwb

ox0
oy0
oz0

ox2
oy2
oz2

=
cosβ sinβ 0
−sinβ cosβ 0

0 0 1

cosα 0 sinα
0 1 0

−sinα 0 cosα

ox0
oy0
oz0

Combining the two axis transformation matrices defines the following DCM.

DCMwb =
cosαcosβ sinβ sinαcosβ
−cosαsinβ cosβ −sinαsinβ
−sinα 0 cosα
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To determine angles from the DCM, the following equations are used:

α = asin(− DCM(3, 1))

β = asin(DCM(1, 2))

Version History
Introduced before R2006a

References
[1] Stevens, Brian L., Frank L. Lewis. Aircraft Control and Simulation, Second Edition. Hoboken, NJ:

Wiley–Interscience.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Direction Cosine Matrix Body to Wind | Direction Cosine Matrix to Rotation Angles | Direction Cosine
Matrix to Wind Angles | Rotation Angles to Direction Cosine Matrix | Wind Angles to Direction Cosine
Matrix
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Direction Cosine Matrix ECEF to NED
Convert geodetic latitude and longitude to direction cosine matrix
Library: Aerospace Blockset / Utilities / Axes Transformations

Description
The Direction Cosine Matrix ECEF to NED block converts geodetic latitude and longitude into a 3-
by-3 direction cosine matrix (DCM). The DCM matrix performs the coordinate transformation of a
vector in Earth-centered Earth-fixed (ECEF) axes into a vector in north-east-down (NED) axes. For
more information on the direction cosine matrix, see“Algorithms” on page 5-304.

The implementation of the ECEF coordinate system assumes that the origin is at the center of the
planet, the x-axis intersects the Greenwich meridian and the equator, the z-axis is the mean spin axis
of the planet, positive to the north, and the y-axis completes the right-hand system. For more
information, see “About Aerospace Coordinate Systems” on page 2-7.

Ports
Input

μl — Geodetic latitude and longitude
2-by-1 vector

Geodetic latitude and longitude, specified as a 2-by-1 vector, in degrees. Latitude and longitude
values can be any value. However, latitude values of +90 and -90 may return unexpected values
because of singularity at the poles.
Data Types: double

Output

DCMef — Direction cosine matrix
3-by-3 matrix

DCM to perform coordinate transform of a vector in ECEF axes into a vector in NED axes, returned
as a 3-by-3 matrix.
Data Types: double

Algorithms
The DCM matrix performs the coordinate transformation of a vector in ECEF axes, (ox0, oy0, oz0), into
a vector in NED axes, (ox2, oy2, oz2). The order of the axis rotations required to bring this about is:

1 A rotation about oz0 through the longitude (ι) to axes (ox1, oy1, oz1)
2 A rotation about oy1 through the geodetic latitude (μ) to axes (ox2, oy2, oz2)
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ox2
oy2
oz2

= DCMef

ox0
oy0
oz0

ox2
oy2
oz2

=
−sinμ 0 cosμ

0 1 0
−cosμ 0 −sinμ

cosι sinι 0
−sinι cosι 0

0 0 1

ox0
oy0
oz0

Combining the two axis transformation matrices defines the following DCM.

DCMef =
−sinμcosι −sinμsinι cosμ
−sinι cosι 0

−cosμcosι −cosμsinι −sinμ

Version History
Introduced before R2006a

References
[1] Stevens, B. L., and F. L. Lewis. Aircraft Control and Simulation, Hoboken, NJ: John Wiley & Sons,

1992.

[2] Zipfel, Peter H., Modeling and Simulation of Aerospace Vehicle Dynamics. Second Edition. Reston,
VA: AIAA Education Series, 2000.

[3] Recommended Practice for Atmospheric and Space Flight Vehicle Coordinate Systems,
R-004-1992, ANSI/AIAA, February 1992.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Direction Cosine Matrix ECEF to NED to Latitude and Longitude | Direction Cosine Matrix to
Rotation Angles | Direction Cosine Matrix to Wind Angles | ECEF Position to LLA | LLA to ECEF
Position | Rotation Angles to Direction Cosine Matrix | Wind Angles to Direction Cosine Matrix

Topics
“About Aerospace Coordinate Systems” on page 2-7
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Direction Cosine Matrix ECEF to NED to Latitude
and Longitude
Convert direction cosine matrix to geodetic latitude and longitude
Library: Aerospace Blockset / Utilities / Axes Transformations

Description
The Direction Cosine Matrix ECEF to NED to Latitude and Longitude block converts a 3-by-3
direction cosine matrix (DCM) into geodetic latitude and longitude. The DCM matrix performs the
coordinate transformation of a vector in Earth-centered Earth-fixed (ECEF) axes, (ox0, oy0, oz0), into
geodetic latitude and longitude. For more information on the direction cosine matrix, see
“Algorithms” on page 5-307.

Limitations
The DCM matrix performs the coordinate transformation of a vector in ECEF axes, (ox0, oy0, oz0), into
geodetic latitude and longitude. The order of the axis rotations required to bring this about is:

• This implementation generates a geodetic latitude that lies between ±90 degrees, and longitude
that lies between ±180 degrees.

• The implementation of the ECEF coordinate system assumes that the origin is at the center of the
planet, the x-axis intersects the Greenwich meridian and the equator, the z-axis is the mean spin
axis of the planet, positive to the north, and the y-axis completes the right-hand system. For more
information, see “About Aerospace Coordinate Systems” on page 2-7.

Ports
Input

DCMef — Direction cosine matrix
3-by-3 matrix

Direction cosine matrix from which to geodetic latitude and longitude, specified as a 3-by-3 matrix.
Data Types: double

Output

μl — Geodetic latitude and longitude
2-by-1 vector

Geodetic latitude and longitude, returned as a 2-by-1 vector in degrees.
Data Types: double
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Parameters
Action for invalid DCM — Block behavior

None (default) | Warning | Error

Block behavior when direction cosine matrix is invalid (not orthogonal).

• Warning — Displays warning indicating that the direction cosine matrix is invalid.
• Error — Displays error indicating that the direction cosine matrix is invalid.
• None — Does not display warning or error (default).

Programmatic Use
Block Parameter: action
Type: character vector
Values: 'None' | 'Warning' | 'Error'
Default: 'None'
Data Types: char | string

Tolerance for DCM validation — Tolerance

eps(2) (default) | scalar

Tolerance of the direction cosine matrix validity, specified as a scalar. The block considers the
direction cosine matrix valid if these conditions are true:

• The transpose of the direction cosine matrix times itself equals 1 within the specified tolerance
(transpose(n)*n == 1±tolerance).

• The determinant of the direction cosine matrix equals 1 within the specified tolerance (det(n)
== 1±tolerance).

Programmatic Use
Block Parameter: tolerance
Type: character vector
Values: 'eps(2)' | scalar
Default: 'eps(2)'
Data Types: double

Algorithms
The DCM matrix performs the coordinate transformation of a vector in ECEF axes, (ox0, oy0, oz0), into
geodetic latitude and longitude. The order of the axis rotations required to bring this about is:

1 A rotation about oz0 through the longitude (ι) to axes (ox1, oy1, oz1)
2 A rotation about oy1 through the geodetic latitude (μ) to axes (ox2, oy2, oz2)
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ox2
oy2
oz2

= DCMef

ox0
oy0
oz0

ox2
oy2
oz2

=
−sinμ 0 cosμ

0 1 0
−cosμ 0 −sinμ

cosι sinι 0
−sinι cosι 0

0 0 1

ox0
oy0
oz0

Combining the two axis transformation matrices defines the following DCM.

DCMef =
−sinμcosι −sinμsinι cosμ
−sinι cosι 0

−cosμcosι −cosμsinι −sinμ

To determine geodetic latitude and longitude from the DCM, the following equations are used:

μ = asin −DCM(3, 3)

ι = atan −DCM(2, 1)
DCM(2, 2)

Version History
Introduced before R2006a

References
[1] Zipfel, Peter H., Modeling and Simulation of Aerospace Vehicle Dynamics. Second Edition. Reston,

VA: AIAA Education Series, 2000.

[2] Recommended Practice for Atmospheric and Space Flight Vehicle Coordinate Systems,
R-004-1992, ANSI/AIAA, February 1992.

[3] Stevens, B. L., and F. L. Lewis. Aircraft Control and Simulation, Hoboken, NJ: John Wiley & Sons,
1992.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Direction Cosine Matrix ECEF to NED | Direction Cosine Matrix to Rotation Angles | Direction Cosine
Matrix to Wind Angles | ECEF Position to LLA | LLA to ECEF Position | Rotation Angles to Direction
Cosine Matrix | Wind Angles to Direction Cosine Matrix

Topics
“Algorithms” on page 5-307
“About Aerospace Coordinate Systems” on page 2-7
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Direction Cosine Matrix ECI to ECEF
Convert Earth-centered inertial (ECI) to Earth-centered Earth-fixed (ECEF) coordinates
Library: Aerospace Blockset / Utilities / Axes Transformations

Description
The Direction Cosine Matrix ECI to ECEF block calculates the position direction cosine matrix
( Earth-centered inertial to Earth-centered Earth-fixed ), based on the specified reduction method and
Coordinated Universal Time (UTC), for the specified time and geophysical data.

Ports
Input

ΔUT1 — Difference between UTC and Universal Time
scalar

Difference between UTC and Universal Time (UT1) in seconds, specified as a scalar, for which the
function calculates the direction cosine or transformation matrix.
Example: 0.234

Dependencies

To enable this port, select the Higher accuracy parameters check box.
Data Types: double

ΔAT — Difference between International Atomic Time and UTC
scalar

Difference between International Atomic Time (IAT) and UTC, specified as a scalar, in seconds, for
which the function calculates the direction cosine or transformation matrix.
Example: 32

Dependencies

To enable this port, select the Higher accuracy parameters check box.
Data Types: double

[xp,yp] — Polar displacement of Earth
1-by-2 array

Polar displacement of Earth, specified as a 1-by-2 array, in radians, from the motion of the Earth
crust, along the x-axis and y-axis.
Example: [-0.0682e-5 0.1616e-5]

 Direction Cosine Matrix ECI to ECEF

5-309



Dependencies

To enable this port, select the Higher accuracy parameters check box.
Data Types: double

Port_5 — Adjustment based on reduction method
1-by-2 array

Adjustment based on reduction method, specified as 1-by-2 array. The name of the port depends on
the setting of the Reduction parameter:

• If the reduction method is IAU-2000/2006, this input is the adjustment to the location of the
Celestial Intermediate Pole (CIP), specified in radians. This location ([dX, dY]) is along the x-axis
and y-axis.

• If the reduction method is IAU-76/FK5, this input is the adjustment to the longitude ([Δδψ, Δδε]),
specified in radians.

For historical values, see International Earth Rotation and Reference Systems Service.
Example: [-0.2530e-6 -0.0188e-6]

Dependencies

To enable this port, select the Higher accuracy parameters check box.
Data Types: double

Port_6 — Time increment source
scalar

Time increment source, specified as a scalar, such as the Clock block.

Dependencies

• The port name and time increment depend on the Time Increment parameter.

Time Increment Value Port Name
Day day
Hour hour
Min min
Sec sec
None No port

• To disable this port, set the Time Increment parameter to None.

Data Types: double

Output

DCMfi — Direction cosine matrix
3-by-3 matrix

Direction cosine matrix ECI to ECEF.
Data Types: double
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Parameters
Reduction — Reduction method

IAU-76/FK5 (default) | IAU-2000/2006

Reduction method to calculate the direction cosine matrix. The method can be one of the following:

• IAU-76/FK5

Reduce the calculation using the IAU-76/Fifth Fundamental Catalogue (FK5) reference system.
Choose this reduction method if the reference coordinate system for the conversion is FK5.

Note This method uses the IAU 1976 precession model and the IAU 1980 theory of nutation to
reduce the calculation. This model and theory are no longer current, but the software provides
this reduction method for existing implementations. Because of the polar motion approximation
that this reduction method uses, the block calculates the transformation matrix rather than the
direction cosine matrix.

• IAU-2000/2006

Reduce the calculation using the International Astronomical Union (IAU)-2000/2006 reference
system. Choose this reduction method if the reference coordinate system for the conversion is
IAU-2000. This reduction method uses the P03 precession model to reduce the calculation.

Programmatic Use
Block Parameter: red
Type: character vector
Values: 'IAU-2000/2006' | 'IAU-76/FK5'
Default: 'IAU-2000/2006'

Year — Year

2013 (default) | double, whole number, greater than 1

Year to calculate the Coordinated Universal Time (UTC) date. Enter a double value that is a whole
number greater than 1, such as 2013.

Programmatic Use
Block Parameter: year
Type: character vector
Values: double, whole number, greater than 1
Default: '2013'

Month — Month

January (default) | February | March | April | May | June | July | August | September |
October | November | December

Month to calculate the UTC date.

Programmatic Use
Block Parameter: month
Type: character vector
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Values: 'January' | 'February' | 'March' | 'April' | 'May' | 'June' | 'July' | 'August' |
'September' | 'October' | 'November' | 'December'
Default: 'January'

Day — Day

1 (default) | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 | 31

Day to calculate the UTC date.

Programmatic Use
Block Parameter: day
Type: character vector
Values: '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' | '10' | '11' | '12' | '13' | '14' |
'15' | '16' | '17' | '18' | '19' | '20' | '21' | '22' | '23' | '24' | '25' | '26' | '27' | '28' |
'29' | '30' | '31'
Default: '1'

Hour — Hour

0 (default) | double, whole number, in the range of 0 and 24

Hour to calculate the UTC date. Enter a double value that is a whole number, from 0 to 24.

Programmatic Use
Block Parameter: hour
Type: character vector
Values: double, whole number, 0 to 24
Default: '0'

Minutes — Minutes

0 (default) | double, whole number, in the range of 0 and 60

Minutes to calculate the UTC date. Enter a double value that is a whole number, from 0 to 60.

Programmatic Use
Block Parameter: min
Type: character vector
Values: double, whole number, 0 to 60
Default: '0'

Seconds — Seconds

0 (default) | double, whole number, in the range of 0 and 60

Seconds to calculate the UTC date. Enter a double value that is a whole number, from 0 to 60.

Programmatic Use
Block Parameter: sec
Type: character vector
Values: double, whole number, 0 to 60
Default: '0'
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Time increment — Time increment

Day (default) | Hour | Min | Sec | None

Time increment between the specified date and the desired model simulation time. The block adjusts
the calculated direction cosine matrix to take into account the time increment from model simulation.
For example, selecting Day and connecting a simulation timer to the port means that each time
increment unit is one day and the block adjusts its calculation based on that simulation time.

This parameter corresponds to the time increment input, the clock source.

If you select None, the calculated Julian date does not take into account the model simulation time.

Programmatic Use
Block Parameter: deltaT
Type: character vector
Values: 'None' | 'Day' | 'Hour' | 'Min' | 'Sec'
Default: 'Day'

Action for out-of-range input — Action

Error (default) | Warning | None

Specify the block behavior when the block inputs are out of range.

Action Description
None No action.
Warning Warning in the MATLAB Command Window, model simulation

continues.
Error (default) MATLAB returns an exception, model simulation stops.

Programmatic Use
Block Parameter: errorflag
Type: character vector
Values: 'None' | 'Warning' | 'Error'
Default: 'Error'

Higher accuracy parameters — Enable higher accuracy parameters

on (default) | off

Select this check box to enable these inputs. These inputs let you better control the conversion result.
See “Input” on page 5-309 for a description.

• Δ UT1
• Δ AT
• [ xp , yp ]
• [Δδψ, Δδε] or [d X, d Y ]

Programmatic Use
Block Parameter: extraparamflag
Type: character vector
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Values: 'on' | 'off'
Default: 'on'

Version History
Introduced in R2013b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Delta UT1 | Earth Orientation Parameters | LLA to ECEF Position | ECEF Position to LLA | Geocentric
to Geodetic Latitude | Geodetic to Geocentric Latitude

External Websites
https://www.iers.org
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Direction Cosine Matrix to Rodrigues
Convert direction cosine matrix to Euler-Rodrigues vector
Library: Aerospace Blockset / Utilities / Axes Transformations

Description
The Direction Cosine Matrix to Rodrigues block determines the 3-by-3 direction cosine matrix from a
three-element Euler-Rodrigues vector. The rotation used in this block is a passive transformation
between two coordinate systems. For more information on the direction cosine matrix, see
“Algorithms” on page 5-316.

Ports
Input

DCM — Direction cosine matrix
3-by-3 matrix

Direction cosine matrix, specified as a 3-by-3 matrix, from which to determine the Euler-Rodrigues
vector.
Data Types: double

Output

rod — Euler-Rodrigues vector
three-element vector

Euler-Rodrigues vector, returned as a three-element vector.
Data Types: double

Parameters
Action for invalid DCM — Block behavior

None (default) | Warning | Error

Block behavior when direction cosine matrix is invalid (not orthogonal).

• Warning — Displays warning and indicates that the direction cosine matrix is invalid.
• Error — Displays error and indicates that the direction cosine matrix is invalid.
• None — Does not display warning or error (default).

Programmatic Use
Block Parameter: action
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Type: character vector
Values: 'None' | 'Warning' | 'Error'
Default: 'None'
Data Types: char | string

Tolerance for DCM validation — Tolerance

eps(2) (default) | scalar

Tolerance of direction cosine matrix validity, specified as a scalar. The block considers the direction
cosine matrix valid if these conditions are true:

• The transpose of the direction cosine matrix times itself equals 1 within the specified tolerance
(transpose(n)*n == 1±tolerance)

• The determinant of the direction cosine matrix equals 1 within the specified tolerance (det(n)
== 1±tolerance).

Programmatic Use
Block Parameter: tolerance
Type: character vector
Values: 'eps(2)' | scalar
Default: 'eps(2)'
Data Types: double

Algorithms

An Euler-Rodrigues vector b  represents a rotation by integrating a direction cosine of a rotation axis
with the tangent of half the rotation angle as follows:

b = bx by bz

where:

bx = tan 1
2θ sx,

by = tan 1
2θ sy,

bz = tan 1
2θ sz

are the Rodrigues parameters. Vector s  represents a unit vector around which the rotation is
performed. Due to the tangent, the rotation vector is indeterminate when the rotation angle equals
±pi radians or ±180 deg. Values can be negative or positive.

Version History
Introduced in R2017a
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References
[1] Dai, J.S. "Euler-Rodrigues formula variations, quaternion conjugation and intrinsic connections."

Mechanism and Machine Theory, 92, 144-152. Elsevier, 2015.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Rodrigues to Direction Cosine Matrix | Rodrigues to Quaternions | Rodrigues to Rotation Angles |
Quaternions to Rodrigues | Rotation Angles to Rodrigues
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Direction Cosine Matrix to Quaternions
Convert direction cosine matrix to quaternion vector
Library: Aerospace Blockset / Utilities / Axes Transformations

Description
The Direction Cosine Matrix to Quaternions block transforms a 3-by-3 direction cosine matrix (DCM)
into a four-element unit quaternion vector (q0, q1, q2, q3). Aerospace Blockset uses quaternions that
are defined using the scalar-first convention. The DCM performs the coordinate transformation of a
vector in inertial axes to a vector in body axes. For more information on the direction cosine matrix,
see “Algorithms” on page 5-319.

Ports
Input

DCMbe — Direction cosine matrix
3-by-3 matrix

Direction cosine matrix to transform the direction cosine matrix to quaternions, specified as a 3-by-3.
Data Types: double

Output

q — Quaternion
4-by-1 vector

Quaternion returned by transformation as a 4-by-1 vector.
Data Types: double

Parameters
Action for invalid DCM — Block behavior
None (default) | Warning | Error

Block behavior when the direction cosine matrix is invalid (not orthogonal).

• Warning — Displays warning indicating that the direction cosine matrix is invalid.
• Error — Displays error indicating that the direction cosine matrix is invalid.
• None — Does not display warning or error (default).

Programmatic Use
Block Parameter: action
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Type: character vector
Values: 'None' | 'Warning' | 'Error'
Default: 'None'
Data Types: char | string

Tolerance for DCM validation — Tolerance

eps(2) (default) | scalar

Tolerance of the direction cosine matrix validity, specified as a scalar. The block considers the
direction cosine matrix valid if these conditions are true:

• The transpose of the direction cosine matrix times itself equals 1 within the specified tolerance
(transpose(n)*n == 1±tolerance).

• The determinant of the direction cosine matrix equals 1 within the specified tolerance (det(n)
== 1±tolerance).

Programmatic Use
Block Parameter: tolerance
Type: character vector
Values: 'eps(2)' | scalar
Default: 'eps(2)'
Data Types: double

Algorithms
The DCM is defined as a function of a unit quaternion vector by the following:

DCM =

(q0
2 + q1

2− q2
2− q3

2) 2(q1q2 + q0q3) 2(q1q3− q0q2)

2(q1q2− q0q3) (q0
2− q1

2 + q2
2− q3

2) 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3− q0q1) (q0
2− q1

2− q2
2 + q3

2)

Using this representation of the DCM, a number of calculations arrive at the correct quaternion. The
first of these is to calculate the trace of the DCM to determine which algorithms are used. If the trace
is greater than zero, the quaternion can be automatically calculated. When the trace is less than or
equal to zero, the major diagonal element of the DCM with the greatest value must be identified to
determine the final algorithm used to calculate the quaternion. Once the major diagonal element is
identified, the quaternion is calculated.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.
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See Also
Direction Cosine Matrix to Rotation Angles | Rotation Angles to Direction Cosine Matrix | Rotation
Angles to Quaternions | Quaternions to Direction Cosine Matrix | Quaternions to Rotation Angles
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Direction Cosine Matrix to Rotation Angles
Convert direction cosine matrix to rotation angles
Library: Aerospace Blockset / Utilities / Axes Transformations

Description
The Direction Cosine Matrix to Rotation Angles block converts the first, second, and third rotation
angles of a 3-by-3 direction cosine matrix (DCM) into the rotation angles R1, R2, and R3, respectively.
The DCM matrix performs the coordinate transformation of a vector in inertial axes into a vector in
body axes. The block Rotation Order parameter specifies the order of the block output rotations. For
example, if Rotation Order has a value of ZYX, the block outputs are in the rotation order z-y-x (psi
theta phi).

Ports
Input

DCMbe — Direction cosine matrix
3-by-3 matrix

Direction cosine matrix from which to determine the rotation angles, specified as a 3-by-3 matrix.
Data Types: double

Output

[R1,R2,R3] — Rotation angles
3-by-1 vector

Rotation angles, returned as a 3-by-1 vector, in radians.
Data Types: double

Parameters
Rotation Order — Block output rotation order

ZYX (default) | ZYZ | ZXY | ZXZ | YXZ | YXY | YZX | YZY | XYZ | XYX | XZY | XZX

Rotation order for three wind rotation angles.

For the ZYX, ZXY, YXZ, YZX, XYZ, and XZY rotations, the block generates an R2 angle that lies
between ±pi/2 radians, and R1 and R3 angles that lie between ±pi radians.

For the 'ZYZ', 'ZXZ', 'YXY', 'YZY', 'XYX', and 'XZX' rotations, the block generates an R2 angle
that lies between 0 and pi radians, and R1 and R3 angles that lie between ±pi radians. However, in
the latter case, R3 is set to 0 radians.
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Programmatic Use
Block Parameter: rotationOrder
Type: character vector
Values: 'ZYX' | 'ZYZ' |'ZXY' | 'ZXZ' | 'YXZ' | 'YXY' | 'YZX' | 'YZY' | 'XYZ' | 'XYX' | 'XZY' |
'XZX'
Default: 'ZYX'

Action for invalid DCM — Block behavior
None (default) | Warning | Error

Block behavior when the direction cosine matrix is invalid (not orthogonal).

• Warning — Displays warning indicating that the direction cosine matrix is invalid.
• Error — Displays error indicating that the direction cosine matrix is invalid.
• None — Does not display warning or error (default).

Programmatic Use
Block Parameter: action
Type: character vector
Values: 'None' | 'Warning' | 'Error'
Default: 'None'
Data Types: char | string

Tolerance for DCM validation — Tolerance

eps(2) (default) | scalar

Tolerance of the direction cosine matrix validity, specified as a scalar. The block considers the
direction cosine matrix valid if these conditions are true:

• The transpose of the direction cosine matrix times itself equals 1 within the specified tolerance
(transpose(n)*n == 1±tolerance).

• The determinant of the direction cosine matrix equals 1 within the specified tolerance (det(n)
== 1±tolerance).

Programmatic Use
Block Parameter: tolerance
Type: character vector
Values: 'eps(2)' | scalar
Default: 'eps(2)'
Data Types: double

Version History
Introduced in R2007b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

5 Blocks

5-322



See Also
Direction Cosine Matrix to Quaternions | Quaternions to Direction Cosine Matrix | Rotation Angles to
Direction Cosine Matrix
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Direction Cosine Matrix to Wind Angles
Convert direction cosine matrix to wind angles
Library: Aerospace Blockset / Utilities / Axes Transformations

Description
The Direction Cosine Matrix to Wind Angles block converts a 3-by-3 direction cosine matrix (DCM)
into three wind rotation angles. The DCM matrix performs the coordinate transformation of a vector
in earth axes (ox0, oy0, oz0) into a vector in wind axes (ox3, oy3, oz3). For more information on the
direction cosine matrix, see “Algorithms” on page 5-325.

This implementation generates a flight path angle that lies between ±90 degrees, and bank and
heading angles that lie between ±180 degrees.

Ports
Input

DCMwe — Direction cosine matrix
3-by-3 matrix

Direction cosine matrix, specified as a 3-by-3 matrix, to transform Earth-fixed vectors to wind-fixed
vectors.
Data Types: double

Output

μ γ x — Wind angles
3-by-1 vector

Wind angles (bank, flight path, heading), returned as a 3-by-1 vector, in radians.
Data Types: double

Parameters
Action for invalid DCM — Block behavior

None (default) | Warning | Error

Block behavior when the direction cosine matrix is invalid (not orthogonal).

• Warning — Displays warning indicating that the direction cosine matrix is invalid.
• Error — Displays error indicating that the direction cosine matrix is invalid.
• None — Does not display warning or error (default).
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Programmatic Use
Block Parameter: action
Type: character vector
Values: 'None' | 'Warning' | 'Error'
Default: 'None'
Data Types: char | string

Tolerance for DCM validation — Tolerance

eps(2) (default) | scalar

Tolerance of the direction cosine matrix validity, specified as a scalar. The block considers the
direction cosine matrix valid if these conditions are true:

• The transpose of the direction cosine matrix times itself equals 1 within the specified tolerance
(transpose(n)*n == 1±tolerance).

• The determinant of the direction cosine matrix equals 1 within the specified tolerance (det(n)
== 1±tolerance).

Programmatic Use
Block Parameter: tolerance
Type: character vector
Values: 'eps(2)' | scalar
Default: 'eps(2)'
Data Types: double

Algorithms
The DCM matrix performs the coordinate transformation of a vector in earth axes (ox0, oy0, oz0) into a
vector in wind axes (ox3, oy3, oz3). The order of the axis rotations required to bring this about is:

1 A rotation about oz0 through the heading angle (χ) to axes (ox1, oy1, oz1)
2 A rotation about oy1 through the flight path angle (γ) to axes (ox2, oy2, oz2)
3 A rotation about ox2 through the bank angle (μ) to axes (ox3, oy3, oz3)

ox3
oy3
oz3

= DCMwe

ox0
oy0
oz0

ox3
oy3
oz3

=
1 0 0
0 cosμ sinμ
0 −sinμ cosμ

cosγ 0 −sinγ
0 1 0

sinγ 0 cosγ

cosχ sinχ 0
−sinχ cosχ 0

0 0 1

ox0
oy0
oz0

Combining the three axis transformation matrices defines the following DCM.

DCMwe =
cosγcosχ cosγsinχ −sinγ

(sinμsinγcosχ − cosμsinχ) (sinμsinγsinχ + cosμcosχ) sinμcosγ
(cosμsinγcosχ + sinμsinχ) (cosμsinγsinχ − sinμcosχ) cosμcosγ

To determine wind angles from the DCM, the following equations are used:
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μ = atan DCM(2, 3)
DCM(3, 3)

γ = asin −DCM(1, 3)

χ = atan DCM(1, 2)
DCM(1, 1)

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Direction Cosine Matrix Body to Wind | Direction Cosine Matrix Body to Wind to Alpha and Beta |
Direction Cosine Matrix to Rotation Angles | Rotation Angles to Direction Cosine Matrix | Wind
Angles to Direction Cosine Matrix
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Discrete Wind Gust Model
Generate discrete wind gust
Library: Aerospace Blockset / Environment / Wind

Description
The Discrete Wind Gust Model block implements a wind gust of the standard “1-cosine” shape. This
block implements the mathematical representation in the Military Specification MIL-F-8785C [1]. The
gust is applied to each axis individually, or to all three axes at once. You specify the gust amplitude
(the increase in wind speed generated by the gust), the gust length (length, in meters, over which the
gust builds up) and the gust start time. For more information on the gust shape, see “Algorithms” on
page 5-329.

The Discrete Wind Gust Model block can represent the wind speed in units of feet per second, meters
per second, or knots.

Ports
Input

V — Air speed
scalar

Airspeed, specified as a scalar, in selected units.
Data Types: double

Output

Vwind — Wind speed
scalar

Wind speed, returned as a scalar, in selected units.
Data Types: double

Parameters
Units — Units

Metric (MKS) (default) | English (Velocity in ft/s) | English (Velocity in kts)

Units of wind gust, specified as:

Units Wind Altitude
Metric (MKS) Meters/second Meters

 Discrete Wind Gust Model

5-327



Units Wind Altitude
English (Velocity in ft/s) Feet/second Feet
English (Velocity in kts) Knots Feet

Programmatic Use
Block Parameter: units
Type: character vector
Values: 'Metric (MKS)' | 'English (Velocity in ft/s)' | 'English (Velocity in
kts)'
Default: 'Metric (MKS)'

Gust in u-axis — Wind gust to u-axis

on (default) | off

To apply a wind gust to the u-axis in the body frame, select this check box. Otherwise, clear this
check box.
Programmatic Use
Block Parameter: Gx
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Gust in v-axis — Wind gust to v-axis

on (default) | off

To apply a wind gust to the v-axis in the body frame, select this check box. Otherwise, clear this check
box.
Programmatic Use
Block Parameter: Gy
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Gust in w-axis — Wind gust to w-axis

on (default) | off

To apply a wind gust to the w-axis in the body frame, select this check box. Otherwise, clear this
check box.
Programmatic Use
Block Parameter: Gz
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Gust start time (sec) — Gust start time

5 (default) | scalar

Model time, specified as a scalar, at which the gust begins, in seconds.
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Programmatic Use
Block Parameter: t_0
Type: character vector
Values: scalar
Default: '5'

Gust length [dx dy dz] (m) — Gust length

[120 120 80] (default)

The length, in meters or feet (depending on the choice of units), over which the gust builds up in each
axis. These values must be positive.

Programmatic Use
Block Parameter: d_m
Type: character vector
Values: vector
Default: '[120 120 80]'

Gust amplitude [ug vg wg] (m/s) — Gust amplitude

[3.5 3.5 3.0] (default)

The magnitude of the increase in wind speed caused by the gust in each axis. These values may be
positive or negative.

Programmatic Use
Block Parameter: d_m
Type: character vector
Values: vector
Default: '[3.5 3.5 3.0]'

Algorithms
This figure shows the shape of the gust with a start time of zero. The parameters that govern the gust
shape are indicated on the diagram.
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To assess airplane response to large wind disturbances, you can use the discrete gust singly or in
multiples.

The mathematical representation of the discrete gust is:

Vwind =

0 x < 0
Vm
2 1− cos πx

dm
0 ≤ x ≤ dm

Vm x > dm

where Vm is the gust amplitude, dm is the gust length, x is the distance traveled, and Vwind is the
resultant wind velocity in the body axis frame.

Version History
Introduced before R2006a

References
[1] U.S. Military Specification MIL-F-8785C, November 5, 1980.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Dryden Wind Turbulence Model (Continuous) | Dryden Wind Turbulence Model (Discrete) | Von
Karman Wind Turbulence Model (Continuous)
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Topics
“NASA HL-20 Lifting Body Airframe” on page 3-14
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Dryden Wind Turbulence Model (Continuous)
Generate continuous wind turbulence with Dryden velocity spectra
Library: Aerospace Blockset / Environment / Wind

Description
The Dryden Wind Turbulence Model (Continuous) block uses the Dryden spectral representation to
add turbulence to the aerospace model by passing band-limited white noise through appropriate
forming filters. This block implements the mathematical representation in the Military Specification
MIL-F-8785C, Military Handbook MIL-HDBK-1797, Military Handbook MIL-HDBK-1797B.

Limitations
The frozen turbulence field assumption is valid for the cases of mean-wind velocity and the root-
mean-square turbulence velocity, or intensity, is small relative to the aircraft ground speed.

The turbulence model describes an average of all conditions for clear air turbulence. These factors
are not incorporated into the model:

• Terrain roughness
• Lapse rate
• Wind shears
• Mean wind magnitude
• Other meteorological factors

Ports
Input

h — Altitude
scalar

Altitude, specified as a scalar, in selected units.
Data Types: double

V — Aircraft speed
scalar

Aircraft speed, specified as a scalar, in selected units.
Data Types: double

DCM — Direction cosine matrix
3-by-3 matrix
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Direction cosine matrix, specified as a 3-by-3 matrix representing the flat Earth coordinates to body-
fixed axis coordinates.
Data Types: double

Output

Vwind — Turbulence velocities
three-element vector

Turbulence velocities, returned as a three-element vector in the same body coordinate reference as
the DCM input, in specified units.
Data Types: double

ωwind — Turbulence angular rates
three-element vector

Turbulence angular rates, specified as a three-element vector, in radians per second.
Data Types: double

Parameters
Units — Wind speed units

Metric (MKS) (default) | English (Velocity in ft/s) | English (Velocity in kts)

Units of wind speed due to turbulence, specified as:

Units Wind Velocity Altitude Air Speed
Metric (MKS) Meters/second Meters Meters/second
English (Velocity
in ft/s)

Feet/second Feet Feet/second

English (Velocity
in kts)

Knots Feet Knots

Programmatic Use
Block Parameter: units
Type: character vector
Values: 'Metric (MKS)' | 'English (Velocity in ft/s)' | 'English (Velocity in
kts)'
Default: 'Metric (MKS)'

Specification — Military reference

MIL-F-8785C (default) | MIL-HDBK-1797 | MIL-HDBK-1797B

Military reference, which affects the application of turbulence scale lengths in the lateral and vertical
directions, specified as MIL-F-8785C, MIL-HDBK-1797, or MIL-HDBK-1797B.

Programmatic Use
Block Parameter: spec
Type: character vector
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Values: 'MIL-F-8785C' | 'MIL-HDBK-1797' | 'MIL-HDBK-1797B'
Default: 'MIL-F-8785C'

Model type — Turbulence model
Continuous Dryden (+q -r) (default) | Continuous Von Karman (+q +r) | Continuous
Von Karman (-q +r) | Continuous Von Karman (+q -r) | Continuous Dryden (+q +r) |
Continuous Dryden (-q +r) | Discrete Dryden (+q -r) | Discrete Dryden (+q +r) |
Discrete Dryden (-q +r)

Wind turbulence model, specified as:

Continuous Von Karman (+q -r) Use continuous representation of Von Kármán
velocity spectra with positive vertical and
negative lateral angular rates spectra.

Continuous Von Karman (+q +r) Use continuous representation of Von Kármán
velocity spectra with positive vertical and lateral
angular rates spectra.

Continuous Von Karman (-q +r) Use continuous representation of Von Kármán
velocity spectra with negative vertical and
positive lateral angular rates spectra.

Continuous Dryden (+q -r) Use continuous representation of Dryden velocity
spectra with positive vertical and negative lateral
angular rates spectra.

Continuous Dryden (+q +r) Use continuous representation of Dryden velocity
spectra with positive vertical and lateral angular
rates spectra.

Continuous Dryden (-q +r) Use continuous representation of Dryden velocity
spectra with negative vertical and positive lateral
angular rates spectra.

Discrete Dryden (+q -r) Use discrete representation of Dryden velocity
spectra with positive vertical and negative lateral
angular rates spectra.

Discrete Dryden (+q +r) Use discrete representation of Dryden velocity
spectra with positive vertical and lateral angular
rates spectra.

Discrete Dryden (-q +r) Use discrete representation of Dryden velocity
spectra with negative vertical and positive lateral
angular rates spectra.

The Continuous Dryden selections conform to the transfer function descriptions.

Programmatic Use
Block Parameter: model
Type: character vector
Values: 'Continuous Von Karman (+q +r)' | 'Continuous Von Karman (-q +r)' |
'Continuous Dryden (+q -r)' | 'Continuous Dryden (+q +r)' | 'Continuous Dryden
(-q +r)' | 'Discrete Dryden (+q -r)' | 'Discrete Dryden (+q +r)' | 'Discrete
Dryden (-q +r)'
Default: 'Continuous Dryden (+q +r)'
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Wind speed at 6 m defines the low altitude intensity — Measured wind speed

15 (default) | real scalar

Measured wind speed at a height of 20 feet (6 meters), specified as a real scalar, which provides the
intensity for the low-altitude turbulence model.

Programmatic Use
Block Parameter: W20
Type: character vector
Values: real scalar
Default: '15'

Wind direction at 6 m (degrees clockwise from north) — Measured wind direction

0 (default) | real scalar

Measured wind direction at a height of 20 feet (6 meters), specified as a real scalar, which is an angle
to aid in transforming the low-altitude turbulence model into a body coordinates.

Programmatic Use
Block Parameter: Wdeg
Type: character vector
Values: real scalar
Default: '0'

Probability of exceedance of high-altitude intensity — Turbulence intensity

10^-2 - Light (default) | 10^-1 | 2x10^-1 | 10^-3 - Moderate | 10^-4 | 10^-5 - Severe |
10^-6

Probability of the turbulence intensity being exceeded, specified as 10^-2 - Light, 10^-1,
2x10^-1, 10^-3 - Moderate, 10^-4, 10^-5 - Severe, or 10^-6. Above 2000 feet, the
turbulence intensity is determined from a lookup table that gives the turbulence intensity as a
function of altitude and the probability of the turbulence intensity being exceeded.

Programmatic Use
Block Parameter: TurbProb
Type: character vector
Values: '2x10^-1' | '10^-1' | '10^-2 - Light' | '10^-3 - Moderate' | '10^-4' | '10^-5 -
Severe' | '10^-6'
Default: '10^-2 - Light'

Scale length at medium/high altitudes (m) — Turbulence scale length
533.4 (default) | real scalar

Turbulence scale length above 2000 feet, specified as a real scalar, which is assumed constant. MIL-
F-8785C and MIL-HDBK-1797/1797B recommend 1750 feet for the longitudinal turbulence scale
length of the Dryden spectra.

Note An alternative scale length value changes the power spectral density asymptote and gust load.
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Programmatic Use
Block Parameter: L_high
Type: character vector
Values: real scalar
Default: '533.4'

Wingspan — Wingspan

10 (default) | real scalar

Wingspan, specified as a real scalar, which is required in the calculation of the turbulence on the
angular rates.

Programmatic Use
Block Parameter: Wingspan
Type: character vector
Values: real scalar
Default: '10'

Band limited noise sample time (seconds) — Noise sample time

0.1 (default) | real scalar

Noise sample time, specified as a real scalar, at which the unit variance white noise signal is
generated.

Programmatic Use
Block Parameter: ts
Type: character vector
Values: real scalar
Default: '0.1'

Random noise seeds — Noise seeds [ug vg wg pg]

[23341 23342 23343 23344] (default) | four-element vector

Random noise seeds, specified as a four-element vector, which are used to generate the turbulence
signals, one for each of the three velocity components and one for the roll rate:

The turbulences on the pitch and yaw angular rates are based on further shaping of the outputs from
the shaping filters for the vertical and lateral velocities.

Programmatic Use
Block Parameter: Seed
Type: character vector
Values: four-element vector
Default: '[23341 23342 23343 23344]'

Turbulence on — Turbulence signals

on (default) | off

To generate the turbulence signals, select this check box.
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Programmatic Use
Block Parameter: T_on
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Algorithms
Turbulence is a stochastic process defined by velocity spectra. For an aircraft flying at a speed V
through a frozen turbulence field with a spatial frequency of Ω radians per meter, the circular
frequency ω is calculated by multiplying V by Ω. MIL-F-8785C and MIL-HDBK-1797/1797B provide
these definitions of longitudinal, lateral, and vertical component spectra functions:

 MIL-F-8785C MIL-HDBK-1797 and MIL-HDBK-1797B
Longitudinal

Φu ω 2σu
2Lu

πV ⋅ 1
1 + Lu

ω
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2
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ω
V

2
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2 2
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2

1 + 4bω
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V
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where:

• b represents the aircraft wingspan.
• Lu, Lv, Lw represent the turbulence scale lengths.
• σu, σv, σw represent the turbulence intensities.

The spectral density definitions of turbulence angular rates are defined in the specifications as three
variations:
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pg =
∂wg
∂y

pg =
∂wg
∂y

pg = −
∂wg
∂y

qg =
∂wg
∂x

qg =
∂wg
∂x

qg = −
∂wg
∂x

rg = −
∂vg
∂x

rg =
∂vg
∂x

rg =
∂vg
∂x

The variations affect only the vertical (qg) and lateral (rg) turbulence angular rates.

The longitudinal turbulence angular rate spectrum,

Φpg(ω)

is a rational function. The rational function is derived from curve-fitting a complex algebraic function,
not the vertical turbulence velocity spectrum, Φw(ω), multiplied by a scale factor. The variations exist
because the turbulence angular rate spectra contribute less to the aircraft gust response than the
turbulence velocity.

The variations result in these combinations of vertical and lateral turbulence angular rate spectra.

Vertical Lateral
Φq(ω)

Φq(ω)

−Φq(ω)

−Φr(ω)

Φr(ω)

Φr(ω)

To generate a signal with correct characteristics, a band-limited white noise signal is passed through
forming filters. The forming filters are derived from the spectral square roots of the spectrum
equations.

MIL-F-8785C and MIL-HDBK-1797/1797B provide these transfer functions:

 MIL-F-8785C MIL-HDBK-1797 and MIL-HDBK-1797B
Longitudinal

Hu(s)
σu

2Lu
πV ⋅ 1

1 +
Lu
V s

σu
2Lu
πV ⋅ 1

1 +
Lu
V s

Hp(s)
σw

0.8
V ⋅

π
4b

1 6

Lw1 3 1 + 4b
πV s

σw
0.8
V ⋅

π
4b

1 6

2Lw
1 3 1 + 4b

πV s

Lateral
Hv(s)

σv
Lv
πV ⋅

1 +
3Lv
V s

1 +
Lv
V s

2 σv
2Lv
πV ⋅

1 +
2 3Lv

V s

1 +
2Lv
V s

2
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 MIL-F-8785C MIL-HDBK-1797 and MIL-HDBK-1797B
Hr(s) ∓ s

V

1 + 3b
πV s

⋅ Hv(s)
∓ s

V

1 + 3b
πV s

⋅ Hv(s)

Vertical
Hw(s)

σw
Lw
πV ⋅

1 +
3Lw
V s

1 +
Lw
V s

2 σw
2Lw
πV ⋅

1 +
2 3Lw

V s

1 +
2Lw

V s
2

Hq(s) ± s
V

1 + 4b
πV s

⋅ Hw(s)
± s

V

1 + 4b
πV s

⋅ Hw(s)

Divided into two distinct regions, the turbulence scale lengths and intensities are functions of
altitude.

Note The military specifications result in the same transfer function after evaluating the turbulence
scale lengths. The differences in turbulence scale lengths and turbulence transfer functions balance
offset.

Low-Altitude Model (Altitude Under 1000 Feet)

According to the military references, the turbulence scale lengths at low altitudes, where h is the
altitude in feet, are represented in the following table:

MIL-F-8785C MIL-HDBK-1797 and MIL-HDBK-1797B
Lw = h

Lu = Lv = h
0.177 + 0.000823h 1.2

2Lw = h

Lu = 2Lv = h
0.177 + 0.000823h 1.2

Typically, at 20 feet (6 meters) the wind speed is 15 knots in light turbulence, 30 knots in moderate
turbulence, and 45 knots for severe turbulence. See these turbulence intensities, where W20 is the
wind speed at 20 feet (6 meters).

σw = 0.1W20
σu
σw

=
σv
σw

= 1
0.177 + 0.000823h 0.4

The turbulence axes orientation in this region is defined as:

• Longitudinal turbulence velocity, ug, aligned along the horizontal relative mean wind vector.
• Vertical turbulence velocity, wg, aligned with vertical.

At this altitude range, the output of the block is transformed into body coordinates.
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Medium/High Altitudes (Altitude Above 2000 Feet)

Turbulence scale lengths and intensities for medium-to-high altitudes the are based on the
assumption that the turbulence is isotropic. MIL-F-8785C and MIL-HDBK-1797/1797B provide these
representations of scale lengths:

MIL-F-8785C MIL-HDBK-1797 and MIL-HDBK-1797B
L u = L v = L w = 1750 ft L u = 2L v = 2L w = 1750 ft

The turbulence intensities are determined from a lookup table that provides the turbulence intensity
as a function of altitude and the probability of the turbulence intensity being exceeded. The
relationship of the turbulence intensities is represented in the following equation:

σu = σv = σw.

The turbulence axes orientation in this region is defined as being aligned with the body coordinates.

Between Low and Medium/High Altitudes (Between 1000 and 2000 Feet)

At altitudes between 1000 and 2000, the turbulence velocities and turbulence angular rates are
determined by linearly interpolating between the value from the low-altitude model at 1000 feet
transformed from mean horizontal wind coordinates to body coordinates and the value from the high-
altitude model at 2000 feet in body coordinates.

Version History
Introduced before R2006a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Dryden Wind Turbulence Model (Discrete) | Discrete Wind Gust Model | Von Karman Wind
Turbulence Model (Continuous) | Wind Shear Model

Topics
“NASA HL-20 Lifting Body Airframe” on page 3-14
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Dryden Wind Turbulence Model (Discrete)
Generate discrete wind turbulence with Dryden velocity spectra
Library: Aerospace Blockset / Environment / Wind

Description
The Dryden Wind Turbulence Model (Discrete) block uses the Dryden spectral representation to add
turbulence to the aerospace model by using band-limited white noise with appropriate digital filter
finite difference equations. This block implements the mathematical representation in the Military
Specification MIL-F-8785C, Military Handbook MIL-HDBK-1797, and Military Handbook MIL-
HDBK-1797B. For more information, see “Algorithms” on page 5-347.

Limitations
The frozen turbulence field assumption is valid for the cases of mean-wind velocity and the root-
mean-square turbulence velocity, or intensity, is small relative to the aircraft's ground speed.

The turbulence model describes an average of all conditions for clear air turbulence because the
following factors are not incorporated into the model:

• Terrain roughness
• Lapse rate
• Wind shears
• Mean wind magnitude
• Other meteorological factions (except altitude)

Ports
Input

h — Altitude
scalar

Altitude, specified as a scalar, in selected units.
Data Types: double

V — Aircraft speed
scalar

Aircraft speed, specified as a scalar, in selected units.
Data Types: double

DCM — Direction cosine matrix
3-by-3 matrix
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Direction cosine matrix, specified as a 3-by-3 matrix representing the flat Earth coordinates to body-
fixed axis coordinates.
Data Types: double

Output

Vwind — Turbulence velocities
three-element vector

Turbulence velocities, returned as a three-element vector in the same body coordinate reference as
the DCM input, in specified units.
Data Types: double

ωwind — Turbulence angular rates
three-element vector

Turbulence angular rates, specified as a three-element vector, in radians per second.
Data Types: double

Parameters
Units — Wind speed units

Metric (MKS) (default) | English (Velocity in ft/s) | English (Velocity in kts)

Units of wind speed due to turbulence, specified as:

Units Wind Velocity Altitude Air Speed
Metric (MKS) Meters/second Meters Meters/second
English (Velocity
in ft/s)

Feet/second Feet Feet/second

English (Velocity
in kts)

Knots Feet Knots

Programmatic Use
Block Parameter: units
Type: character vector
Values: 'Metric (MKS)' | 'English (Velocity in ft/s)' | 'English (Velocity in
kts)'
Default: 'Metric (MKS)'

Specification — Military reference

MIL-F-8785C (default) | MIL-HDBK-1797 | MIL-HDBK-1797B

Military reference, which affects the application of turbulence scale lengths in the lateral and vertical
directions, specified as MIL-F-8785C, MIL-HDBK-1797, or MIL-HDBK-1797B.

Programmatic Use
Block Parameter: spec
Type: character vector
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Values: 'MIL-F-8785C' | 'MIL-HDBK-1797' | 'MIL-HDBK-1797B'
Default: 'MIL-F-8785C'

Model type — Turbulence model
Discrete Dryden (+q +r) (default) | Continuous Von Karman (+q +r) | Continuous Von
Karman (-q +r) | Continuous Dryden (+q -r) | Continuous Dryden (+q +r) |
Continuous Dryden (-q +r) | Discrete Dryden (+q -r) | Continuous Von Karman (+q
-r) | Discrete Dryden (-q +r)

Select the wind turbulence model to use:

Continuous Von Karman (+q -r) Use continuous representation of Von Kármán
velocity spectra with positive vertical and negative
lateral angular rates spectra.

Continuous Von Karman (+q +r) Use continuous representation of Von Kármán
velocity spectra with positive vertical and lateral
angular rates spectra.

Continuous Von Karman (-q +r) Use continuous representation of Von Kármán
velocity spectra with negative vertical and positive
lateral angular rates spectra.

Continuous Dryden (+q -r) Use continuous representation of Dryden velocity
spectra with positive vertical and negative lateral
angular rates spectra.

Continuous Dryden (+q +r) Use continuous representation of Dryden velocity
spectra with positive vertical and lateral angular
rates spectra.

Continuous Dryden (-q +r) Use continuous representation of Dryden velocity
spectra with negative vertical and positive lateral
angular rates spectra.

Discrete Dryden (+q -r) Use discrete representation of Dryden velocity
spectra with positive vertical and negative lateral
angular rates spectra.

Discrete Dryden (+q +r) Use discrete representation of Dryden velocity
spectra with positive vertical and lateral angular
rates spectra.

Discrete Dryden (-q +r) Use discrete representation of Dryden velocity
spectra with negative vertical and positive lateral
angular rates spectra.

The Discrete Dryden selections conform to the transfer function descriptions.

Programmatic Use
Block Parameter: model
Type: character vector
Values: 'Continuous Von Karman (+q +r)' | 'Continuous Von Karman (-q +r)' |
'Continuous Dryden (+q -r)' | 'Continuous Dryden (+q +r)' | 'Continuous Dryden
(-q +r)' | 'Discrete Dryden (+q -r)' | 'Discrete Dryden (+q +r)' | 'Discrete
Dryden (-q +r)'
Default: 'Discrete Dryden (+q +r)'
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Wind speed at 6 m defines the low altitude intensity — Measured wind speed

15 (default) | real scalar

Measured wind speed at a height of 20 feet (6 meters), specified as a real scalar, which provides the
intensity for the low-altitude turbulence model.

Programmatic Use
Block Parameter: W20
Type: character vector
Values: real scalar
Default: '15'

Wind direction at 6 m (degrees clockwise from north) — Measured wind direction

0 (default) | real scalar

Measured wind direction at a height of 20 feet (6 meters), specified as a real scalar, which is an angle
to aid in transforming the low-altitude turbulence model into a body coordinates.

Programmatic Use
Block Parameter: Wdeg
Type: character vector
Values: real scalar
Default: '0'

Probability of exceedance of high-altitude intensity — Turbulence intensity

10^-2 - Light (default) | 10^-1 | 2x10^-1 | 10^-3 - Moderate | 10^-4 | 10^-5 - Severe |
10^-6

Probability of the turbulence intensity being exceeded, specified as 10^-2 - Light, 10^-1,
2x10^-1, 10^-3 - Moderate, 10^-4, 10^-5 - Severe, or 10^-6. Above 2000 feet, the
turbulence intensity is determined from a lookup table that gives the turbulence intensity as a
function of altitude and the probability of the turbulence intensity being exceeded.

Programmatic Use
Block Parameter: TurbProb
Type: character vector
Values: '2x10^-1' | '10^-1' | '10^-2 - Light' | '10^-3 - Moderate' | '10^-4' | '10^-5 -
Severe' | '10^-6'
Default: '10^-2 - Light'

Scale length at medium/high altitudes (m) — Turbulence scale length
533.4 (default) | real scalar

Turbulence scale length above 2000 feet, specified as a real scalar, which is assumed constant. From
the military references, a figure of 1750 feet is recommended for the longitudinal turbulence scale
length of the Dryden spectra.

Note An alternate scale length value changes the power spectral density asymptote and gust load.
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Programmatic Use
Block Parameter: L_high
Type: character vector
Values: real scalar
Default: '533.4'

Wingspan — Wingspan

10 (default) | real scalar

Wingspan, specified as a real scalar, which is required in the calculation of the turbulence on the
angular rates.

Programmatic Use
Block Parameter: Wingspan
Type: character vector
Values: real scalar
Default: '10'

Band limited noise sample time (seconds) — Noise sample time

0.1 (default) | real scalar

Noise sample time, specified as a real scalar, at which the unit variance white noise signal is
generated.

Programmatic Use
Block Parameter: ts
Type: character vector
Values: real scalar
Default: '0.1'

Random noise seeds — Noise seeds [ug vg wg pg]

[23341 23342 23343 23344] (default) | four-element vector

Random noise seeds, specified as a four-element vector, which are used to generate the turbulence
signals, one for each of the three velocity components and one for the roll rate:

The turbulences on the pitch and yaw angular rates are based on further shaping of the outputs from
the shaping filters for the vertical and lateral velocities.

Programmatic Use
Block Parameter: Seed
Type: character vector
Values: four-element vector
Default: '[23341 23342 23343 23344]'

Turbulence on — Turbulence signals

on (default) | off

To generate the turbulence signals, select this check box.
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Programmatic Use
Block Parameter: T_on
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Algorithms
According to the military references, turbulence is a stochastic process defined by velocity spectra.
For an aircraft flying at a speed V through a frozen turbulence field with a spatial frequency of Ω
radians per meter, the circular frequency ω is calculated by multiplying V by Ω. The following table
displays the component spectra functions:

 MIL-F-8785C MIL-HDBK-1797 and MIL-
HDBK-1797B

Longitudinal
Φu ω 2σu

2Lu
πV ⋅ 1

1 + Lu
ω
V

2
2σu

2Lu
πV ⋅ 1

1 + Lu
ω
V

2

Φp(ω)
σw

2

VLw
⋅

0.8
πLw
4b

1 3

1 + 4bω
πV

2
σw

2

2VLw
⋅

0.8
2πLw

4b

1 3

1 + 4bω
πV

2

Lateral
Φv(ω)

σv
2Lv
πV ⋅

1 + 3 Lv
ω
V

2

1 + Lv
ω
V

2 2
2σv

2Lv
πV ⋅

1 + 12 Lv
ω
V

2

1 + 4 Lv
ω
V

2 2

Φr(ω) ∓ ω
V

2

1 + 3bω
πV

2 ⋅ Φv ω
∓ ω

V
2

1 + 3bω
πV

2 ⋅ Φv ω

Vertical
Φw(ω)

σw
2 Lw
πV ⋅

1 + 3 Lw
ω
V

2

1 + Lw
ω
V

2 2
2σw

2 Lw
πV ⋅

1 + 12 Lw
ω
V

2

1 + 4 Lw
ω
V

2 2

Φq(ω) ± ω
V

2

1 + 4bω
πV

2 ⋅ Φw ω
± ω

V
2

1 + 4bω
πV

2 ⋅ Φw ω

The variable b represents the aircraft wingspan. The variables Lu, Lv, Lw represent the turbulence
scale lengths. The variables σu, σv, σw represent the turbulence intensities.

The spectral density definitions of turbulence angular rates are defined in the references as three
variations, which are displayed in the following table:
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pg =
∂wg
∂y

pg =
∂wg
∂y

pg = −
∂wg
∂y

qg =
∂wg
∂x

qg =
∂wg
∂x

qg = −
∂wg
∂x

rg = −
∂vg
∂x

rg =
∂vg
∂x

rg =
∂vg
∂x

The variations affect only the vertical (qg) and lateral (rg) turbulence angular rates.

Keep in mind that the longitudinal turbulence angular rate spectrum, Φp(ω), is a rational function.
The rational function is derived from curve-fitting a complex algebraic function, not the vertical
turbulence velocity spectrum, Φw(ω), multiplied by a scale factor. Because the turbulence angular
rate spectra contribute less to the aircraft gust response than the turbulence velocity spectra, it may
explain the variations in their definitions.

The variations lead to the following combinations of vertical and lateral turbulence angular rate
spectra:

Vertical Lateral
Φq(ω)

Φq(ω)

−Φq(ω)

−Φr(ω)

Φr(ω)

Φr(ω)

To generate a signal with the correct characteristics, a unit variance, band-limited white noise signal
is used in the digital filter finite difference equations.

The following table displays the digital filter finite difference equations:

 MIL-F-8785C MIL-HDBK-1797 and MIL-HDBK-1797B
Longitudinal

ug 1− V
Lu

T ug + 2 V
Lu

T
σu
ση

η1 1− V
Lu

T ug + 2 V
Lu

T
σu
ση

η1

pg 1− 2.6
LwbT pg +

2 2.6
LwbT 0.95

2Lwb23

ση
η4

σw

MIL-HDBK-1797

1− 2.6
2LwbT pg +

2 2.6
2LwbT 1.9

2Lwb
ση

η4

σw
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 MIL-F-8785C MIL-HDBK-1797 and MIL-HDBK-1797B
MIL-HDBK-1797B

1− 2.6V
2LwbT pg +

2 2.6V
2LwbT 1.9

2Lwb
ση

η4

σw

Lateral
vg 1− V

Lu
T vg + 2 V

Lu
T

σv
ση

η2 1− V
Lu

T vg + 2 V
Lu

T
σv
ση

η2

rg 1− πV
3b T rg∓

π
3b vg− vgpast 1− πV

3b T rg∓
π
3b vg− vgpast

Vertical
wg 1− V

Lu
T wg + 2 V

Lu
T

σw
ση

η3 1− V
Lu

T wg + 2 V
Lu

T
σw
ση

η3

qg 1− πV
4b T qg ± π

4b wg−wgpast 1− πV
4b T qg ± π

4b wg−wgpast

Divided into two distinct regions, the turbulence scale lengths and intensities are functions of
altitude.

Low-Altitude Model (Altitude < 1000 feet)

According to the military references, the turbulence scale lengths at low altitudes, where h is the
altitude in feet, are represented in the following table:

MIL-F-8785C MIL-HDBK-1797 and MIL-HDBK-1797B
Lw = h

Lu = Lv = h
0.177 + 0.000823h 1.2

2Lw = h

Lu = 2Lv = h
0.177 + 0.000823h 1.2

The turbulence intensities are given below, where W20 is the wind speed at 20 feet (6 m). Typically for
light turbulence, the wind speed at 20 feet is 15 knots; for moderate turbulence, the wind speed is 30
knots, and for severe turbulence, the wind speed is 45 knots.

σw = 0.1W20
σu
σw

=
σv
σw

= 1
0.177 + 0.000823h 0.4

The turbulence axes orientation in this region is defined as follows:

• Longitudinal turbulence velocity, ug, aligned along the horizontal relative mean wind vector
• Vertical turbulence velocity, wg, aligned with vertical.

At this altitude range, the output of the block is transformed into body coordinates.
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Medium/High Altitudes (Altitude > 2000 feet)

For medium to high altitudes the turbulence scale lengths and intensities are based on the
assumption that the turbulence is isotropic. In the military references, the scale lengths are
represented by the following equations:

MIL-F-8785C MIL-HDBK-1797 and MIL-HDBK-1797B
L u = L v = L w = 1750 ft L u = 2 L v = 2 L w = 1750 ft

The turbulence intensities are determined from a lookup table that provides the turbulence intensity
as a function of altitude and the probability of the turbulence intensity being exceeded. The
relationship of the turbulence intensities is represented in the following equation: σu = σv = σw.

The turbulence axes orientation in this region is defined as being aligned with the body coordinates.

Between Low and Medium/High Altitudes (1000 feet < Altitude < 2000 feet)

At altitudes between 1000 feet and 2000 feet, the turbulence velocities and turbulence angular rates
are determined by linearly interpolating between the value from the low altitude model at 1000 feet
transformed from mean horizontal wind coordinates to body coordinates and the value from the high
altitude model at 2000 feet in body coordinates.

Version History
Introduced before R2006a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Dryden Wind Turbulence Model (Continuous) | Discrete Wind Gust Model | Von Karman Wind
Turbulence Model (Continuous) | Wind Shear Model

Topics
“NASA HL-20 Lifting Body Airframe” on page 3-14
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Dynamic Pressure
Compute dynamic pressure using velocity and air density
Library: Aerospace Blockset / Flight Parameters

Description
The Dynamic Pressure block computes dynamic pressure.

Dynamic pressure is defined as:

q = 1
2ρV2,

where  is air density and V is velocity.

Ports
Input

V — Velocity
three-element vector

Velocity, specified as a three-element vector.
Data Types: double

ρ — Air density
scalar

Air density, specified as a scalar.
Data Types: double

Output

Output 1 — Dynamic pressure
scalar

Dynamic pressure, returned as a scalar.
Data Types: double

Version History
Introduced before R2006a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Aerodynamic Forces and Moments | Mach Number
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Earth Nutation
Implement Earth nutation
Library: Aerospace Blockset / Environment / Celestial Phenomena

Description
The Earth Nutation block implements the International Astronomical Union (IAU) 1980 nutation
series for a given Julian date The block uses the Chebyshev coefficients that the NASA Jet Propulsion
Laboratory provides.

The Epoch parameter controls the number of block inputs. If you select Julian date, the block has
one input port, if you select T0 and elapsed Julian time, the block has two input ports.

Tip For TJD, Julian date input for the block:

• Calculate the date using the Julian Date Conversion block or the Aerospace Toolbox juliandate
function.

• Calculate the Julian date using some other means and input it using the Constant block.

Ports
Input

TJD — Julian date
scalar | positive | between minimum and maximum Julian dates

Julian date, specified as a positive scalar between minimum and maximum Julian dates.

See the Ephemeris model parameter for the minimum and maximum Julian dates.

Dependencies

This port displays if the Epoch parameter is set to Julian date.
Data Types: double

T0JD — Fixed Julian date
scalar | positive

Fixed Julian date for a specific epoch that is the most recent midnight at or before the interpolation
epoch, specified as a positive scalar. The sum of T0JD and ΔTJD must fall between the minimum and
maximum Julian dates.

See the Ephemeris model parameter for the minimum and maximum Julian dates.
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Dependencies

This port displays if the Epoch parameter is set to T0 and elapsed Julian time.
Data Types: double

ΔTJD — Elapsed Julian time
scalar | positive

Elapsed Julian time between the fixed Julian date and the ephemeris time, specified as a positive
scalar. The sum of T0JD and ΔTJD must fall between the minimum and maximum Julian date.

See the Ephemeris model parameter for the minimum and maximum Julian dates.

Dependencies

This port displays if the Epoch parameter is set to T0 and elapsed Julian time.
Data Types: double

Output

Δψ Δε (rad) — Earth nutation
vector

Earth nutation, output as a vector of longitude (Δψ) and obliquity (Δε), in rad.
Data Types: double

Δψ dot Δεdot (rad/day) — Earth nutation angular rate
scalar

Earth nutation angular rate for the longitude (Δψ dot ) and obliquity (Δε dot ), specified as a scalar in
rad/day.

Dependencies

This port displays if the Calculate rates parameter is selected.
Data Types: double

Parameters
Epoch — Epoch

Julian date (default) | T0 and elapsed Julian time

Epoch, specified as:

• Julian date

Julian date to calculate the Earth nutation. When this option is selected, the block has one input
port, TJD.

• T0 and elapsed Julian time

Julian date, specified by two block inputs:
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• Fixed Julian date representing a starting epoch.
• Elapsed Julian time between the T0JD and the desired model simulation time. The sum of T0JD

and ΔTJD must fall between the minimum and maximum Julian dates.

Programmatic Use
Block Parameter: epochflag
Type: character vector
Values: Julian date | T0 and elapsed Julian time
Default: 'Julian date'

Ephemeris model — Ephemeris model

DE405 (default) | DE421 | DE423 | DE430

Select an Ephemeris model from the list defined by the Jet Propulsion Laboratory:

Ephemeris Model Description
DE405 Released in 1998. This ephemeris takes into account the Julian date range

2305424.50 (December 9, 1599) to 2525008.50 (February 20, 2201).

This block implements these ephemerides with respect to the International
Celestial Reference Frame version 1.0, adopted in 1998.

DE421 Released in 2008. This ephemeris takes into account the Julian date range
2414992.5 (December 4, 1899) to 2469808.5 (January 2, 2050).

This block implements these ephemerides with respect to the International
Celestial Reference Frame version 1.0, adopted in 1998.

DE423 Released in 2010. This ephemeris takes into account the Julian date range
2378480.5 (December 16, 1799) to 2524624.5 (February 1, 2200).

This block implements these ephemerides with respect to the International
Celestial Reference Frame version 2.0, adopted in 2010.

DE430 Released in 2013. This ephemeris takes into account the Julian date range
2287184.5 (December 21, 1549) to 2688976.5 (January 25, 2650).

This block implements these ephemerides with respect to the International
Celestial Reference Frame version 2.0, adopted in 2010.

Note This block requires that you download ephemeris data using the Add-On Explorer. To start the
Add-On Explorer, in the MATLAB Command Window, type aeroDataPackage. on the MATLAB
desktop toolstrip, click the Add-Ons button.

Programmatic Use
Block Parameter: de
Type: character vector
Values: DE405 | DE421 | DE423 | DE430
Default: 'DE405'

Action for out-of-range input — Out-of-range block behavior
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None (default) | Warning | Error

Out-of-range block behavior, specified as follows.

Action Description
None No action.
Warning Warning in the MATLAB Command Window, model simulation

continues.
Error (default) MATLAB returns an exception, model simulation stops.

Programmatic Use
Block Parameter: errorflag
Type: character vector
Values: 'None' | 'Warning' | 'Error'
Default: 'Error'

Calculate rates — Calculate rate of Earth nutation

on (default) | off

Calculate the rate of the Earth nutation by selecting this check box.

Dependencies

Select this check box to display the Δψ dot Δεdot port.

Programmatic Use
Block Parameter: velflag
Type: character vector
Values: 'off' | 'on' |
Default: 'on'

Version History
Introduced in R2013a

References
[1] Folkner, W. M., J. G. Williams, D. H. Boggs. "The Planetary and Lunar Ephemeris DE 421." IPN

Progress Report 42-178, 2009.

[2] Vallado, D. A., Fundamentals of Astrodynamics and Applications, McGraw-Hill, New York, 1997.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
aeroDataPackage | Moon Libration | Planetary Ephemeris
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Earth Orientation Parameters
Calculate Earth orientation parameters (EOP)
Library: Aerospace Blockset / Environment / Celestial Phenomena

Description
The Earth Orientation Parameters block calculates these parameters:

• Difference between the UTC and Universal Time (UT1)
• Movement of the rotation axis with respect to the crust of the Earth
• Adjustment to the location of the Celestial Intermediate Pole (CIP)

By default, this block uses a prepopulated list of International Earth Rotation and Reference Systems
Service (IERS) data. This list contains measured and calculated (predicted) data supplied by the
IERS. The IERS measures and calculates this data for a set of predetermined dates. For dates after
those listed in the prepopulated list, Earth Orientation Parameters calculates the ΔUT1 using this
equation, limiting the values to +/- 0.9 s:

UT1-UTC=0.5309-0.00123(MJD-57808)-(UT2-UT1) 

Use this block when your application uses Earth Centered Inertial to Earth Centered Earth Fixed
transformations, such as for high altitude applications.

Ports
Input

UTCMJD — UT1 for UTC
scalar

UT1 for UTC, specified as a scalar modified Julian date. Use the Julian Date Conversion block to
convert the UTC date to a modified Julian date.
Data Types: double

Output

ΔUT1 — Difference between UT1 and UTC
scalar

Difference between UT1 and UTC, specified as a scalar, in seconds.
Data Types: double

[xp,yp] — Polar displacement of Earth
vector
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Polar displacement of the Earth, [xp,yp], specified as a vector, in radians, from the motion of the
Earth crust, along the x- and y-axes.
Data Types: double

[dX,dY] — Adjustment to location of Celestial Intermediate Pole (CIP)
vector

Adjustment to the location of the Celestial Intermediate Pole (CIP), specified as a vector, in radians.
This location ([dX,dY]) is along the x- and y-axes.
Data Types: double

ΔUT1err — Return errors for the measured and predicted values in the IERS data
vector

Return errors for the measured and predicted values in the IERS data for the difference between UT1
and UTC, specified as a vector, in seconds.

Dependencies

This port is enabled when the Output parameter error is selected.

[xp,yp]err — Return errors for the measured and predicted values in the IERS data
vector

Return errors for the measured and predicted values in the IERS data for the polar displacement of
Earth, specified as a vector, in radians.

Dependencies

This port is enabled when the Output parameter error is selected.

[dX,dY]err — Return errors for the measured and predicted values in the IERS data
vector

Return errors for the measured and predicted values in the IERS data for the adjustment to location
of Celestial Intermediate Pole (CIP), specified as a vector, in radians.

Dependencies

This port is enabled when the Output parameter error is selected.

Parameters
IERS data file — Earth orientation data
aeroiersdata.mat (default) | MAT-file

Custom list of Earth orientation data, specified in a MAT-file.

Programmatic Use
Block Parameter: FileName
Type: character vector
Values: scalar
Default: 'aeroiersdata.mat'
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Output parameter error — Enable output ports to return errors
off (default) | on

Select this parameter to enable output ports to return errors for the measured and predicted values
in the IERS data file:

• Difference between UT1 and UTC
• Polar displacement of Earth
• Adjustment to location of Celestial Intermediate Pole (CIP)

Dependencies

Selecting this check box enables these ports:

• ΔUT1err

• [xp,yp]err

• [dX,dY]err

Programmatic Use
Block Parameter: OutputError
Type: character vector
Values: scalar
Default: 'off'

Action for out-of-range input — Out-of-range block behavior

Warning (default) | None | Error

Out-of-range block behavior, specified as follows.

Action Description
None No action.
Warning Warning in the MATLAB Command Window, model simulation

continues.
Error (default) MATLAB returns an exception, model simulation stops.

Programmatic Use
Block Parameter: action
Type: character vector
Values: 'None' | 'Warning' | 'Error'
Default: 'Warning'

IERS data URL — Web site or Earth orientation data file
http://maia.usno.navy.mil/ser7/finals2000A.data (default) | web site address | file name

Web site or Earth orientation data file containing the Earth orientation data according to the IAU
2000A, specified as a web site address or file name.

Note If you receive an error message while accessing the default site, use one of these alternate
sites:
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• https://datacenter.iers.org/data/latestVersion/
10_FINALS.DATA_IAU2000_V2013_0110.txt

• ftp://cddis.gsfc.nasa.gov/pub/products/iers/finals2000A.data

Programmatic Use
Block Parameter: FileName
Type: character vector
Values: scalar
Default: 'aeroiersdata.mat'

Destination folder — Folder for IERS data file
current Folder (default)

Folder for IERS data file, specified as a character array or string. Before running this function, create
foldername with write permission.

To create the IERS data file in the destination folder, click the Create button.

Programmatic Use
Block Parameter: FileName
Type: character vector
Values: scalar
Default: 'aeroiersdata.mat'

Version History
Introduced in R2018b

Updated aeroiersdata.mat file
Behavior changed in R2020b

The contents of the aeroiersdata.mat file have been updated. Correspondingly, the output of this
block will have different results when using the default value ('aeroiersdata.mat') as the value of
the IERS data file parameter. The results reflect more accurate external data from the International
Earth Rotation and Reference Systems Service (IERS).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
aeroReadIERSData | Delta UT1 | Direction Cosine Matrix ECI to ECEF

 Earth Orientation Parameters

5-361



ECEF Position to LLA
Calculate geodetic latitude, longitude, and altitude above planetary ellipsoid from Earth-centered
Earth-fixed (ECEF) position
Library: Aerospace Blockset / Utilities / Axes Transformations

Description
The ECEF Position to LLA block converts a 3-by-1 vector of ECEF position p  into geodetic latitude
μ , longitude ι , and altitude h  above the planetary ellipsoid. For more information on the ECEF

position, see “Algorithms” on page 5-364.

Limitations
• This implementation generates a geodetic latitude that lies between ±90 degrees, and longitude

that lies between ±180 degrees. The planet is assumed to be ellipsoidal. By setting the flattening
to 0, you model a spherical planet.

• The implementation of the ECEF coordinate system assumes that its origin lies at the center of the
planet, the x-axis intersects the prime (Greenwich) meridian and the equator, the z-axis is the
mean spin axis of the planet (positive to the north), and the y-axis completes the right-handed
system.

Ports
Input

Xf — Position
3-by-1 vector

Position in ECEF frame, specified as a 3-by-1 vector.
Data Types: double

Output

μ l — Geodetic latitude and longitude
2-by-1 vector

Geodetic latitude and longitude, returned as a 2-by-1 vector, in degrees.
Data Types: double

h — Altitude
scalar

Altitude above the planetary ellipsoid, returned as a scalar, in the same units as the ECEF position.
Data Types: double
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Parameters
Units — Output units

Metric (MKS) (default) | English

Output units, specified as:

Units Position Equatorial Radius Altitude
Metric (MKS) Meters Meters Meters
English Feet Feet Feet

Dependencies

To enable this parameter, set Planet model to Earth (WGS84).
Programmatic Use
Block Parameter: units
Type: character vector
Values: 'Metric (MKS)' | 'English'
Default: 'Metric (MKS)'

Planet model — Planet model

Earth (WGS84) (default) | Custom

Planet model to use, Custom or Earth (WGS84).
Programmatic Use
Block Parameter: ptype
Type: character vector
Values: 'Earth (WGS84)' | 'Custom'
Default: 'Earth (WGS84)'

Flattening — Flattening of planet

1/298.257223563 (default) | scalar

Flattening of the planet, specified as a double scalar.
Dependencies

To enable this parameter, set Planet model to Custom.
Programmatic Use
Block Parameter: F
Type: character vector
Values: double scalar
Default: '1/298.257223563'

Equatorial radius of planet — Radius of planet at equator

6378137 (default) | scalar

Radius of the planet at its equator, specified as a double scalar, in the same units as the desired units
for the ECEF position.
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Dependencies

To enable this parameter, set Planet model to Custom.
Programmatic Use
Block Parameter: R
Type: character vector
Values: double scalar
Default: '6378137'

Algorithms
The ECEF position is defined as:

p =
px
py
pz

.

Longitude is calculated from the ECEF position by

ι = atan
py
px

.

Geodetic latitude μ  is calculated from the ECEF position using Bowring's method, which typically
converges after two or three iterations. The method begins with an initial guess for geodetic latitude
μ  and reduced latitude β . An initial guess takes the form:

β = atan
pz

(1− f )s

μ = atan
pz + e2(1− f )

(1− e2)
R(sinβ)3

s− e2R(cosβ)3

where R is the equatorial radius, f is the flattening of the planet, e2 = 1−(1−f)2, the square of first
eccentricity, and:

s = px
2 + py

2 .

After the initial guesses are calculated, the reduced latitude β  is recalculated using

β = atan (1− f )sinμ
cosμ

and geodetic latitude μ  is reevaluated. This last step is repeated until μ converges.

The altitude h  above the planetary ellipsoid is calculated with

h = scosμ + pz + e2Nsinμ sinμ− N,

where the radius of curvature in the vertical prime N  is given by
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N = R
1− e2(sinμ)2

.

Version History
Introduced before R2006a

References
[1] Stevens, B. L., and F. L. Lewis. Aircraft Control and Simulation, Hoboken, NJ: John Wiley & Sons,

1992.

[2] Zipfel, Peter H., Modeling and Simulation of Aerospace Vehicle Dynamics. Second Edition. Reston,
VA: AIAA Education Series, 2000.

[3] Recommended Practice for Atmospheric and Space Flight Vehicle Coordinate Systems,
R-004-1992, ANSI/AIAA, February 1992.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Direction Cosine Matrix ECEF to NED | Direction Cosine Matrix ECEF to NED to Latitude and
Longitude | Geocentric to Geodetic Latitude | LLA to ECEF Position | Radius at Geocentric Latitude

Topics
“About Aerospace Coordinate Systems” on page 2-7
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ECI Position to AER
Convert Earth-centered inertial (ECI) coordinates to azimuth coordinates
Library: Aerospace Blockset / Utilities / Axes Transformations

Description
The ECI Position to AER block converts Earth-centered inertial (ECI) position coordinates to azimuth,
elevation, and slant-range coordinates (AER), based on the geodetic position (latitude, longitude, and
altitude).

• Azimuth (A) — Angle measured clockwise from true north. It ranges from 0 to 360 degrees.
• Elevation (E) — Angle between a plane perpendicular to the ellipsoid and the line that goes from

the local reference to the object position. It ranges from –90 to 90 degrees.
• Slant range (R) — Straight line distance between the local reference and the object.

Ports
Input

Xi — Position
3-by-1 element vector

Position, specified as a 3-by-1 element vector, in ECI coordinates.
Data Types: double

ΔUT1 — Difference between UTC and Universal Time
scalar

Difference between UTC and Universal Time (UT1) in seconds, specified as a scalar, for which the
block calculates the direction cosine or transformation matrix.
Example: 0.234

Dependencies

To enable this port, select Higher accuracy parameters.
Data Types: double

ΔAT — Difference between International Atomic Time and UTC
scalar

Difference between International Atomic Time (IAT) and UTC, specified as a scalar, in seconds, for
which the function calculates the direction cosine or transformation matrix.
Example: 32

5 Blocks

5-366



Dependencies

This port is disabled if the Higher accuracy parameters check box is cleared.
Data Types: double

[xp,yp] — Polar displacement of Earth
1-by-2 array

Polar displacement of Earth, specified as a 1-by-2 array, in radians, from the motion of the Earth
crust, along the x-axis and y-axis.
Example: [-0.0682e-5 0.1616e-5]

Dependencies

To enable this port, select Higher accuracy parameters.
Data Types: double

Port_5 — Adjustment based on reduction method
1-by-2 array

Adjustment based on reduction method, specified as 1-by-2 array. The name of the port depends on
the setting of the Reduction parameter:

• If the reduction method is IAU-2000/2006, this input is the adjustment to the location of the
Celestial Intermediate Pole (CIP), specified in radians. This location ([dX,dY]) is along the x-axis
and y-axis, for example, [-0.2530e-6 -0.0188e-6].

• If the reduction method is IAU-76/FK5, this input is the adjustment to the longitude ([Δδψ, Δδε]),
specified in radians.

For historical values, see the International Earth Rotation and Reference Systems Service website
(https://www.iers.org) and navigate to the Earth Orientation Data Data/Products page.
Example: [-0.2530e-6 -0.0188e-6]

Dependencies

To enable this port, select Higher accuracy parameters.
Data Types: double

Port_6 — Time increment source
scalar

Time increment source, specified as a scalar, such as the Clock block.

Dependencies

• The port name and time increment depend on the Time Increment parameter.

Time Increment Value Port Name
Day day
Hour hour
Min min
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Time Increment Value Port Name
Sec sec
None No port

• To disable this port, set the Time Increment parameter to None.

Data Types: double

Output

AER — Azimuth, elevation, and slant range
3-by-1 element vector

Local reference coordinates azimuth (degrees), elevation (degrees), and slant range (meters),
specified as a 3-by-1 element vector.
Data Types: double

Parameters
Reduction — Reduction method

IAU-76/FK5 (default) | IAU-2000/2006

Reduction method to convert the coordinates. Method can be one of:

• IAU-76/FK5

Reduce the calculation using the International Astronomical Union 76/Fifth Fundamental
Catalogue (IAU-76/FK5) reference system. Choose this reduction method if the reference
coordinate system for the conversion is FK5.

Note This method uses the IAU 1976 precession model and the IAU 1980 theory of nutation to
reduce the calculation. This model and theory are no longer current, but the software provides
this reduction method for existing implementations. Because of the polar motion approximation
that this reduction method uses, the block calculates the transformation matrix rather than the
direction cosine matrix.

• IAU-2000/2006

Reduce the calculation using the International Astronomical Union 2000/2006 reference system.
Choose this reduction method if the reference coordinate system for the conversion is IAU-2000.
This reduction method uses the P03 precession model to reduce the calculation.

Programmatic Use
Block Parameter: red
Type: character vector
Values: 'IAU-2000/2006' | 'IAU-76/FK5'
Default: 'IAU-2000/2006'

Year — Year

2014 (default) | double, whole number, greater than 1
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Year to calculate the Coordinated Universal Time (UTC) date. Enter a double value that is a whole
number greater than 1, such as 2014.

Programmatic Use
Block Parameter: year
Type: character vector
Values: double, whole number, greater than 1
Default: '2013'

Month — Month

January (default) | February | March | April | May | June | July | August | September |
October | November | December

Month to calculate the UTC date.

Programmatic Use
Block Parameter: month
Type: character vector
Values: 'January' | 'February' | 'March' | 'April' | 'May' | 'June' | 'July' | 'August' |
'September' | 'October' | 'November' | 'December'
Default: 'January'

Day — Day

1 (default) | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 | 31

Day to calculate the UTC date.

Programmatic Use
Block Parameter: day
Type: character vector
Values: '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' | '10' | '11' | '12' | '13' | '14' |
'15' | '16' | '17' | '18' | '19' | '20' | '21' | '22' | '23' | '24' | '25' | '26' | '27' | '28' |
'29' | '30' | '31'
Default: '1'

Hour — Hour

0 (default) | double, whole number, 0 to 24

Hour to calculate the UTC date. Enter a double value that is a whole number, from 0 to 24.

Programmatic Use
Block Parameter: hour
Type: character vector
Values: double, whole number, 0 to 24
Default: '0'

Minutes — Minutes

0 (default) | double, whole number, 0 to 60

Minutes to calculate the UTC date. Enter a double value that is a whole number, from 0 to 60.
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Programmatic Use
Block Parameter: min
Type: character vector
Values: double, whole number, 0 to 60
Default: '0'

Seconds — Seconds

0 (default)

Seconds to calculate the UTC date. Enter a double value that is a whole number, from 0 to 60.

Programmatic Use
Block Parameter: sec
Type: character vector
Values: double, whole number, 0 to 60
Default: '0'

Time increment — Time increment

None (default) | Day | Hour | Min | Sec

Time increment between the specified date and the desired model simulation time. The block adjusts
the calculated direction cosine matrix to take into account the time increment from model simulation.
For example, selecting Day and connecting a simulation timer to the port means that each time
increment unit is one day and the block adjusts its calculation based on that simulation time.

This parameter corresponds to the time increment input, the clock source.

If you select None, the calculated Julian date does not take into account the model simulation time.

Programmatic Use
Block Parameter: deltaT
Type: character vector
Values: 'None' | 'Day' | 'Hour' | 'Min' | 'Sec'
Default: 'Day'

Action for out-of-range input — Action taken when input are out of range

None (default) | Warning | Error

Specify the block behavior when the block inputs are out of range.

Action Description
None No action.
Warning Warning in the MATLAB Command Window, model simulation

continues.
Error (default) MATLAB returns an exception, model simulation stops.

Programmatic Use
Block Parameter: errorflag
Type: character vector
Values: 'None' | 'Warning' | 'Error'
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Default: 'Error'

Higher accuracy parameters — Enable higher accuracy parameters

on (default) | off

Select this check box to allow the following as block inputs. These inputs let you better control the
conversion result. See “Input” on page 5-366 for a description.

• Δ UT1
• Δ AT
• [ xp , yp ]
• [Δδψ, Δδε] or [d X ,d Y ]

Programmatic Use
Block Parameter: extraparamflag
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Units — Units

Metric (MKS) (default) | English

Specifies the parameter and output units.

Units Position Equatorial Radius Altitude
Metric (MKS) Meters Meters Meters
English Feet Feet Feet

Dependencies

To enable this option, set Earth model to WGS84.
Programmatic Use
Block Parameter: eunits
Type: character vector
Values: 'Metric (MKS)' | 'English'
Default: 'Metric (MKS)'

Earth model — Earth model

Custom (default) | WGS84

Earth model to use, Custom or Earth (WGS84).
Programmatic Use
Block Parameter: earthmodel
Type: character vector
Values: 'Earth (WGS84)' | 'Custom'
Default: 'Earth (WGS84)'

Flattening — Flattening of planet
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1/298.257223563 (default) | scalar

Flattening of the planet, specified as a double scalar.

Dependencies

To enable this parameter, set Earth model to Custom.

Programmatic Use
Block Parameter: flat
Type: character vector
Values: double scalar
Default: 1/298.257223563

Equatorial radius — Radius of planet at equator

6378137 (default) | double scalar

Radius of the planet at its equator.

Dependencies

To enable this parameter, set Earth model to Custom.

Programmatic Use
Block Parameter: eqradius
Type: character vector
Values: double scalar
Default: 6378137

Initial geodetic latitude and longitude [deg] — Initial geodetic latitude and
longitude

[0 0] (default) | 2-by-1 vector

Reference location in latitude and longitude, specified as 2-by-1 vector, in degrees.

Programmatic Use
Block Parameter: latlon0
Type: character vector
Values: 2-by-1 vector
Default: [0 0]

Angular direction of the local reference system (degrees clockwise from
north) — Angular direction

0 (default) | scalar

Specifies angle for converting the flat Earth x and y coordinates to north and east coordinates,
respectively. An example is the angle between the vessel and the true geodetic north.

Programmatic Use
Block Parameter: psi0
Type: character vector
Values: double scalar
Default: 0
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Reference height — Reference height

0 (default) | scalar

Specifies the reference height measured from the surface of the Earth to the flat Earth frame. It uses
the same units as the ECI position. Estimate the reference height relative to the Earth frame.

Programmatic Use
Block Parameter: href
Type: character vector
Values: double scalar
Default: 0

Version History
Introduced in R2015a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
LLA to ECI Position | ECI Position to LLA | Direction Cosine Matrix ECI to ECEF
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ECI Position to LLA
Convert Earth-centered inertial (ECI) coordinates to geodetic latitude, longitude, altitude (LLA)
coordinates
Library: Aerospace Blockset / Utilities / Axes Transformations

Description
The ECI Position to LLA block converts Earth-centered inertial (ECI) position coordinates to geodetic
latitude, longitude, altitude (LLA) coordinates, based on the specified reduction method and
Coordinated Universal Time (UTC), for the specified time and geophysical data.

Ports
Input

Xi — Original position
3-by-1 element vector

Original position vector with respect to the ECI reference system, specified as a 3-by-1 element
vector.
Data Types: double

ΔUT1 — Difference between UTC and Universal Time
scalar

Difference between UTC and Universal Time (UT1) in seconds, specified as a scalar, for which the
block calculates the direction cosine or transformation matrix.
Example: 0.234
Dependencies

To enable this port, select the Higher accuracy parameters check box.
Data Types: double

ΔAT — Difference between International Atomic Time and UTC
scalar

Difference between International Atomic Time (IAT) and UTC, specified as a scalar, in seconds, for
which the block calculates the direction cosine or transformation matrix.
Example: 32
Dependencies

To enable this port, select the Higher accuracy parameters check box.
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Data Types: double

[xp,yp] — Polar displacement of Earth
1-by-2 array

Polar displacement of Earth, specified as a 1-by-2 array, in radians, from the motion of the Earth
crust, along the x-axis and y-axis.
Example: [-0.0682e-5 0.1616e-5]

Dependencies

To enable this port, select the Higher accuracy parameters check box.
Data Types: double

Port_5 — Adjustment based on reduction method
1-by-2 array

Adjustment based on reduction method, specified as 1-by-2 array. The name of the port depends on
the setting of the Reduction parameter:

• If reduction method is IAU-2000/2006, this input is the adjustment to the location of the
Celestial Intermediate Pole (CIP), specified in radians. This location ([dX,dY]) is along the x-axis
and y-axis, for example, [-0.2530e-6 -0.0188e-6].

• If reduction method is IAU-76/FK5, this input is the adjustment to the longitude ([Δδψ, Δδε]),
specified in radians.

For historical values, see the International Earth Rotation and Reference Systems Service website
(https://www.iers.org) and navigate to the Earth Orientation Data Data/Products page.
Example: [-0.2530e-6 -0.0188e-6]

Dependencies

To enable this port, select Higher accuracy parameters.
Data Types: double

Port_6 — Time increment source
scalar

Time increment source, specified as a scalar, such as the Clock block.

Dependencies

• The port name and time increment depend on the Time Increment parameter.

Time Increment Value Port Name
Day day
Hour hour
Min min
Sec sec
None No port

• To disable this port, set the Time Increment parameter to None.
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Data Types: double

Output

μ l h — Original position vector
3-by-1 element vector

Original position vector in geodetic LLA coordinates, returned as a 3-by-1 element vector, in degrees.
Data Types: double

Parameters
Reduction — Reduction method

IAU-76/FK5 (default) | IAU-2000/2006

Reduction method to convert the coordinates. Method can be one of:

• IAU-76/FK5

Reduce the calculation using the International Astronomical Union 76/Fifth Fundamental
Catalogue (IAU-76/FK5) reference system. Choose this reduction method if the reference
coordinate system for the conversion is FK5.

Note This method uses the IAU 1976 precession model and the IAU 1980 theory of nutation to
reduce the calculation. This model and theory are no longer current, but the software provides
this reduction method for existing implementations. Because of the polar motion approximation
that this reduction method uses, the block calculates the transformation matrix rather than the
direction cosine matrix.

• IAU-2000/2006

Reduce the calculation using the International Astronomical Union 2000/2006 reference system.
Choose this reduction method if the reference coordinate system for the conversion is IAU-2000.
This reduction method uses the P03 precession model to reduce the calculation.

Programmatic Use
Block Parameter: red
Type: character vector
Values: 'IAU-2000/2006' | 'IAU-76/FK5'
Default: 'IAU-2000/2006'

Year — Year

2014 (default) | double, whole number, greater than 1

Year to calculate the Coordinated Universal Time (UTC) date. Enter a double value that is a whole
number greater than 1, such as 2014.

Programmatic Use
Block Parameter: year
Type: character vector
Values: double, whole number, greater than 1
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Default: '2013'

Month — Month

January (default) | February | March | April | May | June | July | August | September |
October | November | December

Month to calculate the UTC date.

Programmatic Use
Block Parameter: month
Type: character vector
Values: 'January' | 'February' | 'March' | 'April' | 'May' | 'June' | 'July' | 'August' |
'September' | 'October' | 'November' | 'December'
Default: 'January'

Day — Day

1 (default) | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 | 31

Day to calculate the UTC date.

Programmatic Use
Block Parameter: day
Type: character vector
Values: '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' | '10' | '11' | '12' | '13' | '14' |
'15' | '16' | '17' | '18' | '19' | '20' | '21' | '22' | '23' | '24' | '25' | '26' | '27' | '28' |
'29' | '30' | '31'
Default: '1'

Hour — Hour

0 (default) | double, whole number, 0 to 24

Hour to calculate the UTC date. Enter a double value that is a whole number, from 0 to 24.

Programmatic Use
Block Parameter: hour
Type: character vector
Values: double, whole number, 0 to 24
Default: '0'

Minutes — Minutes

0 (default) | double, whole number, 0 to 60

Minutes to calculate the UTC date. Enter a double value that is a whole number, from 0 to 60.

Programmatic Use
Block Parameter: min
Type: character vector
Values: double, whole number, 0 to 60
Default: '0'
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Seconds — Seconds

0 (default)

Seconds to calculate the UTC date. Enter a double value that is a whole number, from 0 to 60.

Programmatic Use
Block Parameter: sec
Type: character vector
Values: double, whole number, 0 to 60
Default: '0'

Time increment — Time increment

None (default) | Day | Hour | Min | Sec

Time increment between the specified date and the desired model simulation time. The block adjusts
the calculated direction cosine matrix to take into account the time increment from model simulation.
For example, selecting Day and connecting a simulation timer to the port means that each time
increment unit is one day and the block adjusts its calculation based on that simulation time.

This parameter corresponds to the time increment input, the clock source.

If you select None, the calculated Julian date does not take into account the model simulation time.

Programmatic Use
Block Parameter: deltaT
Type: character vector
Values: 'None' | 'Day' | 'Hour' | 'Min' | 'Sec'
Default: 'Day'

Action for out-of-range input — Action taken when inputs are out of range

None (default) | Warning | Error

Specify the block behavior when the block inputs are out of range.

Action Description
None No action.
Warning Warning in the MATLAB Command Window, model simulation

continues.
Error (default) MATLAB returns an exception, model simulation stops.

Programmatic Use
Block Parameter: errorflag
Type: character vector
Values: 'None' | 'Warning' | 'Error'
Default: 'Error'

Higher accuracy parameters — Enable higher accuracy parameters

on (default) | off

5 Blocks

5-378



Select this check box to allow the following as block inputs. These inputs let you better control the
conversion result. See “Input” on page 5-374 for a description.

• Δ UT1
• Δ AT
• [ xp , yp ]
• [Δδψ, Δδε] or [d X ,d Y ]

Programmatic Use
Block Parameter: extraparamflag
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Units — Output units

Metric (MKS) (default) | English

Specifies the parameter and output units.

Units Position Equatorial Radius Altitude
Metric (MKS) Meters Meters Meters
English Feet Feet Feet

Dependencies

To enable this parameter, set Earth model to Earth (WGS84).
Programmatic Use
Block Parameter: eunits
Type: character vector
Values: 'Metric (MKS)' | 'English'
Default: 'Metric (MKS)'

Earth model — Earth model

Custom (default) | WGS84

Earth model to use, Custom or Earth (WGS84).
Programmatic Use
Block Parameter: earthmodel
Type: character vector
Values: 'Earth (WGS84)' | 'Custom'
Default: 'Earth (WGS84)'

Flattening — Flattening of the planet

1/298.257223563 (default) | scalar

Flattening of the planet, specified as a double scalar.
Dependencies

To enable this parameter, set Earth model to Custom.
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Programmatic Use
Block Parameter: flat
Type: character vector
Values: double scalar
Default: 1/298.257223563

Equatorial radius — Radius

6378137 (default) | scalar

Radius of the planet at its equator.

Dependencies

To enable this parameter, set Earth model to Custom.

Programmatic Use
Block Parameter: eqradius
Type: character vector
Values: double scalar
Default: 6378137

Version History
Introduced in R2014a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
LLA to ECI Position

External Websites
https://www.iers.org
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Exhaust Gas Temperature (EGT) Indicator
Display measurements for engine exhaust gas temperature (EGT)
Library: Aerospace Blockset / Flight Instruments

Description
The EGT Indicator block displays temperature measurements for engine exhaust gas temperature
(EGT) in Celsius.

This block displays values using both:

• A needle on a gauge. A major tick is (Maximum-Minimum)/1,000 degrees, a minor tick is
(Maximum-Minimum)/200 degrees Celsius.

• A numeric indicator. The operating range for the indicator goes from Minimum to Maximum
degrees Celsius.

If the value of the signal is under Minimum, the needle displays 5 degrees under the Minimum
value, the numeric display shows the Minimum value. If the value exceeds the Maximum value, the
needle displays 5 degrees over the maximum tick, and the numeric displays the Maximum value.

Tip To facilitate understanding and debugging your model, you can modify instrument block
connections in your model during normal and accelerator mode simulations.

Parameters
Connection — Connect to signal
signal name

Connect to signal for display, selected from list of signal names.

To view the data from a signal, select a signal in the model. The signal appears in the Connection
table. Select the option button next to the signal you want to display. Click Apply to connect the
signal.

The table has a row for the signal connected to the block. If there are no signals selected in the
model, or the block is not connected to any signals, the table is empty.

Minimum — Minimum tick mark value

0 (default) | finite | double | scalar

Minimum tick mark value, specified as a finite double, or scalar value, in ft/min.
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Dependencies

The Minimum tick value must be less than the Minimum tick value.

Programmatic Use
Block Parameter: Limits
Type: double
Values: double scalar
Default: [0 1000], where 0 is the minimum value

Maximum — Maximum tick mark value

1000 (default) | finite | double | scalar

Specify the maximum tick mark value, specified as a finite double, or scalar value, in ft/min..

Dependencies

The Maximum tick value must be greater than the Maximum tick value.

Programmatic Use
Block Parameter: Limits
Type: double
Values: double scalar
Default: [0 1000], where 1000 is the maximum value

Scale Colors — Ranges of color bands
0 (default) | double | scalar

Ranges of color bands on the outside of the scale, specified as a finite double, or scalar value. Specify
the minimum and maximum color range to display on the gauge.

To add a new color, click +. To remove a color, click -.

Programmatic Use
Block Parameter: ScaleColors
Type: n-by-1 struct array
Values: struct array with elements Min, Max, and Color

Label — Block label location

Top (default) | Bottom | Hide

Block label, displayed at the top or bottom of the block, or hidden.

• Top

Show label at the top of the block.
• Bottom

Show label at the bottom of the block.
• Hide

Do not show the label or instructional text when the block is not connected.

5 Blocks

5-382



Programmatic Use
Block Parameter: LabelPosition
Type: character vector
Values: 'Top' | 'Bottom' | 'Hide'
Default: 'Top'

Version History
Introduced in R2016a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block is ignored for code generation.

See Also
Airspeed Indicator | Altimeter | Artificial Horizon | Climb Rate Indicator | Heading Indicator |
Revolutions Per Minute (RPM) Indicator | Turn Coordinator

Topics
“Display Measurements with Cockpit Instruments” on page 2-50
“Programmatically Interact with Gauge Band Colors” on page 2-52
“Flight Instrument Gauges” on page 2-49
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Estimate Center of Gravity
Calculate center of gravity location
Library: Aerospace Blockset / Mass Properties

Description
The Estimate Center of Gravity block calculates the center of gravity location and the rate of change
of the center of gravity.

Linear interpolation is used to estimate the location of the center of gravity as a function of mass. The
rate of change of the center of gravity is a linear function of the rate of change of mass.

Ports
Input

mass — Mass
scalar

Mass, specified as a scalar.
Data Types: double

dm/dt — Rate of change
scalar | 3-element vector

Rate of change of mass, specified as a scalar or three-element vector.
Data Types: | double

Output

CG — Center of gravity location
3-element vector

Center of gravity location, returned as a three-element vector.
Data Types: double

dCG/dt — Rate of change
3-element vector

Rate of the change of center of gravity location, returned as a three-element vector.
Data Types: double
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Parameters
Full mass — Mass

2 (default) | scalar

Gross mass of the vehicle, specified as a double scalar.

Programmatic Use
Block Parameter: fmass
Type: character vector
Values: double scalar
Default: '2'

Empty mass — Empty mass

1 (default) | scalar

Empty mass of the vehicle, specified as double scalar.

Programmatic Use
Block Parameter: emass
Type: character vector
Values: double scalar
Default: '1'

Full center of gravity — Full center of gravity

[1 1 1]' (default) | 3-element vector

Center of gravity at the gross mass of the vehicle, specified as a three-element vector.

Programmatic Use
Block Parameter: fcg
Type: character vector
Values: 3-element vector
Default: [1 1 1]'

Empty center of gravity — Empty center of gravity

[0.5 0.5 0.5]' (default) | 3-element vector

Center of gravity at the empty mass of the vehicle, specified as a three-element vector.

Programmatic Use
Block Parameter: ecg
Type: character vector
Values: 3-element vector
Default: [0.5 0.5 0.5]'

Version History
Introduced before R2006a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Aerodynamic Forces and Moments | Estimate Inertia Tensor | Moments about CG due to Forces
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Estimate Inertia Tensor
Calculate inertia tensor
Library: Aerospace Blockset / Mass Properties

Description
The Estimate Inertia Tensor block calculates the inertia tensor and the rate of change of the inertia
tensor.

Linear interpolation is used to estimate the inertia tensor as a function of mass. The rate of change of
the inertia tensor is a linear function of rate of change of mass.

Ports
Input

mass — Mass
scalar

Mass, specified as a scalar.
Data Types: double

dm/dt — Rate of change
scalar

Rate of change of mass, specified as a scalar.
Data Types: double

Output

I — Inertia tensor
3-by-3 matrix

Inertia tensor, returned as a 3-by-3 matrix.
Data Types: double

dI/dt — Rate of change
3-by-3 matrix

Rate of change of inertia tensor, returned as a 3-by-3 matrix.
Data Types: double
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Parameters
Full mass — Mass

2 (default) | scalar

Gross mass of the vehicle, specified as a double scalar.

Programmatic Use
Block Parameter: fmass
Type: character vector
Values: double scalar
Default: '2'

Empty mass — Empty mass

1 (default) | scalar

Empty mass of the vehicle, specified as a double scalar.

Programmatic Use
Block Parameter: emass
Type: character vector
Values: double scalar
Default: '1'

Full inertia matrix — Full inertia matrix

eye(3) (default) | 3-element matrix

Inertia tensor at gross mass of the vehicle, specified as a three-element matrix.

Programmatic Use
Block Parameter: fI
Type: character vector
Values: double scalar
Default: 'eye(3)'

Empty inertia matrix — Empty inertia matrix

eye(3)/2 (default) | scalar

Inertia tensor at empty mass of the vehicle, specified as a scalar.

Programmatic Use
Block Parameter: eI
Type: character vector
Values: scalar
Default: 'eye(3)/2'

Version History
Introduced before R2006a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Estimate Center of Gravity | Symmetric Inertia Tensor
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Rodrigues to Direction Cosine Matrix
Convert Euler-Rodrigues vector to direction cosine matrix
Library: Aerospace Blockset / Utilities / Axes Transformations

Description
The Rodrigues to Direction Cosine Matrix block determines the 3-by-3 direction cosine matrix from a
three-element Euler-Rodrigues vector. The rotation used in this block is a passive transformation
between two coordinate systems. For more information on Euler-Rodrigues vectors, see “Algorithms”
on page 5-390.

Ports
Input

rod — Euler-Rodrigues vector
three-element vector

Euler-Rodrigues vector from which to determine the direction cosine matrix.
Data Types: double

Output

DCM — Direction cosine matrix
3-by-3 matrix

Direction cosine matrix determined from the Euler-Rodrigues vector.
Data Types: double

Algorithms

An Euler-Rodrigues vector b  represents a rotation by integrating a direction cosine of a rotation axis
with the tangent of half the rotation angle as follows:

b = bx by bz

where:

bx = tan 1
2θ sx,

by = tan 1
2θ sy,

bz = tan 1
2θ sz
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are the Rodrigues parameters. Vector s  represents a unit vector around which the rotation is
performed. Due to the tangent, the rotation vector is indeterminate when the rotation angle equals
±pi radians or ±180 deg. Values can be negative or positive.

Version History
Introduced in R2017a

References
[1] Dai, J.S. "Euler-Rodrigues formula variations, quaternion conjugation and intrinsic connections."

Mechanism and Machine Theory, 92, 144-152. Elsevier, 2015.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Direction Cosine Matrix to Rodrigues | Rodrigues to Quaternions | Rodrigues to Rotation Angles |
Quaternions to Rodrigues | Rotation Angles to Rodrigues

 Rodrigues to Direction Cosine Matrix

5-391



Rodrigues to Quaternions
Convert Euler-Rodrigues vector to quaternion
Library: Aerospace Blockset / Utilities / Axes Transformations

Description
The Rodrigues to Quaternions block determines the 4-by-1 quaternion from a three-element Euler-
Rodrigues vector. Aerospace Blockset uses quaternions that are defined using the scalar-first
convention. For more information on Euler-Rodrigues vectors, see “Algorithms” on page 5-392.

Ports
Input

rod — Euler-Rodrigues vector
three-element vector

Euler-Rodrigues vector from which to determine the quaternion.
Data Types: double

Output

q — Quaternion
4-by-1 matrix

Quaternion determined from the Euler-Rodrigues vector.
Data Types: double

Algorithms

An Euler-Rodrigues vector b  represents a rotation by integrating a direction cosine of a rotation axis
with the tangent of half the rotation angle as follows:

b = bx by bz

where:

bx = tan 1
2θ sx,

by = tan 1
2θ sy,

bz = tan 1
2θ sz
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are the Rodrigues parameters. Vector s  represents a unit vector around which the rotation is
performed. Due to the tangent, the rotation vector is indeterminate when the rotation angle equals
±pi radians or ±180 deg. Values can be negative or positive.

Version History
Introduced in R2017a

References
[1] Dai, J.S. "Euler-Rodrigues formula variations, quaternion conjugation and intrinsic connections."

Mechanism and Machine Theory, 92, 144-152. Elsevier, 2015.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Direction Cosine Matrix to Rodrigues | Rodrigues to Direction Cosine Matrix | Rodrigues to Rotation
Angles | Quaternions to Rodrigues | Rotation Angles to Rodrigues
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Rodrigues to Rotation Angles
Convert Euler-Rodrigues vector to rotation angles
Library: Aerospace Blockset / Utilities / Axes Transformations

Description
The Rodrigues to Rotation Angles block converts the three-element Euler-Rodrigues vector into
rotation angles. The rotation used in this block is a passive transformation between two coordinate
systems. For more information on Euler-Rodrigues vectors, see “Algorithms” on page 5-395.

Ports
Input

rod — Euler-Rodrigues vector
three-element vector

Euler-Rodrigues vector determined from rotation angles.
Data Types: double

Output

R1,R2,R3 — Rotation angles
three-element vector

Rotation angles, in radians, from which to determine the Euler-Rodrigues vector. Quaternion scalar is
the first element.
Data Types: double

Parameters
Rotation order — Rotation order
ZYX (default) | ZYZ | ZXY | ZXZ | YXZ | YXY | YZX | YZY | XYZ | XYX | XZY | XZX

Rotation order for three wind rotation angles.

For the 'ZYX', 'ZXY', 'YXZ', 'YZX', 'XYZ', and 'XZY' rotations, the block generates an R2 angle that lies
between ±pi/2 radians (±90 degrees), and R1 and R3 angles that lie between ±pi radians (±180
degrees).

For the 'ZYZ', 'ZXZ', 'YXY', 'YZY', 'XYX', and 'XZX' rotations, the block generates an R2 angle that lies
between 0 and pi radians (180 degrees), and R1 and R3 angles that lie between ±pi (±180 degrees).
However, in the latter case, when R2 is 0, R3 is set to 0 radians.
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Programmatic Use
Block Parameter: rotationOrder
Type: character vector
Values: 'ZYX' | 'ZYZ' |'ZXY' | 'ZXZ' | 'YXZ' | 'YXY' | 'YZX' | 'YZY' | 'XYZ' | 'XYX' | 'XZY' |
'XZX'
Default: 'ZYX'

Algorithms

An Euler-Rodrigues vector b  represents a rotation by integrating a direction cosine of a rotation axis
with the tangent of half the rotation angle as follows:

b = bx by bz

where:

bx = tan 1
2θ sx,

by = tan 1
2θ sy,

bz = tan 1
2θ sz

are the Rodrigues parameters. Vector s  represents a unit vector around which the rotation is
performed. Due to the tangent, the rotation vector is indeterminate when the rotation angle equals
±pi radians or ±180 deg. Values can be negative or positive.

Version History
Introduced in R2017a

References
[1] Dai, J.S. "Euler-Rodrigues formula variations, quaternion conjugation and intrinsic connections."

Mechanism and Machine Theory, 92, 144-152. Elsevier, 2015.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Direction Cosine Matrix to Rodrigues | Rodrigues to Direction Cosine Matrix | Rodrigues to
Quaternions | Quaternions to Rodrigues | Rotation Angles to Rodrigues
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Fixed-Wing Point Mass
Integrate fourth- or sixth-order point mass equations of motion in coordinated flight
Library: Aerospace Blockset / Equations of Motion / Point Mass

UAV Toolbox / Algorithms

Description
The Fixed-Wing Point Mass block integrates fourth- or sixth-order point mass equations of motion in
coordinated flight.

Limitations
• The flat Earth reference frame is considered inertial, an approximation that allows the forces due

to the Earth's motion relative to the "fixed stars" to be neglected.
• The block assumes that there is fully coordinated flight, that is, there is no side force (wind axes)

and sideslip is always zero.

Ports
Input

Lift — Lift
scalar

Lift, specified as a scalar in units of force.
Data Types: double

Drag — Drag
scalar

Drag, specified as a scalar in units of force.
Data Types: double

Weight — Weight
scalar

Weight, specified as a scalar in units of force.
Data Types: double

Thrust — Thrust
scalar

Thrust, specified as a scalar in units of force.
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Data Types: double

ɣa — Flight path angle relative to the air mass
scalar

Flight path angle relative to the air mass, specified as a scalar in radians.
Data Types: double

μ — Bank angle
scalar

Bank angle, specified as a scalar in radians.
Data Types: double

ɑ — Angle of attack
scalar

Angle of attack, specified as a scalar in radians.
Data Types: double

Vwind — Wind vector
three-element vector

Wind vector in the direction in which the air mass is moving, specified as a three-element vector.
Data Types: double

Output

V — Airspeed
scalar

Airspeed, returned as a scalar.
Data Types: double

G — Ground speed projection
scalar

Ground speed over the Earth (speed of motion over the ground), returned as a scalar.
Data Types: double

Va — Velocity vector relative to air mass
three-element vector

Velocity vector relative to the air mass, returned as a three-element vector.
Data Types: double

Ve — Velocity vector relative to Earth with [North East Down] orientation
three-element vector

Velocity vector relative to Earth with [North East Down] orientation, returned as a three-element
vector.
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Dependencies

To enable this port, set Reference frame orientation to [North East Down].
Data Types: double

VENU — Velocity vector relative to Earth
three-element vector

Velocity vector relative to Earth with [East North Up] orientation, returned as a three-element
vector.
Dependencies

To enable this port, set Reference frame orientation to [East North Up].
Data Types: double

Xe — Position vector relative to Earth
three-element vector

Position vector relative to Earth with [North East Down] orientation, returned as a three-element
vector.
Dependencies

To enable this port, set Reference frame orientation to [North East Down].
Data Types: double

XENU — Position vector relative to Earth
three-element vector

Position vector relative to Earth with [East North Up] orientation, returned as a three-element
vector.
Dependencies

To enable this port, set Reference frame orientation to [East North Up].
Data Types: double

γa — Flight path angle relative to air mass
scalar

Flight path angle relative to the air mass, returned as a scalar.
Data Types: double

γ — Flight path angle relative to Earth
scalar

Flight path angle relative to Earth, returned as a scalar.
Data Types: double

χa — Heading angle relative to air mass
scalar

Heading angle relative to air mass, returned as a scalar.
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Dependencies

To enable this port, set Degrees of Freedom to 6th Order (Coordinated Flight).
Data Types: double

χ — Heading angle relative to Earth
scalar

Heading angle relative to Earth, returned as a scalar.

Dependencies

To enable this port, set Degrees of Freedom to 6th Order (Coordinated Flight).
Data Types: double

Parameters
Units — Units

Metric (MKS) (default) | English (velocity in ft/s) | English (velocity in kts)

Input and output units, specified as follows:

Units Forces Velocity Position Mass
Metric (MKS) newtons meters per second meters kilograms
English (velocity in
ft/s)

pounds feet per second feet slugs

English (velocity in
kts)

pounds knots feet slugs

Programmatic Use
Block Parameter: units
Type: character vector
Values: 'Metric (MKS)' | 'English (velocity in ft/s)' | 'English (velocity in
kts)'
Default: 'Metric (MKS)'

Reference frame orientation — Reference frames

[North East Down] (default) | [East North Up]

Reference frames used for input ports and output ports, specified as [East North Up] or [North
East Down].

Programmatic Use
Block Parameter: frame
Type: character vector
Values: '[East North Up]' | '[North East Down]'
Default: '[North East Down]'

Degrees of freedom — Degrees of freedom
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6th Order (Coordinated Flight) (default) | 4th Order (Longitudinal)

Degrees of freedom, specified as 4th Order (Longitudinal) or 6th Order (Coordinated
Flight).

Programmatic Use
Block Parameter: order
Type: character vector
Values: '4th Order (Longitudinal)' | '6th Order (Coordinated Flight)'
Default: '6th Order (Coordinated Flight)'

Initial crossrange — Initial East (Earth) crossrange location

0 (default) | scalar

Initial East (Earth) location in the [North East Down] orientation, specified as a scalar.

Dependencies

The direction specification of this parameter depends on the Reference frame orientation and
Degrees of Freedom setting:

Initial crossrange Reference frame orientation Degrees of freedom
East [North East Down] 6th Order (Coordinated Flight)
North [East North Up] 6th Order (Coordinated Flight)

Programmatic Use
Block Parameter: east
Type: character vector
Values: scalar
Default: '0'

Initial downrange — Initial North (Earth) downrange

0 (default) | scalar

Initial North (Earth) downrange of the point mass, specified as a scalar.

Dependencies

The direction specification of this parameter depends on the Reference frame orientation and
Degrees of Freedom setting:

Initial downrange Reference frame orientation Degrees of freedom
North [North East Down] 6th Order (Coordinated Flight)
North [North East Down] 4th Order (Longitudinal)
East [East North Up] 6th Order (Coordinated Flight)
East [East North Up] 4th Order (Longitudinal)

Programmatic Use
Block Parameter: north
Type: character vector
Values: scalar
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Default: '0'

Initial altitude — Initial altitude

0 (default) | scalar

Initial altitude of the point mass, specified as a scalar.

Programmatic Use
Block Parameter: altitude
Type: character vector
Values: scalar
Default: '0'

Initial airspeed — Initial airspeed

50 (default) | scalar

Initial airspeed of the point mass, specified as a scalar.

Programmatic Use
Block Parameter: 'airspeed'
Type: character vector
Values: scalar
Default: '50'

Initial flight path angle — Initial flight path angle

0 (default) | scalar

Initial flight path angle of the point mass, specified as a scalar.

Programmatic Use
Block Parameter: gamma
Type: character vector
Values: scalar
Default: '0'

Initial heading angle — Initial heading angle

0 (default) | scalar

Initial heading angle of the point mass, specified as a scalar.

Dependencies

To enable this parameter, set Degrees of Freedom to 6th Order (Coordinated Flight).

Programmatic Use
Block Parameter: chi
Type: character vector
Values: scalar
Default: '0'

Mass — Point mass
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10 (default) | scalar

Mass of the point mass, specified as a scalar.
Programmatic Use
Block Parameter: mass
Type: character vector
Values: scalar
Default: '10'

Algorithms
The integrated equations of motion for the point mass are:

V̇ = (Tcosα− D−Wsinγai)/m
γ̇a = ((L + Tsinα)cosμ−Wcosγai)/(mV)

Ẋe = Va + Vw

6th order equations:

Ẋa = ((L + Tsinα)sinμ)/(mVcosγa)

Ẋa East = Vcosχacosγa

Ẋa North = Vsinχacosγa

Ẋa Up = Vsinγa

4th order equations:

χ̇a = 0

Ẋa East = Vcosγa

Ẋa North = 0

Ẋa Up = Vsinγa

where:

• m — Mass.
• g — Gravitational acceleration.
• W — Weight ( m*g).
• L — Lift force.
• D — Drag force.
• T — Thrust force.
• α — Angle of attack.
• μ — Angle of bank.
• γai — Input port value for the flight path angle.
• V — Airspeed, as measured on the aircraft, with respect to the air mass. It is also the magnitude of

vector Va.
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• Vw — Steady wind vector.
• Subscript a — For the variables, denotes that they are with respect to the steadily moving air

mass:

• γa — Flight path angle.
• χa — Heading angle.
• Xa — Position [East, North, Up].

• Subscript e — Flat Earth inertial frame such that so Xe is the position on the Earth after correcting
Xa for the air mass movement.

Additional outputs are:

G = (Ve East2 + Ve North2)

γ = sin−1 Ve Up
Ve

χ = tan−1 Ve North
Ve East

where:

• The four-quadrant inverse tangent (atan2) calculates the heading angle.
• The groundspeed, G, is the speed over the flat Earth (a 2-D projection).

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
4th Order Point Mass (Longitudinal) | 4th Order Point Mass Forces (Longitudinal) | 6th Order Point
Mass (Coordinated Flight) | 6th Order Point Mass Forces (Coordinated Flight) | 6DOF (Euler Angles) |
6DOF (Quaternion) | 6DOF ECEF (Quaternion) | 6DOF Wind (Wind Angles) | Custom Variable Mass
6DOF (Euler Angles) | Custom Variable Mass 6DOF (Quaternion) | Custom Variable Mass 6DOF ECEF
(Quaternion) | Custom Variable Mass 6DOF Wind (Quaternion) | Custom Variable Mass 6DOF Wind
(Wind Angles) | Simple Variable Mass 6DOF (Euler Angles) | Simple Variable Mass 6DOF (Quaternion)
| Simple Variable Mass 6DOF ECEF (Quaternion) | Simple Variable Mass 6DOF Wind (Quaternion) |
Simple Variable Mass 6DOF Wind (Wind Angles)
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Flat Earth to LLA
Estimate geodetic latitude, longitude, and altitude from flat Earth position
Library: Aerospace Blockset / Utilities / Axes Transformations

Description
The Flat Earth to LLA block converts a 3-by-1 vector of flat Earth position p  into geodetic latitude
μ , longitude ι , and altitude (h). For more information on the flat Earth coordinate system, see

“Algorithms” on page 5-408.

Limitations
• This estimation method assumes the flight path and bank angle are zero.
• This estimation method assumes the flat Earth z-axis is normal to the Earth at the initial geodetic

latitude and longitude only. This method has higher accuracy over small distances from the initial
geodetic latitude and longitude, and nearer to the equator. The longitude will have higher
accuracy when there are smaller the variations in latitude. Additionally, longitude is singular at
the poles.

Ports
Input

Xe — Position in flat Earth frame
3-by-1 vector

Position in flat Earth frame, specified as a 3-by-1 vector.
Data Types: double

href — Reference height
scalar

Reference height from surface of Earth to flat Earth frame with regard to Earth frame, specified as a
scalar in the same units as the flat Earth position.
Data Types: double

μref lref — Reference location
2-by-1 vector

Reference location, specified as a 2-by-1 vector, in degrees of latitude and longitude, for the origin of
the estimation and the origin of the flat Earth coordinate system. Use this port if you want to specify
the reference location as a dynamic value.
Dependencies

This port is enabled if the Input reference position and orientation check box is selected.
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Data Types: double

ψref — Direction of flat Earth x-axis
scalar

Angle, specified as a scalar, for converting flat Earth x and y coordinates to North and East
coordinates. Use this port if you want to specify the angle as a dynamic value.
Dependencies

This port is enabled if the Input reference position and orientation check box is selected.
Data Types: double

Output

μ l — Geodetic latitude and longitude
2-by-1 vector

Geodetic latitude and longitude, returned as a 2-by-1 vector, in degrees.
Data Types: double

h — Altitude
scalar

Altitude above the input reference altitude, returned as a scalar, in the same units as the flat Earth
position.
Data Types: double

Parameters
Units — Units

Metric (MKS) (default) | English

Parameter and output units.

Units Position Equatorial Radius Altitude
Metric (MKS) Meters Meters Meters
English Feet Feet Feet

Dependencies

To enable this parameter, set Planet model to Earth (WGS84).
Programmatic Use
Block Parameter: units
Type: character vector
Values: 'Metric (MKS)' | 'English'
Default: 'Metric (MKS)'

Planet model — Planet model

Earth (WGS84) (default) | Custom
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Planet model to use, specified as either Custom or Earth (WGS84).

Dependencies

Selecting the Custom option enables these parameters:

• Flattening
• Equatorial radius of planet

Programmatic Use
Block Parameter: ptype
Type: character vector
Values: 'Earth (WGS84)' | 'Custom'
Default: 'Earth (WGS84)'

Flattening — Flattening of planet

1/298.257223563 (default) | scalar

Flattening of the planet, specified as a double scalar.

Dependencies

To enable this parameter, set Planet model to Custom.

Programmatic Use
Block Parameter: F
Type: character vector
Values: double scalar
Default: 1/298.257223563

Equatorial radius of planet — Radius of planet at equator

6378137 (default) | scalar

Radius of the planet at its equator, specified as a double scalar, in the same units as the Units
parameter.

Dependencies

This parameter is enabled when Planet model is set to Custom.

Programmatic Use
Block Parameter: R
Type: character vector
Values: double scalar
Default: 6378137

Input reference position and orientation — Input reference position and orientation
as ports

off (default) | on

Select this check box to enable ports for reference position and angle to convert flat Earth. Select this
check box if you want to specify the reference positions and angle as dynamic values.
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Dependencies

Selecting this check box replaces these parameters:

• Reference geodetic latitude and longitude [deg]
• Direction of flat Earth x-axis (degrees clockwise from north)

with these input ports:

• μref lref

• ψref input ports.

Programmatic Use
Block Parameter: refPosPort
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Reference geodetic latitude and longitude [deg] — Initial geodetic latitude and
longitude

[0 10] (default) | 2-by-1 vector

Reference location in latitude and longitude, specified as 2-by-1 vector, in degrees.

Dependencies

To enable this parameter, clear the Input reference position and orientation check box.

Programmatic Use
Block Parameter: LL0
Type: character vector
Values: 2-by-1 vector
Default: [0 10]

Direction of flat Earth x-axis (degrees clockwise from north) — Angle

0 (default) | scalar

Angle to convert flat Earth x and y coordinates to North and East coordinates, specified as a scalar
double, in degrees.

Dependencies

This parameter is disabled if the Input reference position and orientation check box is selected.

Programmatic Use
Block Parameter: psi
Type: character vector
Values: double scalar
Default: 0
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Algorithms
The flat Earth coordinate system assumes the z-axis is downward positive. The estimation begins by
transforming the flat Earth x and y coordinates to North and East coordinates. The transformation
has the form of:

N
E

=
cosψ −sinψ
sinψ cosψ

px
py

,

where ψ  is the angle in degrees clockwise between the x-axis and north.

To convert the North and East coordinates to geodetic latitude and longitude, the radius of curvature
in the prime vertical (RN) and the radius of curvature in the meridian (RM) are used.

(RN) and (RM) are defined by the following relationships:

RN = R
1− (2f − f 2)sin2μ0

RM = RN
1− (2f − f 2)

1− (2f − f 2)sin2μ0

where (R) is the equatorial radius of the planet and f  is the flattening of the planet.

Small changes in the in latitude and longitude are approximated from small changes in the North and
East positions by:

dμ = atan 1
RM

dN

dι = atan 1
RNcosμ dE

The output latitude and longitude are simply the initial latitude and longitude plus the small changes
in latitude and longitude:

μ = μ0 + dμ
ι = ι0 + dι

The altitude is the negative flat Earth z-axis value minus the reference height (href):

h = − pz− href .

Version History
Introduced before R2006a

References
[1] Stevens, B. L., and F. L. Lewis. Aircraft Control and Simulation, Hoboken, NJ: John Wiley & Sons,

2003.

[2] Etkin, B. Dynamics of Atmospheric Flight Hoboken, NJ: John Wiley & Sons, 1972.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Direction Cosine Matrix ECEF to NED | Direction Cosine Matrix ECEF to NED to Latitude and
Longitude | ECEF Position to LLA | Geocentric to Geodetic Latitude | LLA to ECEF Position | Radius
at Geocentric Latitude
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FlightGear Preconfigured 6DoF Animation
Connect model to FlightGear flight simulator
Library: Aerospace Blockset / Animation / Flight Simulator Interfaces

Description
The FlightGear Preconfigured 6DoF Animation block lets you drive position and attitude values to a
FlightGear flight simulator vehicle given double-precision values for longitude (l), latitude (μ),
altitude (h), roll (ϕ), pitch (θ), and yaw (ψ), respectively.

The block is configured as a sim viewing device. If you generate code for your model using Simulink
Coder and connect to the running target code using external mode simulation, Simulink software can
obtain the data from the target on the fly and transmit position and attitude data to FlightGear. For
more information, see “Use C/C++ S-Functions as Sim Viewing Devices in External Mode”.

The Aerospace Blockset product supports FlightGear versions starting from v2.6. If you are using a
FlightGear version older than 2.6, the model displays a notification from the Simulink Upgrade
Advisor. Consider using the Upgrade Advisor to upgrade your FlightGear version. For more
information, see “Supported FlightGear Versions” on page 2-19.

Ports
Input

l,μ,h,ϕ,θ,ψ — Longitude, latitude, altitude, roll, pitch, and yaw
vector

Longitude, latitude, altitude, roll, pitch, and yaw, in double-precision, specified as a vector. Units are
degrees west/north for longitude and latitude, meters above mean sea level for altitude, and radians
for attitude values.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point | enumerated | bus

Parameters
Destination IP address — Destination IP address

127.0.0.1 (default) | scalar

Destination IP address of the machine running FlightGear software, specified as a scalar.

Programmatic Use
Block Parameter: DestinationIpAddress
Type: character vector
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Values: scalar
Default: '127.0.0.1'

Destination port — Destination port

scalar

Destination port of the machine running FlightGear software, specified as a scalar.

Programmatic Use
Block Parameter: DestinationPort
Type: character vector
Values: scalar
Default: '5502'

Sample time — Sample time

1/30 (default) | scalar

Sample time specified as a scalar (–1 for inherited).

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar
Default: '1/30'

Algorithms
The block is a masked subsystem containing principally a Pack net_fdm Packet for FlightGear block
set for 6DoF inputs, a Send net_fdm Packet to FlightGear block, and a Simulation Pace block. To
access the full capabilities of these blocks, use the individual corresponding blocks from the
Aerospace Blockset library.

Version History
Introduced before R2006a

References
[1] Bowditch, N., American Practical Navigator, An Epitome of Navigation. US Navy Hydrographic

Office, 1802.

See Also
Generate Run Script | Pack net_fdm Packet for FlightGear | Receive net_ctrl Packet from FlightGear |
Send net_fdm Packet to FlightGear | Unpack net_ctrl Packet from FlightGear

Topics
“Flight Simulator Interface” on page 2-19
“Work with the Flight Simulator Interface” on page 2-23
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Force Conversion
Convert from force units to desired force units
Library: Aerospace Blockset / Utilities / Unit Conversions

Description
The Force Conversion block computes the conversion factor from specified input force units to
specified output force units and applies the conversion factor to the input signal.

The Force Conversion block port labels change based on the input and output units selected from the
Initial unit and the Final unit lists.

Ports
Input

Port_1 — Force
scalar | array

Force, specified as a scalar or array, in initial force units.

Dependencies

The input port label depends on the Initial unit setting.
Data Types: double

Output

Port_1 — Force
scalar | array

Force, returned as a scalar or array, in final force units.

Dependencies

The output port label depends on the Final unit setting.
Data Types: double

Parameters
Initial unit — Input units

lbf (default) | N

Input units, specified as:
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lbf Pound force
N Newtons

Dependencies

The input port label depends on the Initial unit setting.

Programmatic Use
Block Parameter: IU
Type: character vector
Values: lbf | N
Default: lbf

Final unit — Output units

N (default) | lbf

Output units, specified as:

lbf Pound force
N Newtons

Dependencies

The output port label depends on the Final unit setting.

Programmatic Use
Block Parameter: OU
Type: character vector
Values: lbf | N
Default: N

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Acceleration Conversion | Angle Conversion | Angular Acceleration Conversion | Angular Velocity
Conversion | Density Conversion | Length Conversion | Mass Conversion | Pressure Conversion |
Temperature Conversion | Velocity Conversion
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Gain Scheduled Lead-Lag
Implement first-order lead-lag with gain-scheduled coefficients
Library: Aerospace Blockset / GNC / Control

Description
The Gain Scheduled Lead-Lag block implements a first-order lag of the form

u = 1 + as
1 + bse

where e is the filter input, and u is the filter output.

The coefficients a and b are inputs to the block. These values can depend on the flight condition or
operating point. For example, you can produce them from the Lookup Table (n-D) Simulink block.

Ports
Input

e — Filter input
scalar

Filter input, specified as a scalar.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point | enumerated | bus

a — Numerator coefficient
scalar

Numerator coefficient, specified as a scalar.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point | enumerated | bus

b — Denominator coefficient
positive scalar

Denominator coefficient, specified as a positive scalar.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point | enumerated | bus

Output

u — Filter output
scalar

Filter output, specified as a scalar.
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Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point | enumerated | bus

Parameters
Initial state, x_initial — Initial internal state

0 (default) | vector

Initial internal state, specified as a vector, for the filter x_initial. Given this initial state, the initial
output is given by

u t = 0 = x_initial + ae
b

Programmatic Use
Block Parameter: initial state, x_initial
Type: character vector
Values: vector
Default: '0'

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Lookup Table (n-D)
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Generate Run Script
Generate FlightGear run script on current platform
Library: Aerospace Blockset / Animation / Flight Simulator Interfaces

Description
The Generate Run Script block generates a customized FlightGear run script on the current platform.

To generate the run script, fill in the required information in the Parameters fields, then click
Generate Script.

In the dialog box, fields marked with an asterisk (*) are evaluated as MATLAB expressions. The other
fields are treated as literal text.

Parameters
Select target architecture — Target platform to run script

Default (default) | Win64 | Linux | Mac

From the list, select the target platform on which you want to execute the run script. This platform
can differ from the platform on which you create the run script. Select Default if you want to
generate a run script to run on the platform from which you create the run script.

• Win64
• Linux
• Mac

Programmatic Use
Block Parameter: Architecture
Type: character vector
Values: 'Win64' | 'Linux' | 'Mac'
Default: 'Default'

Select FlightGear data flow — FlightGear data flow

Send (default) | Receive | Send-Receive

From the list, select the direction of the data flow:

• Send

Creates the run script to set up the sending of the net_fdm control model from Simulink to
FlightGear.

• Receive
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Creates the run script to set up the receiving of the net_ctrl control model from FlightGear to
Simulink.

• Send-Receive

Creates the run script to set up FlightGear to receive and broadcast data to and from Simulink.

Note Selecting the Send-Receive option does not mean that you receive the same data that you
sent (for example, you might not see control surface position data). With this option, you see
primarily user input (such as data input via joystick) and environmental data.

Programmatic Use
Block Parameter: dataFlow
Type: character vector
Values: 'Receive' | 'Send-Receive'
Default: 'Send'

FlightGear geometry model name — Folder containing FlightGear geometry

HL20 (default)

Specify the name of the folder containing the model geometry that you want in the FlightGear
\data\Aircraft folder.

Programmatic Use
Block Parameter: GeometryModelName
Type: character vector
Values:'HL20'
Default: 'HL20'

Airport ID — ID of supported airport

KSFO (default)

ID of supported airport, selected from a list of supported airports available in the FlightGear
interface, under Location.

Programmatic Use
Block Parameter: 'AirportId'
Type: character vector
Values:'KSFO'
Default: 'KSFO'

Runway ID — ID of supported runway

10L (default)

Specify the runway ID.

Programmatic Use
Block Parameter: RunwayId
Type: character vector
Values:'10L'
Default: '10L'
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Initial altitude (ft)* — Initial aircraft altitude

7224 | numeric

Initial altitude of the aircraft, in feet.

Programmatic Use
Block Parameter: InitialAltitude
Type: character vector
Values:'7224'
Default: '7224'

Initial heading (deg)* — Initial aircraft heading

113 | numeric

Initial heading of the aircraft, in degrees.

Programmatic Use
Block Parameter: InitialHeading
Type: character vector
Values:'113'
Default: '113'

Offset distance (miles)* — Offset distance

4.72 | numeric

Offset distance of the aircraft from the airport, in miles.

Programmatic Use
Block Parameter: OffsetDistance
Type: character vector
Values:'4.72'
Default: '4.72'

Offset azimuth (deg)* — Aircraft offset azimuth

0 | numeric

Offset azimuth of the aircraft, in degrees.

Programmatic Use
Block Parameter: OffsetAzimuth
Type: character vector
Values:'0'
Default: '0'

Install FlightGear scenery during simulation (requires Internet connection) —
Install FlightGear scenery

off (default) | on

Select this check box to direct FlightGear to automatically install required scenery while the
simulator is running. Selecting this check box requires a stable Internet connection. For Windows
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systems, you may encounter an error message while launching FlightGear with this option enabled.
For more information, see “Install Additional FlightGear Scenery” on page 2-21.

Programmatic Use
Block Parameter: InstallScenery
Type: character vector
Values:'off' | 'on'
Default: 'off'

Disable FlightGear shader options — Disable FlightGear shader

off (default) | on

Select this check box to disable FlightGear shader options. Your computer built-in video card, such as
NVIDIA cards, can conflict with FlightGear shaders. Consider selecting this check box if you have this
conflict.

Programmatic Use
Block Parameter: DisableShaders
Type: character vector
Values:'off' | 'on'
Default: 'off'

Destination/Origin IP address — Network IP address of machine running MATLAB

127.0.0.1

Network IP address of the machine on which MATLAB runs. This value is read-only.

Programmatic Use
Block Parameter: OriginAddress
Type: character vector
Values:'127.0.0.1'
Default: '127.0.0.1'

Destination port — Destination port of FlightGear machine

5502

Network flight dynamics model (fdm) port. For more information, see the Send net_fdm Packet to
FlightGear block reference.

Programmatic Use
Block Parameter: DestinationPort
Type: character vector
Values:'5502'
Default: '5502'

Origin port — Origin port of FlightGear machine

5505

Network control (ctrl) port. For more information, see the Receive net_ctrl Packet from FlightGear
block.
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Programmatic Use
Block Parameter: OriginPort
Type: character vector
Values:'5505'
Default: '5505'

Network IP address — Network IP address of FlightGear machine

127.0.0.1

Network IP address of the machine on which the MATLAB software runs.

Programmatic Use
Block Parameter: LocalAddress
Type: character vector
Values:'127.0.0.1'
Default: '127.0.0.1'

Output file name — Output file

runfg.bat

Output file name. The file name is the name of the command that you use to start FlightGear with
these initial parameters.

Note The run script file name must be composed of ASCII characters.

Use these file extensions:

Platform Extension
Windows .bat
Linux and macOS .sh

Programmatic Use
Block Parameter: OutputFileName
Type: character vector
Values:'runfg.bat'
Default: 'runfg.bat'

FlightGear base directory — FlightGear base directory

C:\Program Files\FlightGear

Specify the name of the FlightGear installation folder.

Note FlightGear must be installed in a folder path name composed of ASCII characters.

Programmatic Use
Block Parameter: FlightGearBaseDirectory
Type: character vector
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Values:'C:\Program Files\FlightGear'
Default: 'C:\Program Files\FlightGear'

Generate Script — Generate Script button

button

Click Generate Script to generate a run script for FlightGear. Do not click this button until you have
entered the correct information in the dialog box parameters.

Version History
Introduced before R2006a

See Also
FlightGear Preconfigured 6DoF Animation | Pack net_fdm Packet for FlightGear | Receive net_ctrl
Packet from FlightGear | Send net_fdm Packet to FlightGear | Unpack net_ctrl Packet from FlightGear

Topics
“Flight Simulator Interface” on page 2-19
“Work with the Flight Simulator Interface” on page 2-23
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Geocentric to Geodetic Latitude
Convert geocentric latitude to geodetic latitude
Library: Aerospace Blockset / Utilities / Axes Transformations

Description
The Geocentric to Geodetic Latitude block converts a geocentric latitude (λ) into geodetic latitude (μ)
and optional ellipsoidal altitude (h) using geocentric latitude and the radius from the center of the
planet to the center of gravity. The function uses an iteration-method of Bowring's formula to
calculate the geodetic latitude. For more information, see “Algorithms” on page 5-424.

Limitations
This implementation generates a geodetic latitude that lies between ±90 degrees.

Ports
Input

λ — Geocentric latitude
scalar

Geocentric latitude, specified as a scalar, in degrees. Latitude values can be any value. However,
values of +90 and -90 may return unexpected values because of singularity at the poles.
Data Types: double

r — Radius
scalar

Radius from center of the planet to the center of gravity, specified as a scalar.
Data Types: double

Output

μ — Geodetic latitude
scalar

Geodetic latitude, specified as a scalar, in degrees.
Data Types: double

h — Ellipsoidal altitude
scalar

Ellipsoidal altitude, returned as a scalar.
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Dependencies

To enable this port, select Output altitude.
Data Types: double

Parameters
Units — Units

Metric (MKS) (default) | English

Parameter and output units:

Units Radius from CG to Center of
Planet

Equatorial Radius

Metric (MKS) Meters Meters
English Feet Feet

Programmatic Use
Block Parameter: units
Type: character vector
Values: 'Metric (MKS)' | 'English'
Default: 'Metric (MKS)'

Planet model — Planet model

Earth (WGS84) (default) | Custom

Planet model to use, Custom or Earth (WGS84).
Programmatic Use
Block Parameter: ptype
Type: character vector
Values: 'Earth (WGS84)' | 'Custom'
Default: 'Earth (WGS84)'

Flattening — Flattening

1/298.257223563 (default) | scalar

Flattening of the planet, specified as a double scalar.
Dependencies

This parameter is enabled when Planet model is set to Custom.
Programmatic Use
Block Parameter: F
Type: character vector
Values: double scalar
Default: 1/298.257223563

Equatorial radius of planet — Radius
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6378137.0 (default) | scalar

Radius of the planet at its equator, in the same units as the Units parameter.
Dependencies

This parameter is enabled when Planet model is set to Custom.
Programmatic Use
Block Parameter: R
Type: character vector
Values: double scalar
Default: 6378137

Output altitude — Enable ellipsoidal altitude

off (default) | on

Select this check box to output the ellipsoidal altitude.
Dependencies

Select this check box to enable the h port.
Programmatic Use
Block Parameter: outputAltitude
Type: character vector
Values: off | on
Default: 'off'

Algorithms
The Geocentric to Geodetic Latitude block converts a geocentric latitude (λ) into geodetic latitude
(μ), where:

• λ — Geocentric latitude
• μ — Geodetic latitude
• r — Radius from the center of the planet
• f — Flattening
• a — Equatorial radius of the plant (semi-major axis)

Given geocentric latitude (λ) and the radius (r) from the center of the planet, this block first converts
the desired points into the distance from the polar axis (ρ) and the distance from the equatorial axis
(z).

ρ = r(cos(λ))
z = r(sin(λ)) .

It then calculates the geometric properties of the planet:

b = a(1− f )
e2 = f (2− f )

e′2 = e2

(1− e2)
.
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And then uses the fixed-point iteration of Bowring's formula to calculate μ. This formula typically
converges in three iterations.

β = tan−1 (1− f )sin(μ)
cos(μ)

μ = tan−1 z + be′2sin(β)3

ρ− ae2cos(β)3
.

Version History
Introduced before R2006a

References
[1] Jackson, E. B., Manual for a Workstation-based Generic Flight Simulation Program (LaRCsim)

Version 1.4, NASA TM 110164, April, 1995.

[2] Hedgley, D. R., Jr. "An Exact Transformation from Geocentric to Geodetic Coordinates for Nonzero
Altitudes." NASA TR R-458, March, 1976.

[3] Clynch, J. R. "Radius of the Earth - Radii Used in Geodesy." Naval Postgraduate School, Monterey,
California, 2002.

[4] Stevens, B. L., and F. L. Lewis. Aircraft Control and Simulation, Hoboken, NJ: John Wiley & Sons,
1992.

[5] Edwards, C. H., and D. E. Penny. Calculus and Analytical Geometry 2nd Edition, Prentice-Hall,
Englewood Cliffs, New Jersey, 1986.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
ECEF Position to LLA | Flat Earth to LLA | Geodetic to Geocentric Latitude | LLA to ECEF Position
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Geodetic to Geocentric Latitude
Convert geodetic latitude to geocentric latitude
Library: Aerospace Blockset / Utilities / Axes Transformations

Description
The Geodetic to Geocentric Latitude block converts a geodetic latitude (μ) into geocentric latitude (λ)
and optional radius from the center of the planet to the center of gravity (r) using geodetic latitude
and ellipsoidal altitude. For more information on the geocentric latitude, see “Algorithms” on page 5-
428.

Limitations
This block implementation generates a geocentric latitude that lies between ±90 degrees.

Ports
Input

μ — Geodetic latitude
scalar

Geodetic latitude, specified as a scalar, in degrees. Latitude values can be any value. However, values
of +90 and -90 may return unexpected values because of singularity at the poles.
Data Types: double

h — Ellipsoidal altitude
scalar

Ellipsoidal altitude, specified as a scalar.
Data Types: double

Output

λ — Geocentric latitude
scalar

Contains the geocentric latitude, specified as a scalar, in degrees.
Data Types: double

r — Radius
scalar

Radius from center of the planet to the center of gravity, returned as a scalar.
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Dependencies

To enable this port, select Output radius.
Data Types: double

Parameters
Units — Units

Metric (MKS) (default) | English

Parameter and output units:

Units Radius from CG to Center of
Planet

Equatorial Radius

Metric (MKS) Meters Meters
English Feet Feet

Programmatic Use
Block Parameter: units
Type: character vector
Values: 'Metric (MKS)' | 'English'
Default: 'Metric (MKS)'

Planet model — Planet model

Earth (WGS84) (default) | Custom

Planet model to use, Custom or Earth (WGS84).

Dependencies

Selecting the Custom option enables these parameters:

• Flattening
• Equatorial radius of planet

Programmatic Use
Block Parameter: ptype
Type: character vector
Values: 'Earth (WGS84)' | 'Custom'
Default: 'Earth (WGS84)'

Flattening — Flattening

1/298.257223563 (default) | scalar

Flattening of the planet, specified as a double scalar.

Dependencies

This parameter is enabled when Planet model is set to Custom.
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Programmatic Use
Block Parameter: F
Type: character vector
Values: double scalar
Default: 1/298.257223563

Equatorial radius of planet — Radius

6378137.0 (default) | scalar

Radius of the planet at its equator, in the same units as the Units parameter.

Dependencies

This parameter is enabled when Planet model is set to Custom.

Programmatic Use
Block Parameter: R
Type: character vector
Values: double scalar
Default: 6378137

Output radius — Enable output of radius

off (default) | on

Select this check box to output the scalar distance radius from the equatorial radius to the center of
the planet.

Dependencies

Select this check box to enable the r port.

Programmatic Use
Block Parameter: outputRadius
Type: character vector
Values: off | on
Default: 'off'

Algorithms
The Geodetic to Geocentric Latitude block converts a geodetic latitude (μ) into geocentric latitude
(λ), where:

• λ — Geocentric latitude
• μ — Geodetic latitude
• h — Height from the surface of the planet
• f — Flattening
• a — Equatorial radius of the plant (semi-major axis)

Given the geodetic latitude (μ) and the height from the surface of the planet (h), this block first
calculates the geometric properties of the planet.
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e2 = f
(2− f )

N = a
1− e2sin(μ)2)

.

It then calculates the geocentric latitude from the point's distance from the polar axis (ρ) and
distance from the equatorial axis (z).

ρ = (N + h)sin(μ)
z = (N(1− e2) + h)sin(μ)

λ = tan−1 z
ρ .

Version History
Introduced before R2006a

References
[1] Stevens, B. L., and F. L. Lewis. Aircraft Control and Simulation, Hoboken, NJ: John Wiley & Sons,

1992.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Topics
ECEF Position to LLA
Flat Earth to LLA
Geocentric to Geodetic Latitude
LLA to ECEF Position
Radius at Geocentric Latitude
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Heading Indicator
Display measurements for aircraft heading
Library: Aerospace Blockset / Flight Instruments

Description
The Heading Indicator block displays measurements for aircraft heading in degrees.

The block represents values between 0 and 360 degrees.

Tip To facilitate understanding and debugging your model, you can modify instrument block
connections in your model during normal and accelerator mode simulations.

Parameters
Connection — Connect to signal
signal name

Connect to signal for display, selected from list of signal names.

To view the data from a signal, select a signal in the model. The signal appears in the Connection
table. Select the option button next to the signal you want to display. Click Apply to connect the
signal.

The table has a row for the signal connected to the block. If there are no signals selected in the
model, or the block is not connected to any signals, the table is empty.

Label — Block label location

Top (default) | Bottom | Hide

Block label, displayed at the top or bottom of the block, or hidden.

• Top

Show label at the top of the block.
• Bottom

Show label at the bottom of the block.
• Hide

Do not show the label or instructional text when the block is not connected.
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Programmatic Use
Block Parameter: LabelPosition
Type: character vector
Values: 'Top' | 'Bottom' | 'Hide'
Default: 'Top'

Version History
Introduced in R2016a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block is ignored for code generation.

See Also
Airspeed Indicator | Altimeter | Artificial Horizon | Climb Rate Indicator | Exhaust Gas Temperature
(EGT) Indicator | Revolutions Per Minute (RPM) Indicator | Turn Coordinator

Topics
“Display Measurements with Cockpit Instruments” on page 2-50
“Flight Instrument Gauges” on page 2-49
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Geoid Height
Calculate undulations/height
Library: Aerospace Blockset / Environment / Gravity

Description
The Geoid Height block calculates the geoid height using the Geopotential model parameter. The
block interpolates the geoid heights from a grid of point values in the tide-free system. It uses the
specified geopotential model to degree and order of the model. The geoid undulations are relative to
the WGS84 ellipsoid.

The interpolation scheme wraps over the poles to allow for geoid height calculations at and near
these locations.

Limitations
This block has the limitations of the selected geopotential model.

Ports
Input

μ (deg) — Geodetic latitude
scalar

Geodetic latitude, specified as a scalar, in degrees, where north latitude is positive and south latitude
is negative. Input latitude must be of type single or double. If latitude is not in the range from –90 to
90, the block wraps it to be within the range.
Data Types: double | single

l (deg) — Longitude
scalar

Longitude, specified as a scalar, in degrees, where east longitude is positive in the range from 0 to
360. Input longitude must be of type single or double. If longitude is not in the range from 0 to 360,
the block wraps it to be within the range when Action for out-of-range input is set to None or
Warning. It does not wrap when Action for out-of-range input is set to Error.
Data Types: double | single

Output

N — geoid height
scalar

Geoid height, returned as a scalar, in selected length units. The data type is the same as the latitude
in the first input.
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Data Types: double | single

Parameters
Units — Parameter and output units

Metric (MKS) (default) | English

Parameter and output units, specified as:

Units Height
Metric (MKS) Meters
English Feet

Programmatic Use
Block Parameter: units
Type: character vector
Values: 'Metric (MKS)' | 'English'
Default: 'Metric (MKS)'

Geopotential model — Geopotential model

EGM96 (default) | EGM2008 | Custom

Geopotential model, specified as:

Geopotential Model Description
EGM96 (Earth) Default. EGM96 Geopotential Model to degree and order 360. This model

uses a 15-minute grid of point values in the tide-free system. This block
calculates geoid heights to an accuracy of 0.01 m for this model.

EGM2008 (Earth) EGM2008 Geopotential Model to degree and order 2159. This model uses a
2.5-minute grid of point values in the tide-free system. This block calculates
geoid heights to an accuracy of 0.001 m for this model.

Note This block requires that you download geoid data for the EGM2008
Geopotential Model with the Add-On Explorer. Click the Get data button to
start the Add-On Explorer. For more information, see aeroDataPackage. If
the data is installed, the Get data button does not appear.

Custom Custom geopotential model that you define in Geopotential mat-file. This
block calculates geoid heights to an accuracy of 0.01 m for custom models.
Selecting Custom enables the Geopotential mat-file parameter.

Programmatic Use
Block Parameter: gtype
Type: character vector
Values: 'EGM96' | 'EGM2008' | 'Custom'
Default: 'Earth'

Geopotential mat-file — Geopotential MAT-file
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'geoidegm96grid' (default) | MAT-file

Geopotential MAT-file that defines your custom geopotential model.
Dependencies

To enable this, set Geopotential model to Custom.
Programmatic Use
Block Parameter: datafile
Type: character vector
Values: 'geoidegm96grid' | MAT-file
Default: 'geoidegm96grid'

Data type — Data type of input and output signals

double (default) | single

Data type of the input and output signals, specified as double or single.
Programmatic Use
Block Parameter: dtype
Type: character vector
Values: 'double' | 'single'
Default: 'double'

Action for out-of-range input — Out-of-range input behavior

Warning (default) | Error | None

Out-of-range input behavior (latitude outside –90 to 90 degrees, longitude outside 0 to 360 degrees),
specified as follows.

Action Description
None No action.
Warning Warning in the Diagnostic Viewer.
Error (default) MATLAB returns an exception, model simulation stops.

Programmatic Use
Block Parameter: action
Type: character vector
Values: 'None' | 'Warning' | 'Error'
Default: 'Warning'

Version History
Introduced in R2010b

References
[1] Vallado, David. Fundamentals of Astrodynamics and Applications. New York: McGraw-Hill, 1997.

[2] "Department of Defense World Geodetic System 1984, Its Definition, and Relationship with Local
Geodetic Systems." NIMA TR8350.2.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
WGS84 Gravity Model | Spherical Harmonic Gravity Model

External Websites
Office of Geomatics
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Horizontal Wind Model
Transform horizontal wind into body-axes coordinates
Library: Aerospace Blockset / Environment / Wind

Description
The Horizontal Wind Model block computes the wind velocity in body-axes coordinates.

The wind is specified by wind speed and wind direction in Earth axes. The speed and direction can be
constant or variable over time. The direction of the wind is in degrees clockwise from the direction of
the Earth x-axis (north). The wind direction is defined as the direction from which the wind is coming.
Using the direction cosine matrix (DCM), the wind velocities are transformed into body-axes
coordinates.

Ports
Input

DCM — Direction cosine matrix
3-by-3 matrix

Direction cosine matrix, specified as a 3-by-3 matrix representing the flat Earth coordinates to body-
fixed axis coordinates.
Data Types: double

Vwind — Wind speed
1-by-3 vector

Wind speed, specified as a 1-by-3 vector, in selected units.

Dependencies

To enable this parameter, set Wind speed source to External.
Data Types: double

θwind — Wind direction
scalar

Wind direction, specified as a scalar, in degrees. The direction of the wind is in degrees clockwise
from the direction of the Earth x-axis (north). The wind direction is defined as the direction from
which the wind is coming.

Dependencies

To enable this parameter, set Wind direction source to External.
Data Types: double
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Output

Vwind — Wind velocity
3-by-3 matrix

Wind velocity, returned as a three-element signal in the same body coordinate reference as the DCM
input, in specified units.
Data Types: double

Parameters
Units — Input and output units

Metric (MKS) (default) | English (Velocity in ft/s) | English (Velocity in kts)

Input and output units, specified as:

Units Wind Speed Wind Velocity
Metric (MKS) Meters per second Meters per second
English (Velocity in ft/s) Feet per second Feet per second
English (Velocity in kts) Knots Knots

Programmatic Use
Block Parameter: units
Type: character vector
Values: 'Metric (MKS)' | 'English (Velocity in kts)' | 'English (Velocity in
ft/s)'
Default: 'Metric (MKS)'

Wind speed source — Wind speed source

Internal (default) | External

Wind speed source, specified as:

External Variable wind speed input to block
Internal Constant wind speed specified in mask

Dependencies

• Setting this parameter to Internal enables Wind speed at altitude.
• Setting this parameter to External enables the Vwind input port.

Programmatic Use
Block Parameter: Vw_source
Type: character vector
Values: 'Internal' | 'External'
Default: 'Internal'

Wind speed at altitude (m/s) — Wind speed
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15 (default) | scalar

Constant wind speed, specified as a double scalar, in specified units.

Dependencies

To enable this parameter, set Wind speed source to Internal.

Programmatic Use
Block Parameter: Vwind
Type: character vector
Values: scalar
Default: '15'

Wind direction source — Wind direction source

Internal (default) | External

Wind direction source, specified as:

External Variable wind direction input to block
Internal Constant wind direction specified in mask

Dependencies

• Setting this parameter to Internal enables Wind direction at altitude (degrees clockwise
from north).

• Setting this parameter to External enables the θwind input port.

Programmatic Use
Block Parameter: W_source
Type: character vector
Values: 'Internal' | 'External'
Default: 'Internal'

Wind direction at altitude (degrees clockwise from north) — Wind direction

0 (default)

Constant wind direction, specified as a scalar, in degrees clockwise from the direction of the Earth x-
axis (north). The wind direction is the direction from which the wind is coming.

Dependencies

To enable this parameter, set Wind direction source to Internal.

Programmatic Use
Block Parameter: Wdeg
Type: character vector
Values: scalar
Default: '0'

Version History
Introduced before R2006a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Dryden Wind Turbulence Model (Continuous) | Dryden Wind Turbulence Model (Discrete) | Discrete
Wind Gust Model | Horizontal Wind Model 07 | Horizontal Wind Model 14 | Von Karman Wind
Turbulence Model (Continuous) | Wind Shear Model
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Horizontal Wind Model 07
Implement Horizontal Wind Model 07
Library: Aerospace Blockset / Environment / Wind

Description
The Horizontal Wind Model 07 block implements the U.S. Naval Research Laboratory HWM™ routine
to calculate the meridional and zonal components of the wind for a set of geographic coordinates:
latitude, longitude, and altitude.

Limitations
For code generation, use this block only for targets whose type is int 32 or higher.

Ports
Input

μ l h — Geodetic latitude, longitude, and geopotential altitude
three-element vector | altitude is a value between 0 and 500 km

Geodetic latitude (μ), longitude (l), and geopotential altitude (h), specified as a three-element vector.

Latitude and longitude values are in degrees.

Altitude values are held outside the range 0 to 500 km. The altitude value is in the units selected in
Units.
Data Types: double

day — Day
scalar | value between 1 and 366

Day of year in Coordinated Universal Time (UTC), specified as a value between 1 and 366 (for a leap
year). Values are wrapped within the range 1 to 366 days.
Data Types: double

sec — Elapsed seconds
scalar

Elapsed seconds since midnight for the specified day, in UTC.
Data Types: double

Ap — Ap index
scalar | range from 0 to 400
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Ap index for the Universal Time (UT), specified as a scalar, ranging from 0 to 400. Select the index
from NOAA National Geophysical Data Center, which contains 3 hour interval geomagnetic
disturbance index values. If the Ap index value is greater than zero, the software takes into account
magnetic effects during model evaluation.

Dependencies

To enable this port, set Model to Total or Disturbance.
Data Types: double

Output

Vwind — Wind velocity vector
1-by-2 vector

Wind velocity vector, returned as a 1-by-2 vector, containing the meridional and zonal wind
components, in that order.
Data Types: double

Parameters
Units — Input and output units

Metric (MKS) (default) | English (Velocity in ft/s) | English (Velocity in kts)

Input and output units, specified as:

Units Wind Speed Wind Velocity
Metric (MKS) Meters per second Meters per second
English (Velocity in ft/s) Feet per second Feet per second
English (Velocity in kts) Knots Knots

Programmatic Use
Block Parameter: units
Type: character vector
Values: 'Metric (MKS)' | 'English (Velocity in ft/s)' | 'English (Velocity in
kts)'
Default: 'Metric (MKS)'

Model — Horizontal wind model type

Quiet (default) | Total | Disturbance

Horizontal wind model type for which to calculate the wind components, specified as:

• Disturbance

Calculate the effect of only magnetic disturbances in the wind.
• Quiet

Calculate the horizontal wind model without magnetic disturbances.
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• Total

Calculate the combined effect of the quiet and magnetic disturbances.

Programmatic Use
Block Parameter: model
Type: character vector
Values: 'Quiet' | 'Total' | 'Disturbance'
Default: 'Quiet'

Action for out-of-range input — Out-of-range block behavior

Error (default) | Warning | None

Out-of-range block behavior, specified as follows.

Value Description
None No action. The block imposes upper and lower limits on an input

signal.
Warning Warning in the Diagnostic Viewer, model simulation continues.

For Accelerator and Rapid Accelerator modes, setting the action
to Warning has no effect and the model behaves as though the
action is set to None.

Error MATLAB returns an exception, model simulation stops. For
Accelerator and Rapid Accelerator modes, setting the action to
Error has no effect and the model behaves as though the action
is set to None.

Programmatic Use
Block Parameter: action
Type: character vector
Values: 'None' | 'Warning' | 'Error'
Default: 'Warning'

Version History
Introduced in R2014b

Horizontal Wind Model 07 Block Possible Changed Returned Values
Behavior changed in R2021b

The Horizontal Wind Model 07 block now accepts:

• day port values that are decimal, negative, 0, or greater than 366.
• sec port values that are 0 or greater than 86400.

As a result, the output values from this block might change from previous releases.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.
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See Also
Horizontal Wind Model | Horizontal Wind Model 14

External Websites
NOAA National Geophysical Data Center
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Horizontal Wind Model 14
Implement Horizontal Wind Model 14
Library: Aerospace Blockset / Environment / Wind

Description
The Horizontal Wind Model 14 block implements the U.S. Naval Research Laboratory (HWM) routine
to calculate the meridional and zonal components of the wind for a set of geographic coordinates:
latitude, longitude, and altitude.

Limitation
For code generation, use this block only for targets whose type is int 32 or higher.

Ports
Input

First — geodetic latitude (μ), longitude (l), and geopotential altitude (h)
three-element vector of doubles

The input specifies the geodetic latitude (μ), longitude (l), and geopotential altitude (h) where the
block implements the model.

Latitude and longitude values are in degrees.

The altitude value is in the units you selected in the Units parameter. Specify the altitude element as
a value between 0 and 500 km. Values are held outside the range 0 to 500 km.

Second — day of year
scalar double

The input specifies the day of year in Coordinated Universal Time (UTC). The input specifies the day
as a value between 1 and 366 (for a leap year). Values are wrapped within 1 to 366 days.

Third — elapsed seconds
scalar double

Contains elapsed seconds since midnight for the selected day, in UTC.

Fourth (Optional) — Ap index
scalar double

Contains the Ap index for the Universal Time (UT) when the block evaluates the model. Select the
index from the NOAA National Geophysical Data Center, which contains 3 hour interval geomagnetic
disturbance index values. If the Ap index value is greater than zero, the software takes into account
magnetic effects during model evaluation.
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Output

First — wind velocity vector
1-by-2 vector of doubles

The wind velocity vector contains the meridional and zonal wind components in that order.

Parameters
Units — input and output units
Metric (MKS) (default) | English (Velocity in ft/s) | English (Velocity in kts)

Input and output units for wind speed and velocity, specified as:

Units Wind Speed Wind Velocity
Metric (MKS) Meters per second Meters per second
English (Velocity in ft/s) Feet per second Feet per second
English (Velocity in kts) Knots Knots

Programmatic Use
Block Parameter: units
Type: character vector
Values: 'Metric (MKS)' | 'English (Velocity in ft/s)' | 'English (Velocity in
kts)'
Default: 'Metric (MKS)'

Model — horizontal wind model
Quiet (default) | Total | Disturbance

Select the horizontal wind model type for which to calculate the wind components.

• Quiet

Calculate the horizontal wind model without the magnetic disturbances. For this model type, do
not input an Ap index value.

• Total

Calculate the combined effect of the quiet and magnetic disturbances. For this model type, input
Ap index values greater than or equal to zero.

• Disturbance

Calculate the effect of magnetic disturbances in the wind. For this model type, input Ap index
values greater than or equal to zero.

Programmatic Use
Block Parameter: model
Type: character vector
Values: 'Quiet' | 'Total' | 'Disturbance'
Default: 'Quiet'
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Action for out-of-range input — block behavior
Error (default) | Warning | None

Specify the block behavior when the block inputs are out of range.

Value Description
Error (default) MATLAB returns an exception, and model simulation stops. For

Accelerator and Rapid Accelerator modes, setting the action to
Error has no effect and the model behaves as though the action
is set to None.

Warning Warning in the Diagnostic Viewer, and model simulation
continues. For Accelerator and Rapid Accelerator modes, setting
the action to Warning has no effect and the model behaves as
though the action is set to None.

None No action. The block imposes upper and lower limits on an input
signal.

Programmatic Use
Block Parameter: action
Type: character vector
Values: 'None' | 'Warning' | 'Error'
Default: 'Error'

Version History
Introduced in R2016b

Horizontal Wind Model 14 Block Possible Changed Returned Values
Behavior changed in R2021b

The Horizontal Wind Model 14 block now accepts:

• day port values that are decimal, negative, 0, or greater than 366.
• sec port values that are 0 or greater than 86400.

As a result, the output values from this block might change from previous releases.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Horizontal Wind Model | Horizontal Wind Model 07

External Websites
NOAA National Geophysical Data Center
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Ideal Airspeed Correction
Calculate equivalent airspeed (EAS), calibrated airspeed (CAS), or true airspeed (TAS) from each
other
Library: Aerospace Blockset / Flight Parameters

Description
The Ideal Airspeed Correction block calculates one of these airspeeds from one of the other two
airspeeds:

• Equivalent airspeed (EAS)
• Calibrated airspeed (CAS)
• True airspeed (TAS)

Limitations
This block assumes that the air flow is compressible dry air with constant specific heat ratio, γ

Ports
Input

TAS — True input airspeed
scalar

True input airspeed, specified as a scalar, in the units specified by the Units parameter.
Dependencies

To enable this port, set Airspeed input to TAS.
Data Types: double

EAS — Equivalent input airspeed
scalar

Equivalent input airspeed, specified as a scalar, in the units specified by the Units parameter.
Dependencies

To enable this port, set Airspeed input to EAS.
Data Types: double

CAS — Calibrated input airspeed
scalar

Calibrated input airspeed, specified as a scalar, in the units specified by the Units parameter.
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Dependencies

To enable this port, set Airspeed input to EAS.
Data Types: double

a — Speed of sound
scalar

Speed of sound, specified as a scalar, in the units specified by the Units parameter.
Data Types: double

P0 — Static pressure
scalar

Static pressure, specified as a scalar, in the units specified by the Units parameter.
Data Types: double

Output

EAS — Equivalent output airspeed
scalar

Equivalent output airspeed, returned as a scalar, in the units specified by the Units parameter.

Dependencies

To enable this port, set Airspeed input to TAS or CAS and Airspeed output to EAS.
Data Types: double

CAS — Calibrated output airspeed
scalar

Calibrated output airspeed, returned as a scalar, in the units specified by the Units parameter.

Dependencies

To enable this port, set Airspeed input to TAS or EAS and Airspeed output to CAS.
Data Types: double

TAS — True output airspeed
scalar

True output airspeed, returned as a scalar, in the units specified by the Units parameter.

Dependencies

To enable this port, set Airspeed input to CAS or EAS and Airspeed output to TAS.
Data Types: double

Parameters
Units — Units
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Metric (MKS) (default) | English (Velocity in ft/s) | English (Velocity in kts)

Input and output units, specified as:

Units Airspeed Input Speed of Sound Air Pressure Airspeed
Output

Metric (MKS) Meters per second Meters per second Pascal Meters per
second

English (Velocity
in ft/s)

Feet per second Feet per second Pound force
per square
inch

Feet per
second

English (Velocity
in kts)

Knots Knots Pound force
per square
inch

Knots

Programmatic Use
Block Parameter: units
Type: character vector
Values: 'Metric (MKS)' | 'English'
Default: 'Metric (MKS)'

Airspeed input — Airspeed input type

TAS (default) | EAS | CAS

Airspeed input type, specified as:

TAS True airspeed
EAS Equivalent airspeed
CAS Calibrated airspeed

Programmatic Use
Block Parameter: vel_in
Type: character vector
Values: 'TAS' | 'EAS' | 'CAS'
Default: 'TAS'

Airspeed output — Airspeed output type

EAS (default) | CAS | TAS

Airspeed output type, specified as:

Airspeed Input Airspeed Output
TAS EAS (equivalent airspeed)

CAS (calibrated airspeed)
EAS TAS (true airspeed)

CAS (calibrated airspeed)
CAS TAS (true airspeed)
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Airspeed Input Airspeed Output
EAS (equivalent airspeed)

Programmatic Use
Block Parameter: vel_out_tas, vel_out_cas, vel_out_eas, depending on the input velocity
type, vel_in. For more information, see the airspeed output type table.
Type: character vector
Values: 'EAS' | 'CAS''TAS'
Default: 'EAS'

Method — Method for computing conversion factor

Table Lookup (default) | Equation

Method for computing the conversion factor, specified as:

Table Lookup (Default) Generate output airspeed by looking up or estimating table
values based on block inputs.

If the Subsonic airspeeds only check box is selected, the Ideal
Airspeed Correction block generates code that includes subsonic
(Mach < 1) lookup table data.

If the Subsonic airspeeds only check box is cleared, the Ideal
Airspeed Correction block generates code that includes all (Mach < 5)
lookup table data. Beyond Mach 5, the block uses the equation
method.

The Table Lookup method is not recommended for either of these
instances:

• Speed of sound less than 200 m/s or greater than 350 m/s.
• Static pressure less than 1000 Pa or greater than 106,500 Pa.

Using the Table Lookup method in these instances causes
inaccuracies.

Equation Compute output airspeed directly using block input values.

Calculations involving supersonic airspeeds (greater than Mach 1)
require an iterative computation. If the function does not find a
solution within 30 iterations, it displays an error message.

The block does not include lookup table data in generated code.

The Ideal Airspeed Correction block automatically uses the Equation method for any of these
instances:

• Conversion with Airspeed input set to TAS and Airspeed output set to EAS.
• Conversion with Airspeed input set to EAS and Airspeed output set to TAS.
• Conversion when block input airspeed is greater than five times the speed of sound at sea level

(approximately 1700 m/s).
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Programmatic Use
Block Parameter: method
Type: character vector
Values: 'Table Lookup' | 'Equation'
Default: 'Table Lookup'

Subsonic airspeeds only — Use with subsonic airspeed

off (default) | on

Select this check box to use this block only with subsonic airspeed (airspeeds less than Mach 1)
applications. Selecting this check box may improve performance.

The block generates code as follows:

• If this check box is selected, the Ideal Airspeed Correction block generates code that includes
subsonic (Mach < 1) lookup table data if Method is set to Table Lookup.

Selecting this check box displays the Action for out-of-range input parameter.
• If this check box is cleared, the Ideal Airspeed Correction block generates code that includes all

(Mach < 5) lookup table data if Method is set to Table Lookup.

Programmatic Use
Block Parameter: SubOnly
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Action for out-of-range input — Out-of-range block behavior

None (default) | Warning | Error

Out-of-range block behavior, where airspeed is greater than Mach 1, specified as follows.

Value Description
None Does not display warning or error.
Warning Displays warning and indicates that the airspeed is greater than

Mach 1.
Error Displays error and indicates that the airspeed is greater than

Mach 1.

Dependencies

This parameter is enabled only if the Subsonic airspeeds only check box is selected.

Programmatic Use
Block Parameter: action
Type: character vector
Values: 'None' | 'Warning' | 'Error'
Default: 'None'
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Version History
Introduced before R2006a

References
[1] Lowry, J. T., Performance of Light Aircraft, AIAA Education Series, Washington, DC, 1999.

[2] Aeronautical Vestpocket Handbook, United Technologies Pratt & Whitney, August, 1986.

[3] Gracey, William, Measurement of Aircraft Speed and Altitude, NASA Reference Publication 1046,
1980.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
COESA Atmosphere Model | ISA Atmosphere Model | Lapse Rate Model | Non-Standard Day 210C |
Non-Standard Day 310
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Incidence & Airspeed
Calculate incidence and airspeed
Library: Aerospace Blockset / Flight Parameters

Description
The Incidence & Airspeed block supports the 3DoF equations of motion model by calculating the
angle between the velocity vector and the body, and also the total airspeed from the velocity
components in the body-fixed coordinate frame.

α = atan w
u

V = u2 + w2

Ports
Input

U, w — Velocity
two-element vector

Velocity of the body, specified as a two-element vector, resolved into the body-fixed coordinate frame.
Data Types: double

Output

ɑ — Incidence angle
scalar

Incidence angle, returned as a scalar, in radians.
Data Types: double

V — Airspeed
scalar

Airspeed of the body, returned as a scalar.
Data Types: double

Version History
Introduced before R2006a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Incidence, Sideslip, & Airspeed
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Incidence, Sideslip, & Airspeed
Calculate incidence, sideslip, and airspeed
Library: Aerospace Blockset / Flight Parameters

Description
The Incidence, Sideslip, & Airspeed block calculates the angles between the velocity vector and the
body, and also the total airspeed from the velocity components in the body-fixed coordinate frame.
For the equations used in the calculation, see “Algorithms” on page 5-456.

Ports
Input

Vb — Velocity of body
three-element vector

Velocity of the body, specified as a three-element vector, resolved into the body-fixed coordinate
frame.
Data Types: double

Output

ɑ — Incidence angle
scalar

Incidence angle, returned as a scalar, in radians.
Data Types: double

β — Sideslip angle
scalar

Sideslip angle, returned as a scalar, in radians.
Data Types: double

V — Airspeed
scalar

Airspeed of the body, returned as a scalar.
Data Types: double
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Algorithms
To calculate the angles between the velocity vector and the body, and the total airspeed, the block
uses these equations:

α = tan−1 w
u

β = sin−1 v
V = tan−1( v

u2 + w2 )

The block uses the tan-1 formulation for β to prevent division by 0.

V = u2 + v2 + w2

Version History
Introduced before R2006a

Updated to Reduce Divide by Zero Issues
Behavior changed in R2022b

The Incidence, Sideslip, & Airspeed block now reduces the potential for divide by zero issues caused
by aircraft hovering without forward movement. In previous releases, hovering without forward
movement might cause divide by zero issues.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Incidence & Airspeed
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International Geomagnetic Reference Field
Calculate Earth magnetic field and secular variation using International Geomagnetic Reference Field
Library: Aerospace Blockset / Environment / Gravity

Description
The International Geomagnetic Reference Field block calculates the Earth magnetic field and secular
variation using the selected International Geomagnetic Reference Field generation. It calculates the
Earth magnetic field and secular variation at a position and time using the selected International
Geomagnetic Reference Field generation.

Limitations
• This block is valid between the heights of -1000 m and 5.6 Earth radii (35,717,567.2 m).
• This block is valid for these year ranges:

• IGRF-13 model — 1900 and 2025
• IGRF-12 model — 1900 and 2020
• IGRF-11 model — 1900 and 2015

• If the decimal year is outside the valid range for a generation, the International Geomagnetic
Reference Field block linearly extrapolates the magnetic field to the out-of-range decimal year.

• For additional limitations, see :

The International Geomagnetic Reference Field: A "Health" Warning

Ports
Input

h — Height
scalar

Height, specified as a scalar, in selected units.
Data Types: double

μ (deg) — Latitude
scalar

Latitude, specified as a scalar in degrees. This block accepts latitude values greater than 90 and less
than -90.
Data Types: double

 International Geomagnetic Reference Field
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l (deg) — Longitude
scalar

Longitude, specified as a scalar, in degrees. This block accepts ranges greater than 180 and less than
-180.
Data Types: double

dyear — Desired year
scalar

Desired year in a decimal format to include any fraction of the year that has already passed. The
value is the current year plus the number of days that have passed in this year divided by 365. To
calculate the decimal year, dyear, for March 21, 2015:
dyear=decyear('21-March-2015','dd-mmm-yyyy')

Dependencies

To enable this port, select Input decimal year.
Data Types: double

Output

XYZ — Magnetic field
vector

Magnetic field, returned as a vector, in selected units. The components of this vector are in the north-
east-down (NED) reference frame.
Data Types: double

H — Horizontal intensity
scalar

Horizontal intensity, returned as a scalar, in selected units.
Data Types: double

D — Declination
scalar

Declination, returned as a scalar, in degrees.
Data Types: double

l — Inclination
scalar

Inclination, returned as a scalar, in degrees.
Data Types: double

F — Total intensity
scalar

Total intensity, returned as a scalar, in selected units.
Data Types: double
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DXDYDZ — Secular variation of magnetic field
vector

Secular variation of magnetic field, returned as a vector in selected units per year.

Dependencies

To enable this port, select Output secular variation.
Data Types: double

DH — Secular variation of horizontal intensity
scalar

Secular variation of horizontal intensity, returned as a scalar, in selected units per year.

Dependencies

To enable this port, select Output secular variation.
Data Types: double

DD — Secular variation of declination
scalar

Secular variation of declination, returned as a scalar, in minutes per year.

Dependencies

To enable this port, select Output secular variation.
Data Types: double

DI — Secular variation of inclination
scalar

Secular variation of inclination, returned as a scalar, in minutes per year.

Dependencies

To enable this port, select Output secular variation.
Data Types: double

DF — Secular variation of total intensity
scalar

Secular variation of total intensity, returned as a scalar, in selected units per year.

Dependencies

To enable this port, select Output secular variation.
Data Types: double

Parameters
Generation — International Geomagnetic Reference Field generation
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IGRF-13 (default) | IGRF-11 | IGRF-12

International Geomagnetic Reference Field generation, selected from IGRF-13, IGRF-12, or
IGRF-11.
Programmatic Use
Block Parameter: generation
Type: character vector
Values: 'IGRF-13' | 'IGRF-11' | 'IGRF-12'
Default: 'IGRF-13'
Data Types: char | string

Units — Units

Metric (MKS) (default) | English

Parameter and output units, specified as:

Units Height
Metric (MKS) Meters
English Feet

Programmatic Use
Block Parameter: units
Type: character vector
Values: 'Metric (MKS)' | 'English'
Default: 'Metric (MKS)'

Input decimal year — Desired year

on (default) | off

• To specify the decimal year with an input port, select this check box.
• To specify the decimal year using the values of Month, Day, and Year, clear this check box.

Dependencies

To enable Month, Day, and Year, clear this parameter.
Programmatic Use
Block Parameter: time_in
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Month — Input month

January (default) | February | March | April | May | June | July | August | September |
October | November | December

Month to calculate decimal year.
Dependencies

To enable this parameter, clear Input decimal year.
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Programmatic Use
Block Parameter: month
Type: character vector
Values: 'January' | 'February' | 'March' | 'April' | 'May' | 'June' | 'July' | 'August' |
'September' | 'October' | 'November' | 'December'
Default: 'January'

Day — Input day

1 (default) | 1 to 31

Day to calculate decimal year.

Dependencies

To enable this parameter, clear Input decimal year.

Programmatic Use
Block Parameter: day
Type: character vector
Values: '1' to '31'
Default: '1'

Year — Input year

2020 (default) | 1900 to 2020

Year to calculate decimal year, specified as 1900 to 2020.

Dependencies

To enable this parameter, clear Input decimal year.

Programmatic Use
Block Parameter: year
Type: character vector
Values: any year
Default: '2020'

Action for out-of-range input — Out-of-range block behavior

None (default) | Warning | Error

Out-of-range block behavior, specified as follows:

Action Description
None No action.
Warning Warning in the MATLAB Command Window, model simulation

continues.
Error (default) MATLAB returns an exception, model simulation stops.

Programmatic Use
Block Parameter: action
Type: character vector
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Values: 'None' | 'Warning' | 'Error'
Default: 'Error'

Output secular variance — Secular variances

on (default) | off

Select this check box to enable the output of secular variances (annual rate of change) with
nonsecular variances. Otherwise, clear this check box.

Secular Variance Description
Magnetic Field Magnetic field vector, in nanotesla (nT). Z is the

vertical component (+ve down)
Horizontal Intensity Horizontal intensity, in nanotesla (nT)
Declination Declination, in degrees (+ve east)
Inclination Inclination, in degrees (+ve down)
Total Intensity Total intensity, in nanotesla (nT)
SV Magnetic Field Secular variation of magnetic field
SV Horizontal Intensity Secular variation of horizontal intensity
SV Declination Secular variation of declination, the angle

between true north and the magnetic field vector
(positive eastward)

SV Inclination Secular variation of inclination, the angle
between the horizontal plane and the magnetic
field vector (positive downward)

SV Total Intensity Secular variation of total intensity

Clear this check box to enable just the nonsecular variances:

• Magnetic Field
• Horizontal Intensity
• Declination
• Inclination
• Total Intensity

Programmatic Use
Block Parameter: sv_out
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Version History
Introduced in R2020b
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
World Magnetic Model

External Websites
The International Geomagnetic Reference Field: A "Health" Warning
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Interpolate Matrix(x)
Return interpolated matrix for given input
Library: Aerospace Blockset / GNC / Control

Description
The Interpolate Matrix(x) block interpolates a one-dimensional array of matrices. The block assumes
a one-dimensional array as defined in “Algorithms” on page 5-465.

The matrix to be interpolated must be three dimensional, the first two dimensions corresponding to
the matrix at each value of x. For example, if you have three matrices A, B, and C defined at x = 0,
x = 0.5, and x = 1.0, then the input matrix is given by

matrix(:,:,1) = A;

matrix(:,:,2) = B;

matrix(:,:,3) = C;

Limitations
This block must be driven from the Prelookup block.

Ports
Input

x_k — Interpolation index i
scalar

Interpolation index i, specified as a scalar.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point | enumerated | bus

x_f — Interpolation fraction
scalar

Interpolation fraction λ, specified as a scalar.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point | enumerated | bus

Output

Matrix(x) — Interpolated matrix
matrix
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Interpolated matrix, specified as a matrix.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point | enumerated | bus

Parameters
Matrix to interpolate — Matrix

matrix (default)

Matrix to be interpolated, with three indices and the third index labeling the interpolating values of x.

Programmatic Use
Block Parameter: matrix
Type: character vector
Values: matrix
Default: 'matrix'

Algorithms
This one-dimensional case assumes a matrix M is defined at a discrete number of values of an
independent variable

x = [ x1x2x3 ... xixi+1 ... xn ].

Then for xi < x < xi+1, the block output is given by

(1− λ)M(xi) + λM(xi + 1)

where the interpolation fraction is defined as

λ = x− xi / xi + 1− xi

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
on page 5-2 | 1D Observer Form [A(v),B(v),C(v),F(v),H(v)] | 1D Self-Conditioned [A(v),B(v),C(v),D(v)] |
Interpolate Matrix(x,y) | Interpolate Matrix(x,y,z)

 Interpolate Matrix(x)

5-465



Interpolate Matrix(x,y)
Return interpolated matrix for given inputs
Library: Aerospace Blockset / GNC / Control

Description
The Interpolate Matrix(x,y) block interpolates a two-dimensional array of matrices. In two-
dimensional cases, the interpolation is carried out first on x and then y. For more information, see
“Algorithms” on page 5-467.

The matrix to be interpolated must be four-dimensional, the first two dimensions corresponding to
the matrix at each value of x and y. For example, if you have four matrices A, B, C, and D defined at
(x = 0.0,y = 1.0), (x = 0.0,y = 3.0), (x = 1.0,y = 1.0) and (x = 1.0,y = 3.0),
then the input matrix is given by

matrix(:,:,1,1) = A;

matrix(:,:,1,2) = B;

matrix(:,:,2,1) = C;

matrix(:,:,2,2) = D;

Limitations
This block must be driven from the Prelookup block.

Ports
Input

x_k — First interpolation index
scalar

First interpolation index i, specified as a scalar and vector.
Data Types: double

x_f — First interpolation fraction
scalar

First interpolation fraction λ x, specified as a scalar
Data Types: double

y_k — Second interpolation index
scalar
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Second interpolation index j, specified as a scalar.
Data Types: double

y_f — Second interpolation fraction
scalar

Second interpolation fraction λ y, specified as a scalar.
Data Types: double

Output

Matrix(x,y) — Interpolated matrix
matrix

Interpolated matrix, specified as a matrix.
Data Types: double

Parameters
Matrix to interpolate — Matrix

matrix (default)

Matrix to be interpolated, with four indices and the third and fourth indices labeling the interpolating
values of x and y.
Programmatic Use
Block Parameter: matrix
Type: character vector
Values: matrix
Default: 'matrix'

Algorithms
This two-dimensional case assumes the matrix is defined as a function of two independent variables, x
= [ x1x2x3... xixi+1 ... xn] and y = [ y1y2y3 ... yjyj+1 ... ym]. For given values of x and y, four matrices are
interpolated. Then for xi < x < xi+1 and yj < y < yj+1, the output matrix is given by

(1− λy)[(1− λx)M(xi, y j) + λxM(xi + 1, y j)] +
λy[(1− λx)M(xi, y j + 1) + λxM(xi + 1, y j + 1)]

where the two interpolation fractions are denoted by

λx = (x− xi)/(xi + 1− xi)

and

λy = (y − y j)/(y j + 1− y j)

Version History
Introduced before R2006a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
2D Controller [A(v),B(v),C(v),D(v)] | 2D Observer Form [A(v),B(v),C(v),F(v),H(v)] | 2D Self-Conditioned
[A(v),B(v),C(v),D(v)] | Interpolate Matrix(x) | Interpolate Matrix(x,y,z) | Prelookup
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Interpolate Matrix(x,y,z)
Return interpolated matrix for given inputs
Library: Aerospace Blockset / GNC / Control

Description
The Interpolate Matrix(x,y,z) block interpolates a three-dimensional array of matrices.

This three-dimensional case assumes the matrix is defined as a function of three independent
variables:

x = [ x 1 x 2 x 3 ... x i x i+1 ... x n ]

y = [ y 1 y 2 y 3 ... y j y j+1 ... y m ]

z = [ z 1 z 2 z 3 ... z k z k+1 ... z p ]

For given values of x, y, and z, eight matrices are interpolated. Then for

x i < x < x i+1

y j < y < y j+1

z k < z < z k+1

the output matrix is given by

1− λz 1− λy 1− λx M xi, y j, zk + λxM xi + 1, y j, zk

             +λy 1− λx M xi, y j + 1, zk + λxM xi + 1, y j + 1, zk

   +λz 1− λy 1− λx M xi, y j, zk + 1 + λxM xi + 1, y j, zk + 1

            +λy 1− λx M xi, y j + 1, zk + 1 + λxM xi + 1, y j + 1, zk + 1

where the three interpolation fractions are denoted by

λx = x− xi / xi + 1− xi

iy = (y − y j)/ y j + 1− y j
λz = z − zk / zk + 1− zk

In the three-dimensional case, the interpolation is carried out first on x, then y, and finally z.

The matrix to be interpolated should be five-dimensional, the first two dimensions corresponding to
the matrix at each value of x, y, and z. For example, if you have eight matrices A, B, C, D, E, F, G, and
H defined at the following values of x, y, and z, then the corresponding input matrix is given by
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(x = 0.0,y = 1.0,z = 0.1) matrix(:,:,1,1,1) = A;
(x = 0.0,y = 1.0,z = 0.5) matrix(:,:,1,1,2) = B;
(x = 0.0,y = 3.0,z = 0.1) matrix(:,:,1,2,1) = C;
(x = 0.0,y = 3.0,z = 0.5) matrix(:,:,1,2,2) = D;
(x = 1.0,y = 1.0,z = 0.1) matrix(:,:,2,1,1) = E;
(x = 1.0,y = 1.0,z = 0.5) matrix(:,:,2,1,2) = F;
(x = 1.0,y = 3.0,z = 0.1) matrix(:,:,2,2,1) = G;
(x = 1.0,y = 3.0,z = 0.5) matrix(:,:,2,2,2) = H;

Limitations
This block must be driven from the Prelookup block.

Ports
Input

x_k — First interpolation index
scalar

First interpolation index i, specified as a scalar.
Data Types: double

x_f — First interpolation fraction
scalar

First interpolation fraction λ x, specified as a scalar .
Data Types: double

y_k — Second interpolation index
scalar

Second interpolation index j, specified as a scalar.
Data Types: double

y_f — Second interpolation fraction
scalar

Second interpolation fraction λ y, specified as a scalar.
Data Types: double

z_k — Third interpolation index
scalar

Third interpolation index k, specified as a scalar.
Data Types: double
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z_f — Third interpolation fraction
scalar

Third interpolation fraction λ z, specified as a scalar.
Data Types: double

Output

Matrix(x,y,z) — Interpolated matrix
matrix

Interpolated matrix, specified as a matrix.
Data Types: double

Parameters
Matrix to interpolate — Matrix to interpolate

matrix (default)

Matrix to be interpolated, with five indices and the third, fourth, and fifth indices labeling the
interpolating values of x, y, and z.

Programmatic Use
Block Parameter: matrix
Type: character vector
Values: matrix
Default: 'matrix'

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
3D Controller [A(v),B(v),C(v),D(v)] | 3D Observer Form [A(v),B(v),C(v),F(v),H(v)] | 3D Self-Conditioned
[A(v),B(v),C(v),D(v)] | Interpolate Matrix(x) | Interpolate Matrix(x,y) | Prelookup
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Invert 3x3 Matrix
Compute inverse of 3-by-3 matrix
Library: Aerospace Blockset / Utilities / Math Operations

Description
The Invert 3x3 Matrix block computes the inverse of 3-by-3 matrix.

If det(A) = 0, an error occurs and the simulation stops.

Ports
Input

Port_1 — Input matrix
3-by-3 matrix

Input matrix to be inverted, specified as a 3-by-3 matrix.
Data Types: double

Output

Port_1 — Matrix inverse
3-by-3 matrix

Matrix inverse of input matrix, returned as a 3-by-3 matrix.
Data Types: double

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Adjoint of 3x3 Matrix | Create 3x3 Matrix | Determinant of 3x3 Matrix
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ISA Atmosphere Model
Implement International Standard Atmosphere (ISA)
Library: Aerospace Blockset / Environment / Atmosphere

Description
The ISA Atmosphere Model block implements the mathematical representation of the international
standard atmosphere values for ambient temperature, pressure, density, and speed of sound for the
input geopotential altitude.

The ISA Atmosphere Model and Lapse Rate Model blocks are identical blocks. When configured for
ISA Atmosphere Model, the block implements ISA values. When configured for Lapse Rate Model, the
block implements lapse rate values.

The ISA Atmosphere Model block icon displays the input and output port labels in metric units.

Limitations
• Below the geopotential altitude of 0 km and above the geopotential altitude of the tropopause,

temperature and pressure values are held.
• Density and speed of sound are calculated using a perfect gas relationship.

Ports
Input

h (m) — Geopotential height
scalar | array

Geopotential height, specified as a scalar or array.
Data Types: double

Output

T (K) — Temperature
scalar | array

Temperature, returned as a scalar or array, in K.
Data Types: double

a (m/s) — Speed of sound
scalar | array

Speed of sound, returned as a scalar or array, in m/s.
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Data Types: double

P (Pa) — Air pressure
scalar | array

Air pressure, returned as a scalar or array, in Pa.
Data Types: double

ρ (kg/m3) — Air density
scalar | array

Air density, returned as scalar or array, in kg/m3.
Data Types: double

Parameters
Change atmospheric parameters — Customize parameters

off (default) | on

Customize various atmospheric parameters to be different from the ISA values. Selecting this check
box converts the block from ISA Atmosphere Model to Lapse Rate Model.
Dependencies

Selecting this check box enables the parameters:

• Acceleration due to gravity (m/s^2)
• Ratio of specific heats
• Characteristic gas constant (J/Kg/K)
• Lapse rate (K/m)
• Height of troposphere (m)
• Height of tropopause (m)
• Air density at mean sea level (Kg/m^3)
• Ambient pressure at mean sea level (N/m^2)
• Lowest altitude (m)

Programmatic Use
Block Parameter: custom
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Acceleration due to gravity (m/s^2) — Acceleration

9.80665 (default) | scalar

Acceleration from gravity (g). in m/s2, specified as double scalar.
Dependencies

This parameter is enabled when the Change atmospheric parameters check box is selected.
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Programmatic Use
Block Parameter: g
Type: character vector
Values: double scalar
Default: 9.80665

Ratio of specific heats — Ratio of heats

1.4 (default) | scalar

Ratio of specific heats γ, specified as a double value.

Dependencies

This parameter is enabled when the Change atmospheric parameters check box is selected.

Programmatic Use
Block Parameter: gamma
Type: character vector
Values: double scalar
Default: 1.4

Characteristic gas constant (J/Kg/K) — Gas constant

287.0531 (default) | scalar

Characteristic gas constant (R), specified as double scalar, in J/Kg/K.

Dependencies

This parameter is enabled when the Change atmospheric parameters check box is selected.

Programmatic Use
Block Parameter: R
Type: character vector
Values: double scalar
Default: 287.0531

Lapse rate (K/m) — Lapse rate

0.0065 (default) | scalar

Lapse rate of the troposphere, specified as double scalar, in K/m.

Dependencies

This parameter is enabled when the Change atmospheric parameters check box is selected.

Programmatic Use
Block Parameter: L
Type: character vector
Values: double scalar
Default: 0.0065

Height of troposphere (m) — Troposphere height

11000 (default) | scalar
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Height of the troposphere (range of decreasing temperatures), specified as double scalar, in m.

Dependencies

This parameter is enabled when the Change atmospheric parameters check box is selected.

Programmatic Use
Block Parameter: h_trop
Type: character vector
Values: double scalar
Default: 11000

Height of tropopause (m) — Tropopause height

20000 (default) | scalar

Height of the tropopause (range of constant temperature), specified as double scalar, in m.

Dependencies

This parameter is enabled when the Change atmospheric parameters check box is selected.

Programmatic Use
Block Parameter: h_strat
Type: character vector
Values: double scalar
Default: 20000

Air density at mean sea level (Kg/m^3) — Air density

1.225 (default) | scalar

Air density at mean sea level, specified as double scalar, in Kg/m3.

Dependencies

This parameter is enabled when the Change atmospheric parameters check box is selected.

Programmatic Use
Block Parameter: rho0
Type: character vector
Values: double scalar
Default: 1.225

Ambient pressure at mean sea level (N/m^2) — Ambient pressure

101325 (default) | scalar

Ambient pressure at mean sea level, specified as double scalar, in N/m2.

Dependencies

This parameter is enabled when the Change atmospheric parameters check box is selected.

Programmatic Use
Block Parameter: P0
Type: character vector
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Values: double scalar
Default: 101325

Ambient temperature at mean sea level (K) — Ambient temperature

288.15 (default) | scalar

Ambient temperature at mean sea level (T0), specified as double scalar, in K.

Dependencies

This parameter is enabled when the Change atmospheric parameters check box is selected.

Programmatic Use
Block Parameter: K
Type: character vector
Values: double scalar
Default: 101325

Lowest altitude (m) — Lowest altitude

0 (default) | scalar

Lowest altitude above which temperature and pressure lapse, specified as double scalar, in m.
Lowest altitude (m) must be below Height of tropopause.

Dependencies

This parameter is enabled when the Change atmospheric parameters check box is selected.

Programmatic Use
Block Parameter: h0
Type: character vector
Values: double scalar
Default: 0

Version History
Introduced before R2006a

References
[1] U.S. Standard Atmosphere., Washington, D.C.: U.S. Government Printing Office, 1976.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
COESA Atmosphere Model | CIRA-86 Atmosphere Model | Lapse Rate Model
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Julian Epoch to Besselian Epoch
Transform position and velocity components from Standard Julian Epoch (J2000) to discontinued
Standard Besselian Epoch (B1950)
Library: Aerospace Blockset / Utilities / Axes Transformations

Description
The Julian Epoch to Besselian Epoch block transforms two 3-by-1 vectors of Julian Epoch position
r J2000 , and Julian Epoch velocity v J2000  into Besselian Epoch position r B1950 , and Besselian

Epoch velocity vB1950 . For more information on the transformation, see “Algorithms” on page 5-478.

Ports
Input

rJ2000 — Position
3-by-1 vector

Position in Standard Julian Epoch (J2000), specified as a 3-by-1 vector.
Data Types: double

vJ2000 — Velocity
3-by-1 vector

Velocity in Standard Julian Epoch (J2000), specified as a 3-by-1 vector.
Data Types: double

Output

rB1950 — Position
3-by-1 vector

Position in Standard Besselian Epoch (B1950), returned as a 3-by-1 vector.
Data Types: double

vB1950 — Velocity
3-by-1 vector

Velocity in Standard Besselian Epoch (B1950), returned as a 3-by-1 vector.
Data Types: double

Algorithms
The transformation is calculated using:
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r B1950
vB1950

=
Mrr Mvr

Mrv Mvv

T r J2000
v J2000

,

where

Mrr, Mvr, Mrv, Mvv

are defined as:

Mrr =
0.9999256782 −0.0111820611 −0.0048579477
0.0111820610 0.9999374784 −0.0000271765
0.0048579479 −0.0000271474 0.9999881997

Mvr =
0.00000242395018 −0.00000002710663 −0.00000001177656
0.00000002710663 0.00000242397878 −0.00000000006587
0.00000001177656 −0.00000000006582 0.00000242410173

Mrv =
−0.000551 −0.238565 0.435739
0.238514 −0.002667 −0.008541
−0.435623 0.012254 0.002117

Mvv =
0.99994704 −0.01118251 −0.00485767
0.01118251 0.99995883 −0.00002718
0.00485767 −0.00002714 1.00000956

Version History
Introduced before R2006a

References
[1] "Supplement to Department of Defense World Geodetic System 1984 Technical Report: Part I -

Methods, Techniques and Data Used in WGS84 Development," DMA TR8350.2-A.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Besselian Epoch to Julian Epoch
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Julian Date Conversion
Calculate Julian date or modified Julian date
Library: Aerospace Blockset / Utilities / Unit Conversions

Description
The Julian Date Conversion block converts the specified date to the Julian date or modified Julian
date.

Limitations
• This block is valid for all common era (CE) dates in the Gregorian calendar.
• The calculation of Julian date does not take into account leap seconds.

Ports
Input

day — Clock source
scalar | array

Clock source for model simulation, specified as a scalar or array.

Dependencies

The presence and label of this port depends on the Time increment parameter.

Port Time increment Setting
day Day
hour Hour
min Min
sec Sec
No inport port None

Data Types: double

Output

JD — Julian date
scalar | array

Julian date, returned as a scalar or array.

Dependencies
Data Types: double
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Parameters
Year — Year

2013 (default) | double, whole number, greater than 1

Year, specified as a scalar, to calculate the Julian date.

Programmatic Use
Block Parameter: year
Type: character vector
Values: double, greater than 1
Default: '2013'

Month — Month

January (default) | February | March | April | May | June | July | August | September |
October | November | December

Month to calculate the Julian date. From the list, select the month from January to December.

Programmatic Use
Block Parameter: month
Type: character vector
Values: 'January' | 'February' | 'March' | 'April' | 'May' | 'June' | 'July' | 'August' |
'September' | 'October' | 'November' | 'December'
Default: 'January'

Day — Day

1 (default) | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 | 31

Day to calculate the Julian date. From the list, select the day from 1 to 31.

Programmatic Use
Block Parameter: day
Type: character vector
Values: '1' | '2' | '3' | '4' | '5' | '5' | '6' | '7' | '8' | '9' | '10' | '11' | '12' | '13' | '14' |
'15' | '16' | '17' | '18' | '19' | '20' | '21' | '22' | '23' | '24' | '25' | '26' | '27' | '28' |
'29' | '30' | '31'
Default: '1'

Hour — Hour

0 (default) | double, whole number, 0 to 24

Hour used to calculate the Julian date. Enter a value from 0 to 24.

Programmatic Use
Block Parameter: hour
Type: character vector
Values: double, whole number, 0 to 24
Default: '0'
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Minutes — Minutes

0 (default) | double, whole number, 0 to 60

Minutes to calculate the Julian date. Enter a number from 0 to 60.
Programmatic Use
Block Parameter: min
Type: character vector
Values: double, whole number, 0 to 60
Default: '0'

Seconds — Seconds

0 (default) | double, whole number, 0 to 60

Specify the seconds used to calculate the Julian date. Enter a number from 0 to 60.
Programmatic Use
Block Parameter: sec
Type: character vector
Values: double, whole number, 0 to 60
Default: '0'

Calculate modified Julian date — Modified Julian data

off (default) | on

Select this check box to calculate the modified Julian date (MJD) for corresponding elements of the
year, month, day, hour, minute, and second.
Dependencies

Selecting this check box changes the output port label to MJD. Clearing this check box changes the
output port label to JD.
Programmatic Use
Block Parameter: modflag
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Time increment — Time increment

Day (default) | Hour | Min | Sec | None

Time increment between the specified date and the desired model simulation time. The block adjusts
the calculated Julian date to take into account the time increment from model simulation. For
example, selecting Day and connecting a simulation timer to the port means that each time increment
unit is one day and the block adjusts its calculation based on that simulation time.

If you select None, the calculated Julian date does not take into account the model simulation time.
Selecting this option removes the first block input.
Dependencies

This parameter controls the presence and label of output port.
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Time increment Setting Port
Day day
Hour hour
Min min
Sec sec
None No inport port

Programmatic Use
Block Parameter: deltaT
Type: character vector
Values: 'Day' | 'Hour' | 'Min' | 'Sec' | 'None'
Default: 'Day'

Action for out-of-range input — Out-of-range block behavior

None (default) | Warning | Error

Out-of-range block behavior, specified as follows.

Action Description
None No action.
Warning Warning in the MATLAB Command Window, model simulation

continues.
Error (default) MATLAB returns an exception, model simulation stops.

Programmatic Use
Block Parameter: errorflag
Type: character vector
Values: 'None' | 'Warning' | 'Error'
Default: 'Error'

Version History
Introduced in R2013b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
juliandate
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Lapse Rate Model
Implement lapse rate model for atmosphere
Library: Aerospace Blockset / Environment / Atmosphere

Description
The Lapse Rate Model block implements the mathematical representation of the lapse rate
atmospheric equations for ambient temperature, pressure, density, and speed of sound for the input
geopotential altitude. You can customize this atmospheric model by specifying atmospheric
properties.

The ISA Atmosphere Model and Lapse Rate Model blocks are identical blocks. When configured for
ISA Atmosphere Model, the block implements ISA values. When configured for Lapse Rate Model, the
block implements the mathematical representation of lapse rate atmospheric equations.

The Lapse Rate Model block icon displays the input and output metric units.

Limitations
• Below the geopotential altitude of 0 km and above the geopotential altitude of the tropopause,

temperature and pressure values are held.
• Density and speed of sound are calculated using a perfect gas relationship.

Ports
Input

h (m) — Geopotential height
scalar | array

Geopotential height, specified as a scalar or array.
Data Types: double

Output

T (K) — Temperature
scalar | array

Temperature, returned as a scalar or array, in K.
Data Types: double

a (m/s) — Speed of sound
scalar | array

Speed of sound, returned as a scalar or array, in m/s.
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Data Types: double

P (Pa) — Air pressure
scalar | array

Air pressure, returned as a scalar or array, in Pa.
Data Types: double

ρ (kg/m3) — Air density
scalar | array

Air density, returned as scalar or array, in kg/m3.
Data Types: double

Parameters
Change atmospheric parameters — Customize parameters
off (default) | on

Customize various atmospheric parameters to be different from the lapse rate values. Selecting this
check box converts the block from Lapse Rate Model to ISA Atmosphere Model.

Dependencies

Selecting this check box enables the parameters:

• Acceleration due to gravity (m/s^2)
• Ratio of specific heats
• Characteristic gas constant (J/Kg/K)
• Lapse rate (K/m)
• Height of troposphere (m)
• Height of tropopause (m)
• Air density at mean sea level (Kg/m^3)
• Ambient pressure at mean sea level (N/m^2)
• Lowest altitude (m)

Programmatic Use
Block Parameter: custom
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Acceleration due to gravity (m/s^2) — Acceleration
9.80665 (default) | scalar

Acceleration from gravity (g). in m/s2, specified as double scalar.

Dependencies

This parameter is enabled when the Change atmospheric parameters check box is selected.
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Programmatic Use
Block Parameter: g
Type: character vector
Values: double scalar
Default: 9.80665

Ratio of specific heats — Ratio of heats
1.4 (default) | scalar

Ratio of specific heats γ, specified as a double value.

Dependencies

This parameter is enabled when the Change atmospheric parameters check box is selected.

Programmatic Use
Block Parameter: gamma
Type: character vector
Values: double scalar
Default: 1.4

Characteristic gas constant (J/Kg/K) — Gas constant
287.0531 (default) | scalar

Characteristic gas constant (R), specified as double scalar, in J/Kg/K.

Dependencies

This parameter is enabled when the Change atmospheric parameters check box is selected.

Programmatic Use
Block Parameter: R
Type: character vector
Values: double scalar
Default: 287.0531

Lapse rate (K/m) — Lapse rate
0.0065 (default) | scalar

Lapse rate of the troposphere, specified as double scalar, in K/m.

Dependencies

This parameter is enabled when the Change atmospheric parameters check box is selected.

Programmatic Use
Block Parameter: L
Type: character vector
Values: double scalar
Default: 0.0065

Height of troposphere (m) — Troposphere height
11000 (default) | scalar

Height of the troposphere (range of decreasing temperatures), specified as double scalar, in m.
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Dependencies

This parameter is enabled when the Change atmospheric parameters check box is selected.

Programmatic Use
Block Parameter: h_trop
Type: character vector
Values: double scalar
Default: 11000

Height of tropopause (m) — Tropopause height
20000 (default) | scalar

Height of the tropopause (range of constant temperature), specified as double scalar, in m.

Dependencies

This parameter is enabled when the Change atmospheric parameters check box is selected.

Programmatic Use
Block Parameter: h_strat
Type: character vector
Values: double scalar
Default: 20000

Air density at mean sea level (Kg/m^3) — Air density
1.225 (default) | scalar

Air density at mean sea level, specified as double scalar, in Kg/m3.

Dependencies

This parameter is enabled when the Change atmospheric parameters check box is selected.

Programmatic Use
Block Parameter: rho0
Type: character vector
Values: double scalar
Default: 1.225

Ambient pressure at mean sea level (N/m^2) — Ambient pressure
101325 (default) | scalar

Ambient pressure at mean sea level, specified as double scalar, in N/m2.

Dependencies

This parameter is enabled when the Change atmospheric parameters check box is selected.

Programmatic Use
Block Parameter: P0
Type: character vector
Values: double scalar
Default: 101325

Ambient temperature at mean sea level (K) — Ambient temperature
288.15 (default) | scalar
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Ambient temperature at mean sea level (T0), specified as double scalar, in K.

Dependencies

This parameter is enabled when the Change atmospheric parameters check box is selected.

Programmatic Use
Block Parameter: K
Type: character vector
Values: double scalar
Default: 101325

Lowest altitude (m) — Lowest altitude
0 (default) | scalar

Lowest altitude above which temperature and pressure lapse, specified as double scalar, in m.
Lowest altitude (m) must be below Height of tropopause.

Dependencies

This parameter is enabled when the Change atmospheric parameters check box is selected.

Programmatic Use
Block Parameter: h0
Type: character vector
Values: double scalar
Default: 0

Algorithms
These equations define the troposphere:

T = T0− Lh

P = P0
T
T0

g
LR

ρ = ρ0
T
T0

g
LR − 1

a = γRT

These equations define the tropopause (lower stratosphere):

T = T0− Lhts

P = P0
T
T0

g
LRe

g
RT (hts− h)

ρ = ρ0
T
T0

g
LR − 1

e
g

RT (hts− h)

a = γRT

where:
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T 0 Absolute temperature at mean sea level in kelvin (K)
ρ 0 Air density at mean sea level in kg/m 3

P 0 Static pressure at mean sea level in N/m 2

h Altitude in m
hts Height of the troposphere in m
T Absolute temperature at altitude h in kelvin (K)
ρ Air density at altitude h in kg/m 3

P Static pressure at altitude h in N/m 2

a Speed of sound at altitude h in m/s 2

L Lapse rate in K/m
R Characteristic gas constant J/kg-K
γ Specific heat ratio
g Acceleration due to gravity in m/s 2

Version History
Introduced before R2006a

References
[1] U.S. Standard Atmosphere., Washington, D.C.: U.S. Government Printing Office, 1976.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
COESA Atmosphere Model | ISA Atmosphere Model
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Length Conversion
Convert from length units to desired length units
Library: Aerospace Blockset / Utilities / Unit Conversions

Description
The Length Conversion block computes the conversion factor from specified input length units to
specified output length units and applies the conversion factor to the input signal.

The Length Conversion block port labels change based on the input and output units selected from
the Initial unit and the Final unit lists.

Ports
Input

Port_1 — Length
scalar | array

Length, specified as a scalar or array, in initial length units.

Dependencies

The input port label depends on the Initial unit setting.
Data Types: double

Output

Port_1 — Length
scalar | array

Length, returned as a scalar or array, in final length units.

Dependencies

The output port label depends on the Final unit setting.
Data Types: double

Parameters
Initial unit — Input units

ft (default) | m | km | in | mi | naut mi

Input units, specified as:
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m Meters
ft Feet
km Kilometers
in Inches
mi Miles
naut mi Nautical miles

Dependencies

The input port label depends on the Initial unit setting.

Programmatic Use
Block Parameter: IU
Type: character vector
Values: 'm' | 'ft' | 'km' | 'in' | 'mi' | 'naut mi'
Default: 'ft'

Final unit — Input units

m (default) | ft | km | in | mi | naut mi

Output units, specified as:

m Meters
ft Feet
km Kilometers
in Inches
mi Miles
naut mi Nautical miles

Dependencies

The output port label depends on the Final unit setting.

Programmatic Use
Block Parameter: OU
Type: character vector
Values: 'm' | 'ft' | 'km' | 'in' | 'mi' | 'naut mi'
Default: 'm'

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.
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See Also
Acceleration Conversion | Angle Conversion | Angular Acceleration Conversion | Angular Velocity
Conversion | Density Conversion | Force Conversion | Mass Conversion | Pressure Conversion |
Temperature Conversion | Velocity Conversion
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Linear Second-Order Actuator
Implement second-order linear actuator
Library: Aerospace Blockset / Actuators

Description
The Second Order Linear Actuator block outputs the actual actuator position using the input
demanded actuator position and other parameters that define the system.

Ports
Input

Ademand — Demanded actuator position
scalar | array

Demanded actuator position, specified as a scalar or array.
Data Types: double

Output

Aactual — Actual actuator position
scalar | array

Actual actuator position, returned as a scalar or array.
Data Types: double

Parameters
Natural frequency — Natural frequency

1 (default) | scalar

Natural frequency of the actuator, specified as a scalar double, in radians per second.

Programmatic Use
Block Parameter: wn_fin
Type: character vector
Values: scalar | double
Default: '1'

Damping ratio — Damping ratio
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0.3 (default) | scalar

Damping ratio of the actuator, specified as a scalar double.

Programmatic Use
Block Parameter: z_fin
Type: character vector
Values: scalar | double
Default: '0.3'

Initial position — Initial position

0 (default) | scalar

Initial position of the actuator, specified as a scalar double. The units of initial position must be the
same as the Ademand input.

Programmatic Use
Block Parameter: fin_act_0
Type: character vector
Values: scalar | double
Default: '0'

Initial velocity — Initial velocity

0 (default) | scalar

Initial velocity of the actuator, specified as a scalar double. The units of initial velocity must be the
same as the Ademand input..

Programmatic Use
Block Parameter: fin_act_vel
Type: character vector
Values: scalar | double
Default: '0'

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Nonlinear Second-Order Actuator
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LLA to ECEF Position
Calculate Earth-centered Earth-fixed (ECEF) position from geodetic latitude, longitude, and altitude
above planetary ellipsoid
Library: Aerospace Blockset / Utilities / Axes Transformations

Description
The LLA to ECEF Position block converts geodetic latitude μ , longitude ι , and altitude h  above
the planetary ellipsoid into a 3-by-1 vector of ECEF position p . Latitude and longitude values can be
any value. However, latitude values of +90 and -90 may return unexpected values because of
singularity at the poles. For more information the ECEF position calculation, see “Algorithms” on
page 5-497.

Limitations
• The planet is assumed to be ellipsoidal. To use a spherical planet, set the Flattening parameter to

zero.
• The implementation of the ECEF coordinate system assumes that the origin is at the center of the

planet, the x-axis intersects the Greenwich meridian and the equator, the z-axis is the mean spin
axis of the planet, positive to the north, and the y-axis completes the right-handed system.

Ports
Input

μ l — Geodetic latitude and longitude
2-by-1 vector

Geodetic latitude and longitude, specified as a 2-by-1 vector, in degrees.
Data Types: double

h — Altitude
scalar

Altitude above the planetary ellipsoid, specified as a scalar.
Data Types: double

Output

Xf — Position
3-by-1 vector

Position in ECEF frame, returned as a 3-by-1 vector, in the same units as the input at the h port.
Data Types: double
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Parameters
Units — Units

Metric (MKS) (default) | English

Parameter and output units:

Units Radius from CG to Center of
Planet

Equatorial Radius

Metric (MKS) Meters Meters
English Feet Feet

Dependencies

To enable this, set Planet model to Earth (WGS84).

Programmatic Use
Block Parameter: units
Type: character vector
Values: 'Metric (MKS)' | 'English'
Default: 'Metric (MKS)'

Planet model — Planet model

Earth (WGS84) (default) | Custom

Planet model to use, Custom or Earth (WGS84).

Programmatic Use
Block Parameter: ptype
Type: character vector
Values: 'Earth (WGS84)' | 'Custom'
Default: 'Earth (WGS84)'

Flattening — Flattening of planet

1/298.257223563 (default) | scalar

Flattening of the planet, specified as a double scalar.

Dependencies

To enable this parameter, set Planet model to Custom.

Programmatic Use
Block Parameter: F
Type: character vector
Values: double scalar
Default: 1/298.257223563

Equatorial radius of planet — Radius of planet at equator

6378137 (default) | scalar
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Radius of the planet at its equator, in the same units as the desired units for ECEF position.

Dependencies

To enable this parameter, set Planet model to Custom.

Programmatic Use
Block Parameter: R
Type: character vector
Values: double scalar
Default: 6378137

Algorithms
The ECEF position is calculated from the geocentric latitude at mean sea-level (λs) and longitude
using:

p =
px
py
pz

=
rscosλscosι + hcosμcosι
rscosλssinι + hcosμsinι

rssinλs + hsinμ
,

where geocentric latitude at mean sea-level and the radius at a surface point (rs) are defined by
flattening f , and equatorial radius R  in the following relationships:

λs = atan (1− f )2tanμ

rs = R2

1 + 1/(1− f )2− 1 sin2λs

Version History
Introduced before R2006a

References
[1] Stevens, B. L., and F. L. Lewis. Aircraft Control and Simulation, Hoboken, NJ: John Wiley & Sons,

1992.

[2] Zipfel, Peter H., Modeling and Simulation of Aerospace Vehicle Dynamics. Second Edition. Reston,
VA: AIAA Education Series, 2000.

[3] Recommended Practice for Atmospheric and Space Flight Vehicle Coordinate Systems,
R-004-1992, ANSI/AIAA, February 1992.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.
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See Also
Direction Cosine Matrix ECEF to NED | Direction Cosine Matrix ECEF to NED to Latitude and
Longitude | ECEF Position to LLA | Flat Earth to LLA | Radius at Geocentric Latitude

Topics
“About Aerospace Coordinate Systems” on page 2-7
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LLA to ECI Position
Convert latitude, longitude, altitude (LLA) coordinates to Earth-centered inertial (ECI) coordinates
Library: Aerospace Blockset / Utilities / Axes Transformations

Description
The LLA to ECI Position block converts latitude, longitude, and altitude (LLA) coordinates to Earth-
centered inertial (ECI) position coordinates, based on the specified reduction method and
Coordinated Universal Time (UTC), for the specified time and geophysical data. The latitude and
longitude values can be any value. However, latitude values of +90 and -90 may return unexpected
values because of singularity at the poles.

Ports
Input

[μ l h] — Latitude, longitude, and altitude
three-element vector

Latitude, longitude, and altitude values of coordinates to convert, specified as a three-element vector,
in degrees.
Data Types: double

ΔUT1 — Difference between UTC and Universal Time
scalar

Difference between UTC and Universal Time (UT1) in seconds, specified as a scalar, for which the
block calculates the direction cosine or transformation matrix.
Example: 0.234
Dependencies

To enable this, select Higher accuracy parameters.
Data Types: double

ΔAT — Difference between International Atomic Time and UTC
scalar

Difference between International Atomic Time (IAT) and UTC, specified as a scalar, in seconds, for
which the block calculates the direction cosine or transformation matrix.
Example: 32
Dependencies

To enable this port, select Higher accuracy parameters.
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Data Types: double

[xp,yp] — Polar displacement of Earth
1-by-2 array

Polar displacement of Earth, specified as a 1-by-2 array, in radians, from the motion of the Earth
crust, along the x- and y-axes.
Example: [-0.0682e-5 0.1616e-5]

Dependencies

To enable this port, select Higher accuracy parameters.
Data Types: double

Port_5 — Adjustment based on reduction method
1-by-2 array

Adjustment based on reduction method, specified as 1-by-2 array. The name of the port depends on
the setting of the Reduction parameter:

• If reduction method is IAU-2000/2006, this input is the adjustment to the location of the
Celestial Intermediate Pole (CIP), specified in radians. This location ([dX,dY]) is along the x-axis
and y-axis.

• If reduction method is IAU-76/FK5, this input is the adjustment to the longitude ([Δδψ, Δδε]),
specified in radians.

For historical values, see International Earth Rotation and Reference Systems Service and navigate to
the Earth Orientation Data Data/Products page.
Example: [-0.2530e-6 -0.0188e-6]

Dependencies

To enable this port, select Higher accuracy parameters.
Data Types: double

Port_6 — Time increment source
scalar

Time increment source, specified as a scalar, such as the Clock block.

Dependencies

• The port name and time increment depend on the Time Increment parameter.

Time Increment Value Port Name
Day day
Hour hour
Min min
Sec sec
None No port

• To disable this port, set the Time Increment parameter to None.
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Data Types: double

Output

Xi — Original position
3-by-1 element vector

Original position vector with respect to the ECI reference system, returned as a 3-by-1 element
vector.
Data Types: double

Parameters
Reduction — Reduction method

IAU-76/FK5 (default) | IAU-2000/2006

Reduction method to convert the coordinates. Method can be one of:

• IAU-76/FK5

Reduce the calculation using the International Astronomical Union 76/Fifth Fundamental
Catalogue (IAU-76/FK5) reference system. Choose this reduction method if the reference
coordinate system for the conversion is FK5.

Note This method uses the IAU 1976 precession model and the IAU 1980 theory of nutation to
reduce the calculation. This model and theory are no longer current, but the software provides
this reduction method for existing implementations. Because of the polar motion approximation
that this reduction method uses, the block calculates the transformation matrix rather than the
direction cosine matrix.

• IAU-2000/2006

Reduce the calculation using the International Astronomical Union 2000/2006 reference system.
Choose this reduction method if the reference coordinate system for the conversion is IAU-2000.
This reduction method uses the P03 precession model to reduce the calculation.

Programmatic Use
Block Parameter: red
Type: character vector
Values: 'IAU-2000/2006' | 'IAU-76/FK5'
Default: 'IAU-2000/2006'

Year — Year

2013 (default) | double, whole number, greater than 1

Year to calculate the Coordinated Universal Time (UTC) date. Enter a double value that is a whole
number greater than 1, such as 2013.

Programmatic Use
Block Parameter: year
Type: character vector

 LLA to ECI Position

5-501



Values: double, whole number, greater than 1
Default: '2013'

Month — Month

January (default) | February | March | April | May | June | July | August | September |
October | November | December

Month to calculate the UTC date.

Programmatic Use
Block Parameter: month
Type: character vector
Values: 'January' | 'February' | 'March' | 'April' | 'May' | 'June' | 'July' | 'August' |
'September' | 'October' | 'November' | 'December'
Default: 'January'

Day — Day

1 (default) | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 | 31

Day to calculate the UTC date.

Programmatic Use
Block Parameter: day
Type: character vector
Values: '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' | '10' | '11' | '12' | '13' | '14' |
'15' | '16' | '17' | '18' | '19' | '20' | '21' | '22' | '23' | '24' | '25' | '26' | '27' | '28' |
'29' | '30' | '31'
Default: '1'

Hour — Hour

0 (default) | double, whole number, 0 to 24

Hour to calculate the UTC date. Enter a double value that is a whole number, from 0 to 24.

Programmatic Use
Block Parameter: hour
Type: character vector
Values: double, whole number, 0 to 24
Default: '0'

Minutes — Minutes

0 (default) | double, whole number, 0 to 60

Minutes to calculate the UTC date. Enter a double value that is a whole number, from 0 to 60.

Programmatic Use
Block Parameter: min
Type: character vector
Values: double, whole number, 0 to 60
Default: '0'
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Seconds — Seconds

0 (default)

Seconds to calculate the UTC date. Enter a double value that is a whole number, from 0 to 60.

Programmatic Use
Block Parameter: sec
Type: character vector
Values: double, whole number, 0 to 60
Default: '0'

Time increment — Time increment

Day (default) | None | Hour | Min | Sec

Time increment between the specified date and the desired model simulation time. The block adjusts
the calculated direction cosine matrix to take into account the time increment from model simulation.
For example, selecting Day and connecting a simulation timer to the port means that each time
increment unit is one day and the block adjusts its calculation based on that simulation time.

This parameter corresponds to the time increment input, the clock source.

If you select None, the calculated Julian date does not take into account the model simulation time.

Programmatic Use
Block Parameter: deltaT
Type: character vector
Values: 'None' | 'Day' | 'Hour' | 'Min' | 'Sec'
Default: 'Day'

Action for out-of-range input — Action taken when inputs are out of range

Error (default) | Warning | None

Specify the block behavior when the block inputs are out of range.

Action Description
None No action.
Warning Warning in the MATLAB Command Window, model simulation

continues.
Error (default) MATLAB returns an exception, model simulation stops.

Programmatic Use
Block Parameter: errorflag
Type: character vector
Values: 'None' | 'Warning' | 'Error'
Default: 'Error'

Higher accuracy parameters — Enable higher accuracy parameters

on (default) | off
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Select this check box to allow the following as block inputs. These inputs let you better control the
conversion result. See “Input” on page 5-499 for a description.

• Δ UT1
• Δ AT
• [ xp , yp ]
• [Δδψ, Δδε] or [d X, d Y ]

Programmatic Use
Block Parameter: extraparamflag
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Units — Units

Metric (MKS) (default) | English

Specifies the parameter and output units.

Units Position Equatorial Radius Altitude
Metric (MKS) Meters Meters Meters
English Feet Feet Feet

Dependencies

To enable this parameter, set Earth model to Earth (WGS84).
Programmatic Use
Block Parameter: eunits
Type: character vector
Values: 'Metric (MKS)' | 'English'
Default: 'Metric (MKS)'

Earth model — Earth model

WGS84 (default) | Custom

Earth model to use, Custom or Earth (WGS84).
Programmatic Use
Block Parameter: earthmodel
Type: character vector
Values: 'Earth (WGS84)' | 'Custom'
Default: 'Earth (WGS84)'

Flattening — Flattening of planet

1/298.257223563 (default) | scalar

Flattening of the planet, specified as a double scalar.
Dependencies

To enable this parameter, set Earth model to Custom.
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Programmatic Use
Block Parameter: flat
Type: character vector
Values: double scalar
Default: 1/298.257223563

Equatorial radius — Radius of planet at equator

6378137 (default) | scalar

Radius of the planet at its equator.

Dependencies

To enable this parameter, set Earth model to Custom.

Programmatic Use
Block Parameter: eqradius
Type: character vector
Values: double scalar
Default: 6378137

Version History
Introduced in R2014a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
ECI Position to LLA

External Websites
https://www.iers.org
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LLA to Flat Earth
Estimate flat Earth position from geodetic latitude, longitude, and altitude
Library: Aerospace Blockset / Utilities / Axes Transformations

Description
The LLA to Flat Earth block converts a geodetic latitude μ , longitude ι , and altitude (h) into a 3-
by-1 vector of flat Earth position p . Latitude and longitude values can be any value. However,
latitude values of +90 and -90 may return unexpected values because of singularity at the poles. For
more information on the flat Earth coordinate system, see “Algorithms” on page 5-509.

Limitations
• This estimation method assumes that the flight path and bank angle are zero.
• This estimation method assumes the flat Earth z-axis is normal to the Earth at the initial geodetic

latitude and longitude only. This method has higher accuracy over small distances from the initial
geodetic latitude and longitude, and nearer to the equator. The longitude has higher accuracy with
smaller variations in latitude. Additionally, longitude is singular at the poles.

Ports
Input

μl — Geodetic latitude and longitude
2-by-1 vector

Geodetic latitude and longitude, specified as a 2-by-1 vector, in degrees.
Data Types: double

h — Altitude
scalar

Altitude above the input reference altitude, specified as a scalar, in the same units as the flat Earth
position.
Data Types: double

href — Reference height
scalar

Reference height from the surface of the Earth to the flat Earth frame, specified as a scalar, in the
same units as the flat Earth position. The reference height is estimated with regard to Earth frame.
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Data Types: double

μref lref — Reference location
2-by-1 vector

Reference location, specified as a 2-by-1 vector, in degrees of latitude and longitude, for the origin of
the estimation and the origin of the flat Earth coordinate system. Use this port if you want to specify
the reference location as a dynamic value.
Dependencies

To enable this port, select Input reference position and orientation.
Data Types: double

ψref — Direction of flat Earth x-axis
scalar

Angle, specified as a scalar, for converting flat Earth x and y coordinates to North and East
coordinates. Use this port if you want to specify the angle as a dynamic value.
Dependencies

To enable this port, select Input reference position and orientation.
Data Types: double

Output

Xe — Position
3-by-1 vector | 4-by-1 vector

Position in flat Earth frame, returned as a vector.
Data Types: double

Parameters
Units — Units

Metric (MKS) (default) | English

Parameter and output units:

Units Position Equatorial Radius Altitude
Metric (MKS) Meters Meters Meters
English Feet Feet Feet

Programmatic Use
Block Parameter: units
Type: character vector
Values: 'Metric (MKS)' | 'English'
Default: 'Metric (MKS)'

Planet model — Planet model
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Earth (WGS84) (default) | Custom

Planet model to use, Custom or Earth (WGS84).

Dependencies

Selecting the Custom option disables the Units parameter and enables these parameters:

• Flattening
• Equatorial radius of planet

Programmatic Use
Block Parameter: ptype
Type: character vector
Values: 'Earth (WGS84)' | 'Custom'
Default: 'Earth (WGS84)'

Flattening — Flattening of Earth

1/298.257223563 (default) | scalar

Flattening of the planet, specified as a double scalar.

Dependencies

To enable this parameter, set Planet model to Custom.

Programmatic Use
Block Parameter: F
Type: character vector
Values: double scalar
Default: 1/298.257223563

Equatorial radius of planet — Radius of planet at equator

6378137 (default) | scalar

Radius of the planet at its equator, in the same units as the desired units for ECEF position.

Dependencies

To enable this parameter, set Planet model to Custom.

Programmatic Use
Block Parameter: R
Type: character vector
Values: double scalar
Default: 6378137

Input reference position and orientation — Input reference position and orientation
as ports

off (default) | on

• To enable input ports for reference position and angle to convert flat Earth, select this check box.
• To specify the reference positions and angle as static values, clear this check box.
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Select this check box if you want

Programmatic Use
Block Parameter: refPosPort
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Reference geodetic latitude and longitude [deg] — Initial geodetic latitude and
longitude

[0 10] (default) | 2-by-1 vector

Reference location in latitude and longitude, specified as 2-by-1 vector, in degrees.

Dependencies

To enable this parameter, clear Input reference position and orientation.

Programmatic Use
Block Parameter: LL0
Type: character vector
Values: 2-by-1 vector
Default: [0 10]

Direction of flat Earth x-axis (degrees clockwise from north) — Flat Earth x and
y coordinates

0 (default) | scalar

Angle to convert flat Earth x and y coordinates to North and East coordinates, specified as a scalar
double, in degrees.

Dependencies

To enable this parameter, clear Input reference position and orientation.

Programmatic Use
Block Parameter: psi
Type: character vector
Values: double scalar
Default: 0

Algorithms
The flat Earth coordinate system assumes the z-axis is downward positive. The estimation begins by
finding the small changes in latitude and longitude from the output latitude and longitude minus the
initial latitude and longitude.

dμ = μ− μ0
dι = ι− ι0

To convert geodetic latitude and longitude to the North and East coordinates, the estimation uses the
radius of curvature in the prime vertical (RN) and the radius of curvature in the meridian (RM). RN and
RM are defined by the following relationships:
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RN = R
1− (2f − f 2)sin2μ0

RM = RN
1− (2f − f 2)

1− (2f − f 2)sin2μ0

where (R) is the equatorial radius of the planet and f  is the flattening of the planet.

Small changes in the North (dN) and East (dE) positions are approximated from small changes in the
North and East positions by

dN = dμ
atan 1

RM

dE = dι
atan 1

RNcosμ0

With the conversion of the North and East coordinates to the flat Earth x and y coordinates, the
transformation has the form of

px
py

=
cosψ sinψ
−sinψ cosψ

N
E

,

where

ψ

is the angle in degrees clockwise between the x-axis and north.

The flat Earth z-axis value is the negative altitude minus the reference height (href):

pz = − h− href .

Version History
Introduced in R2011a

References
[1] Stevens, B. L., and F. L. Lewis. Aircraft Control and Simulation, Hoboken, NJ: John Wiley & Sons,

2003.

[2] Etkin, B. Dynamics of Atmospheric Flight Hoboken, NJ: John Wiley & Sons, 1972.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.
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See Also
Direction Cosine Matrix ECEF to NED | Direction Cosine Matrix ECEF to NED to Latitude and
Longitude | ECEF Position to LLA | Flat Earth to LLA | Geocentric to Geodetic Latitude | LLA to ECEF
Position | Radius at Geocentric Latitude
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Mach Number
Compute Mach number using velocity and speed of sound
Library: Aerospace Blockset / Flight Parameters

Description
The Mach Number block computes the Mach number. The Mach number is defined as

Mach = V ⋅ V
a ,

where a is the speed of sound and V is the velocity vector.

Ports
Input

V — Velocity
3-element vector

Velocity vector, specified as an 3-element vector.
Data Types: double

a — Speed of sound
1-by-1 array

Speed of sound, specified as a 1-by-1 array.
Data Types: double

Output

Mach — Mach number
scalar

Mach number, returned as a scalar.
Data Types: double

Version History
Introduced before R2006a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Aerodynamic Forces and Moments | Dynamic Pressure
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Mass Conversion
Convert from mass units to desired mass units
Library: Aerospace Blockset / Utilities / Unit Conversions

Description
The Mass Conversion block computes the conversion factor from specified input mass units to
specified output mass units and applies the conversion factor to the input signal.

The Mass Conversion port block labels change based on the input and output units selected from the
Initial unit and the Final unit lists.

Ports
Input

Port_1 — Mass
scalar | array

Mass, specified as a scalar or array, in initial mass units.

Dependencies

The input port label depends on the Initial unit setting.
Data Types: double

Output

Port_1 — Mass
scalar | array

Mass, returned as a scalar or array, in final mass units.

Dependencies

The output port label depends on the Final unit setting.
Data Types: double

Parameters
Initial unit — Input units

lbm (default) | kg | slug

Input units, specified as.
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lbm Pound mass
kg Kilograms
slug Slugs

Dependencies

The input port label depends on the Initial unit setting.

Programmatic Use
Block Parameter: IU
Type: character vector
Values: 'lbm' | 'kg' | 'slug'
Default: 'lbm'

Final unit — Output units

kg (default) | lbm | slug

Output units, specified as:

lbm Pound mass
kg Kilograms
slug Slugs

Dependencies

The output port label depends on the Final unit setting.

Programmatic Use
Block Parameter: OU
Type: character vector
Values: 'lbm' | 'kg' | 'slug'
Default: 'kg'

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Acceleration Conversion | Angle Conversion | Angular Acceleration Conversion | Angular Velocity
Conversion | Density Conversion | Force Conversion | Length Conversion | Pressure Conversion |
Temperature Conversion | Velocity Conversion
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MATLAB Animation
Create six-degrees-of-freedom multibody custom geometry block
Library: Aerospace Blockset / Animation / MATLAB-Based Animation

Description
The MATLAB Animation block creates a six-degrees-of-freedom multibody custom geometry block
based on the Aero.Animation object. This block animates one or more vehicle geometries with x-
y-z position and Euler angles through the specified bounding box, camera offset, and field of view.
This block expects the rotation order z-y-x (psi, theta, phi).

To update the camera parameters in the animation, first set the parameters then close and double-
click the block to reopen the MATLAB Animation window.

To access the parameters for this block, do one of:

• Right-click the block, then select Mask > Mask Parameters.
• Double-click the block to display the MATLAB Animation window, then click the Block

Parameters icon.

Note The underlying graphics system stores values in single precision. As a result, you might notice
that motion at coordinate positions greater than approximately 1e6 appear unstable. This is because
a single-precision number has approximately six digits of precision. The instability is due to
quantization at the local value of the eps MATLAB function. To visualize more stable motion for
coordinates beyond 1e6, either offset the input data to a local zero, or scale down the coordinate
values feeding the visualization.

Ports
Input

Port_1 — Downrange position, crossrange position, and altitude of vehicle
three-element vector

Downrange position, crossrange position, and altitude of the vehicle in Earth coordinates, specified
as a three-element vector. The number on the port indicates the vehicle number.
Data Types: double

1.Xe — Downrange position, crossrange position, and altitude of vehicle
three-element vector

Downrange position, crossrange position, and altitude of the vehicle in Earth coordinates, specified
as a three-element vector. The number on the port indicates the vehicle number.
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Data Types: double

1.φ θ ψ — Euler angles
three-element vector

Euler angles (roll, pitch, and yaw) of the vehicle, specified as a three-element vector. The number on
the port indicates the vehicle number.
Data Types: double

Port_N — Downrange position, crossrange position, and altitude (positive down)
three-element vector

Nth downrange position, crossrange position, and altitude (positive down) of the vehicle, specified as
a three-element vector. The number on the port indicates the vehicle number.
Dependencies

To enable this port, select a Vehicles number from 2 to 10.
Data Types: double

Port_N — Euler angles
three-element vector

Nth input Euler angles (roll, pitch, and yaw) of the vehicle, specified as a three-element vector. The
number on the port indicates the vehicle number.
Dependencies

To enable this port, select a Vehicles number from 2 to 10.
Data Types: double

Parameters
Vehicles — Vehicle to animate

1 (default) | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10

Vehicle to animate, specified from 1 to 10.
Dependencies

Selecting a vehicle number from 2 to 10 adds corresponding input ports. Each vehicle has its own set
of input ports, denoted by the number at the beginning of the input port label.
Programmatic Use
Block Parameter: Vehicles
Type: character vector
Values: 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10
Default: '1'

Geometries (use 'quotes' on filenames) — Vehicle geometries

'astredwedge.mat' (default) | MAT-file

Vehicle geometries, specified in a MAT-file. You can specify these geometries using:

 MATLAB Animation

5-517



• Variable name, for example geomVar
• Cell array of variable names, for example {geomVar, AltGeomVar}
• Character vector with single quotes, for example, 'astredwedge.mat'
• Mixed cell array of variable names and character vectors, for example {'file1.mat',

'file2.mat', 'file3.ac', geomVar}

Note All specified geometries specified must exist in the MATLAB workspace and file names must
exist in the current folder or be on the MATLAB path.

Programmatic Use
Block Parameter: Geometries
Type: character vector
Values: MAT-file
Default: 'astredwedge.mat'

Bounding box coordinates — Boundary coordinates

[-50,50,-50,50,-50,50] (default) | six-element vector

Boundary coordinates for the vehicle, specified as a six-element vector.

This parameter is not tunable during simulation. A change to this parameter takes effect after
simulation stops.

Programmatic Use
Block Parameter: BoundingBoxCoordinates
Type: character vector
Values: six-element vector
Default: '[-50,50,-50,50,-50,50]'

Camera offset — Distance from camera aim point to camera

[-150,-50,0] (default) | three-element vector

Distance from the camera aim point to the camera itself, specified as a three-element vector.

This parameter is not tunable during simulation. A change to this parameter takes effect after
simulation stops.

Programmatic Use
Block Parameter: CameraOffset
Type: character vector
Values: three-element vector
Default: '[-150,-50,0]'

Camera view angle — Camera view angle

3 (default) | scalar

Camera view angle, specified as a double scalar. By default, the camera aim point is the position of
the first body lagged dynamically to indicate motion.
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This parameter is not tunable during simulation. A change to this parameter takes effect after
simulation stops.

Programmatic Use
Block Parameter: CameraViewAngle
Type: character vector
Values: double scalar
Default: '3'

Sample time — Sample time

0.2 (default) | scalar

Sample time (-1 for inherited), specified as a double scalar.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: double scalar
Default: '0.2'

Version History
Introduced in R2007a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Aero.Animation
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Moments about CG due to Forces
Compute moments about center of gravity due to forces applied at a point, not center of gravity
Library: Aerospace Blockset / Mass Properties

Description
The Moments about CG due to Forces block computes moments about center of gravity due to forces
that are applied at point CP, not at the center of gravity.

Ports
Input

F — Applied forces
3-element vector

Forces applied at point CP, specified as a three-element vector.
Data Types: double

CG — Center of gravity
3-element vector

Center of gravity, specified as three-element vector.
Data Types: double

CP — Application point of forces
3-element vector

Application point of forces, specified as a three-element vector.
Data Types: double | bus

Output

M — Moments at the center of gravity
3-element vector

Moments at the center of gravity in x-axis, y-axis and z-axis, returned as a three-element vector.
Data Types: double

Version History
Introduced before R2006a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Aerodynamic Forces and Moments | Estimate Center of Gravity
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Moon Libration
Implement Moon librations
Library: Aerospace Blockset / Environment / Celestial Phenomena

Description
The Moon Libration block implements the Moon librations using Chebyshev coefficients or a given
Julian date. The block uses the Chebyshev coefficients that the NASA Jet Propulsion Laboratory
provides.

Tip For TJD, Julian date input for the block:

• Calculate the date using the Julian Date Conversion block or the Aerospace Toolbox juliandate
function.

• Calculate the Julian date using some other means and input it using the Constant block.

Ports
Input

TJD — Julian date
scalar | positive | between minimum and maximum Julian dates

Julian date, specified as a positive scalar between minimum and maximum Julian dates.

See the Ephemeris model parameter for the minimum and maximum Julian dates.
Dependencies

This port displays if the Epoch parameter is set to Julian date.
Data Types: double

T0JD — Fixed Julian date
scalar | positive

Fixed Julian date for a specific epoch that is the most recent midnight at or before the interpolation
epoch, specified as a positive scalar. The sum of T0JD and ΔTJD must fall between the minimum and
maximum Julian dates.

See the Ephemeris model parameter for the minimum and maximum Julian dates.
Dependencies

This port displays if the Epoch parameter is set to T0 and elapsed Julian time.
Data Types: double
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ΔTJD — Elapsed Julian time
scalar | positive

Elapsed Julian time between the fixed Julian date and the ephemeris time, specified as a positive
scalar. The sum of T0JD and ΔTJD must fall between the minimum and maximum Julian date.

See the Ephemeris model parameter for the minimum and maximum Julian dates.

Dependencies

This port displays if the Epoch parameter is set to T0 and elapsed Julian time.
Data Types: double

Output

φ θ ψ (rad) — Euler angles
vector

Euler angles (φ θ ψ) for Moon attitude, in rad.
Data Types: double

ω (rad/day) — Moon libration Euler angular rate
vector

Moon libration Euler angular rates (ω), in rad/day.
Data Types: double

Parameters
Epoch — Epoch

Julian date (default) | T0 and elapsed Julian time

Epoch, specified as:

• Julian date

Julian date to calculate the Moon libration. When this option is selected, the block has one input
port, TJD.

• T0 and elapsed Julian time

Julian date, specified by two block inputs:

• Fixed Julian date representing a starting epoch.
• Elapsed Julian time between the fixed Julian date (T0JD) and the desired model simulation time.

The sum of T0JD and ΔTJD must fall between the minimum and maximum Julian dates.

Programmatic Use
Block Parameter: epochflag
Type: character vector
Values: Julian date | T0 and elapsed Julian time
Default: 'Julian date'
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Ephemeris model — Ephemeris model

DE405 (default) | DE421 | DE423 | DE430 | DE432t

Select one of the following ephemeris models defined by the Jet Propulsion Laboratory.

Ephemeris Model Description
DE405 Released in 1998. This ephemeris takes into account the Julian date range

2305424.50 (December 9, 1599) to 2525008.50 (February 20, 2201).

This block implements these ephemerides with respect to the International
Celestial Reference Frame version 1.0, adopted in 1998.

DE421 Released in 2008. This ephemeris takes into account the Julian date range
2414992.5 (December 4, 1899) to 2469808.5 (January 2, 2050).

This block implements these ephemerides with respect to the International
Celestial Reference Frame version 1.0, adopted in 1998.

DE423 Released in 2010. This ephemeris takes into account the Julian date range
2378480.5 (December 16, 1799) to 2524624.5 (February 1, 2200).

This block implements these ephemerides with respect to the International
Celestial Reference Frame version 2.0, adopted in 2010.

DE430 Released in 2013. This ephemeris takes into account the Julian date range
2287184.5 (December 21, 1549) to 2688976.5 (January 25, 2650).

This block implements these ephemerides with respect to the International
Celestial Reference Frame version 2.0, adopted in 2010.

DE432t Released in April 2014. This ephemeris takes into account the Julian date
range 2287184.5, (December 21, 1549 ) to 2688976.5, (January 25, 2650).

This block implements these ephemerides with respect to the International
Celestial Reference Frame version 2.0, adopted in 2010.

Note This block requires that you download ephemeris data using the Add-On Explorer. To start the
Add-On Explorer, in the MATLAB Command Window, type aeroDataPackage. on the MATLAB
desktop toolstrip, click the Add-Ons button.

Programmatic Use
Block Parameter: de
Type: character vector
Values: DE405 | DE421 | DE423 | DE430
Default: 'DE405'

Action for out-of-range input — Out-of-range block behavior

None (default) | Warning | Error

Out-of-range block behavior, specified as follows.
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Action Description
None No action.
Warning Warning in the MATLAB Command Window, model simulation

continues.
Error (default) MATLAB returns an exception, model simulation stops.

Programmatic Use
Block Parameter: errorflag
Type: character vector
Values: 'None' | 'Warning' | 'Error'
Default: 'Error'

Calculate rates — Calculate rate of Moon libration

on (default) | off

Select to calculate the rate of the Moon libration.

Dependencies

Select this check box to display the ω port.

Programmatic Use
Block Parameter: velflag
Type: character vector
Values: 'off' | 'on' |
Default: 'on'

Version History
Introduced in R2013a

References
[1] Folkner, W. M., J. G. Williams, D. H. Boggs. "The Planetary and Lunar Ephemeris DE 421." IPN

Progress Report 42-178, 2009.

[2] Vallado, D. A. Fundamentals of Astrodynamics and Applications. New York: McGraw-Hill, 1997.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
aeroDataPackage | Earth Nutation | Planetary Ephemeris
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Non-Standard Day 210C
Implement MIL-STD-210C climatic data
Library: Aerospace Blockset / Environment / Atmosphere

Description
The Non-Standard Day 210C block implements a portion of the climatic data of the MIL-STD-210C
worldwide air environment to 80 km (geometric or approximately 262,467 feet geometric) for
absolute temperature, pressure, density, and speed of sound for the input geopotential altitude.

The COESA Atmosphere Model, Non-Standard Day 210C, and Non-Standard Day 310 blocks are
identical blocks. When configured for COESA Atmosphere Model, the block implements the COESA
mathematical representation. When configured for Non-Standard Day 210C, the block implements
MIL-STD-210C climatic data. When configured for Non-Standard Day 310, the block implements MIL-
HDBK-310 climatic data.

The COESA Atmosphere Model block port labels change based on the input and output units selected
from the Units list.

Limitations
All values are held below the geometric altitude of 0 m (0 feet) and above the geometric altitude of
80,000 meters (approximately 262,467 feet). The envelope atmospheric model has a few exceptions
where values are held below the geometric altitude of 1 kilometer (approximately 3,281 feet) and
above the geometric altitude of 30,000 meters (approximately 98,425 feet). These exceptions arise
from lack of data in MIL-STD-210C for these conditions.

In general, temperature values are interpolated linearly, and density values are interpolated
logarithmically. Pressure and speed of sound are calculated using a perfect gas law. The envelope
atmospheric model has a few exceptions where the extreme value is the only value provided as an
output. Pressure in these cases is interpolated logarithmically. These envelope atmospheric model
exceptions apply to all cases of high and low pressure, high and low temperature, and high and low
density, excluding the extreme values and 1% frequency of occurrence. These exceptions arise from
lack of data in MIL-STD-210C for these conditions.

Another limitation is that climatic data for the region south of 60°S latitude is excluded from
consideration in MIL-STD-210C.

This block uses the metric version of data from the MIL-STD-210C specifications. Certain data within
the envelope are inconsistent between metric and English versions for low density, low temperature,
high temperature, low pressure, and high pressure. The most significant differences occur in the
following values:

• For low density envelope data with 5% frequency, the density values in metric units are
inconsistent at 4 km and 18 km and the density values in English units are inconsistent at 14 km.
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• For low density envelope data with 10% frequency,

• The density values in metric units are inconsistent at 18 km.
• The density values in English units are inconsistent at 14 km.

• For low density envelope data with 20% frequency, the density values in English units are
inconsistent at 14 km.

• For low temperature envelope data with 20% frequency, the temperature values at 20 km are
inconsistent.

• For high pressure envelope data with 10% frequency, the pressure values in metric units at 8 km
are inconsistent.

Ports
Input

Port_1 — Geopotential height
scalar | array

Geopotential height, specified as a scalar or array, in specified units.
Data Types: double

Output

Port_2 — Temperature
scalar | array

Temperature, specified as a scalar or array, in specified units.
Data Types: double

Port_2 — Speed of sound
scalar | array

Speed of sound, specified as a scalar or array, in specified units.
Data Types: double

Port_3 — Air pressure
scalar | array

Air pressure, specified as a scalar or array, in specified units.
Data Types: double

Port_4 — Air density
scalar | array

Air density, specified as a scalar or array, in specified units.
Data Types: double
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Parameters
Units — Input and output units
Metric (MKS) (default) | English (Velocity in ft/s) | English (Velocity in kts)

Input and output units, specified as:

Units Height Temperature Speed of Sound Air Pressure Air Density
Metric (MKS) Meters Kelvin Meters per

second
Pascal Kilograms per

cubic meter
English
(Velocity in
ft/s)

Feet Degrees Rankine Feet per second Pound-force per
square inch

Slug per cubic
foot

English
(Velocity in
kts)

Feet Degrees Rankine Knots Pound-force per
square inch

Slug per cubic
foot

Programmatic Use
Block Parameter: units
Type: character vector
Values: 'Metric (MKS)' | 'English (Velocity in ft/s)' | 'English (Velocity in
kts)'
Default: 'Metric (MKS)'

Specification — Atmosphere model type
1976 COESA-extended U.S. Standard Atmosphere (default) | MIL-HDBK-310 | MIL-
STD-210C

Atmosphere model type, specified as 1976 COESA-extended U.S. Standard Atmosphere, MIL-
HDBK-310, or MIL-STD-210C. For the MIL-HDBK-310 and MIL-STD-210C options:

MIL-HDBK-310 This selection is linked to the Non-Standard Day
310 block. See the block reference for more
information. Selecting MIL-HDBK-310 enables
the parameters Atmospheric model type,
Extreme parameter, Frequency of
occurrence, and Altitude of extreme value.

MIL-STD-210C This selection is linked to the Non-Standard Day
210C block. See the block reference for more
information. Selecting MIL-HDBK-310 enables
the parameters Atmospheric model type,
Extreme parameter, Frequency of
occurrence, and Altitude of extreme value.

Dependencies

Selecting MIL-HDBK-310 or MIL-STD-210C enables these parameters:

• Atmospheric model type
• Extreme parameter
• Frequency of occurrence
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• Altitude of extreme value

Programmatic Use
Block Parameter: spec
Type: character vector
Values: '1976 COESA-extended U.S. Standard Atmosphere' | 'MIL-HDBK-310' | 'MIL-
STD-210C'
Default: '1976 COESA-extended U.S. Standard Atmosphere'

Atmospheric model type — Model type
Profile (default) | Envelope

Representation of atmospheric model type, specified as:

Profile Realistic atmospheric profiles associated with extremes at specified altitudes.
Recommended for simulation of vehicles vertically traversing the atmosphere or
when the total influence of the atmosphere is needed.

Envelope Uses extreme atmospheric values at each altitude. Recommended for vehicles
only horizontally traversing the atmosphere without much change in altitude.

Dependencies

• Selecting MIL-HDBK-310 or MIL-STD-210C for the Specification parameter enables this
parameter.

• Selecting Profile enables the Attitude of extreme value parameter.

Programmatic Use
Block Parameter: model
Type: character vector
Values: 'Profile' | 'Envelope'
Default: 'Profile'

Extreme parameter — Model type
High temperature (default) | Low temperature | High density | Low density | High
pressure | Low pressure

Atmospheric parameter that is the extreme value.

Dependencies

• Selecting MIL-HDBK-310 or MIL-STD-210C for the Specification parameter enables this
parameter.

• The High pressure and Low pressure options appear only when Atmospheric model type is
set to Envelope.

Programmatic Use
Block Parameter: profile_var
Type: character vector
Values: 'High temperature' | 'Low temperature' | 'High density' | 'Low density' |
'High pressure' | 'Low pressure'
Default: 'High temperature'

Frequency of occurrence — Model type
1% (default) | Extreme values | 5% | 10% | 20%
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Percent of time the values would occur.

Dependencies

• Selecting MIL-HDBK-310 or MIL-STD-210C for the Specification parameter enables this
parameter.

• Extreme values, 5%, and 20% are available only when Envelope is selected for Atmospheric
model type.

• 1% and 10% are always available.

Programmatic Use
Block Parameter: profile_percent
Type: character vector
Values: 'Extreme values' | '1%' | '5%' | '10%' | '20%'
Default: '1%'

Altitude of extreme value — Geometric altitude
5 km (16404 ft) (default) | 10 km (32808 ft) | 20 km (65617 ft) | 30 km (98425 ft) |
40 km (131234 ft)

Geometric altitude at which the extreme values occur, specified as 5 km (16404 ft), 10 km
(32808 ft), 20 km (65617 ft), 30 km (98425 ft), or 40 km (131234 ft).

Dependencies

This parameter appears if the Atmospheric model type is set to Profile.

Programmatic Use
Block Parameter: profile_alt
Type: character vector
Values: 5 km (16404 ft) | 10 km (32808 ft) | 20 km (65617 ft) | 30 km (98425 ft) | 40
km (131234 ft)
Default: 40 km (131234 ft)

Action for out-of-range input — Out-of-range block behavior

Warning (default) | None | Error

Out-of-range block behavior, specified as follows.

Action Description
None No action.
Warning Warning in the MATLAB Command Window, model simulation

continues.
Error (default) MATLAB returns an exception, model simulation stops.

Programmatic Use
Block Parameter: action
Type: character vector
Values: 'None' | 'Warning' | 'Error'
Default: 'Warning'
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Version History
Introduced before R2006a

References
[1] Global Climatic Data for Developing Military Products. MIL-STD-210C, Washington, D.C.:

Department of Defense, 1987.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
CIRA-86 Atmosphere Model | COESA Atmosphere Model | ISA Atmosphere Model | Non-Standard Day
310
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Non-Standard Day 310
Implement MIL-HDBK-310 climatic data
Library: Aerospace Blockset / Environment / Atmosphere

Description
The Non-Standard Day 310 block implements a portion of the climatic data of the MIL-HDBK-310
worldwide air environment to 80 km (geometric or approximately 262,467 feet geometric) for
absolute temperature, pressure, density, and speed of sound for the input geopotential altitude.

The COESA Atmosphere Model, Non-Standard Day 210C, and Non-Standard Day 310 blocks are
identical blocks. When configured for COESA Atmosphere Model, the block implements the COESA
mathematical representation. When configured for Non-Standard Day 210C, the block implements
MIL-STD-210C climatic data. When configured for Non-Standard Day 310, the block implements MIL-
HDBK-310 climatic data.

The COESA Atmosphere Model block port labels change based on the input and output units selected
from the Units list.

Limitations
All values are held below the geometric altitude of 0 m (0 feet) and above the geometric altitude of
80,000 meters (approximately 262,467 feet). The envelope atmospheric model has a few exceptions
where values are held below the geometric altitude of 1 kilometer (approximately 3,281 feet) and
above the geometric altitude of 30,000 meters (approximately 98,425 feet). These exceptions arise
from lack of data in MIL-HDBK-310 for these conditions.

In general, temperature values are interpolated linearly, and density values are interpolated
logarithmically. Pressure and speed of sound are calculated using a perfect gas law. The envelope
atmospheric model has a few exceptions where the extreme value is the only value provided as an
output. Pressure in these cases is interpolated logarithmically. These envelope atmospheric model
exceptions apply to all cases of high and low pressure, high and low temperature, and high and low
density, excluding the extreme values and 1% frequency of occurrence. These exceptions arise from
lack of data in MIL-HDBK-310 for these conditions.

Another limitation is that climatic data for the region south of 60°S latitude is excluded from
consideration in MIL-HDBK-310.

This block uses the metric version of data from the MIL-STD-310 specifications. Certain data within
the envelope are inconsistent between metric and English versions for low density, low temperature,
high temperature, low pressure, and high pressure. The most significant differences occur in the
following values:

• For low density envelope data with 5% frequency, the density values in metric units are
inconsistent at 4 km and 18 km and the density values in English units are inconsistent at 14 km.
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• For low density envelope data with 10% frequency,

• The density values in metric units are inconsistent at 18 km.
• The density values in English units are inconsistent at 14 km.

• For low density envelope data with 20% frequency, the density values in English units are
inconsistent at 14 km.

• For low temperature envelope data with 20% frequency, the temperature values at 20 km are
inconsistent.

• For high pressure envelope data with 10% frequency, the pressure values in metric units at 8 km
are inconsistent.

Ports
Input

Port_1 — Geopotential height
scalar | array

Geopotential height, specified as a scalar or array, in specified units.
Data Types: double

Output

Port_1 — Temperature
scalar | array

Temperature, specified as a scalar or array, in specified units.
Data Types: double

Port_2 — Speed of sound
scalar | array

Speed of sound, specified as a scalar or array, in specified units.
Data Types: double

Port_3 — Air pressure
scalar | array

Air pressure, specified as a scalar or array, in specified units.
Data Types: double

Port_4 — Air density
scalar | array

Air density, specified as a scalar or array, in specified units.
Data Types: double
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Parameters
Units — Input and output units
Metric (MKS) (default) | English (Velocity in ft/s) | English (Velocity in kts)

Input and output units, specified as:

Units Height Temperature Speed of Sound Air Pressure Air Density
Metric (MKS) Meters Kelvin Meters per

second
Pascal Kilograms per

cubic meter
English
(Velocity in
ft/s)

Feet Degrees Rankine Feet per second Pound-force per
square inch

Slug per cubic
foot

English
(Velocity in
kts)

Feet Degrees Rankine Knots Pound-force per
square inch

Slug per cubic
foot

Programmatic Use
Block Parameter: units
Type: character vector
Values: 'Metric (MKS)' | 'English (Velocity in ft/s)' | 'English (Velocity in
kts)'
Default: 'Metric (MKS)'

Specification — Atmosphere model type
1976 COESA-extended U.S. Standard Atmosphere (default) | MIL-HDBK-310 | MIL-
STD-210C

Atmosphere model type, specified as 1976 COESA-extended U.S. Standard Atmosphere, MIL-
HDBK-310, or MIL-STD-210C. For the MIL-HDBK-310 and MIL-STD-210C options:

MIL-HDBK-310 This selection is linked to the Non-Standard Day
310 block. See the block reference for more
information. Selecting MIL-HDBK-310 enables
the parameters Atmospheric model type,
Extreme parameter, Frequency of
occurrence, and Altitude of extreme value.

MIL-STD-210C This selection is linked to the Non-Standard Day
210C block. See the block reference for more
information. Selecting MIL-HDBK-310 enables
the parameters Atmospheric model type,
Extreme parameter, Frequency of
occurrence, and Altitude of extreme value.

Dependencies

Selecting MIL-HDBK-310 or MIL-STD-210C enables these parameters:

• Atmospheric model type
• Extreme parameter
• Frequency of occurrence
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• Altitude of extreme value

Programmatic Use
Block Parameter: spec
Type: character vector
Values: '1976 COESA-extended U.S. Standard Atmosphere' | 'MIL-HDBK-310' | 'MIL-
STD-210C'
Default: '1976 COESA-extended U.S. Standard Atmosphere'

Atmospheric model type — Model type
Profile (default) | Envelope

Representation of atmospheric model type, specified as:

Profile Realistic atmospheric profiles associated with extremes at specified altitudes.
Recommended for simulation of vehicles vertically traversing the atmosphere or
when the total influence of the atmosphere is needed.

Envelope Uses extreme atmospheric values at each altitude. Recommended for vehicles
only horizontally traversing the atmosphere without much change in altitude.

Dependencies

• Selecting MIL-HDBK-310 or MIL-STD-210C for the Specification parameter enables this
parameter.

• Selecting Profile enables the Attitude of extreme value parameter.

Programmatic Use
Block Parameter: model
Type: character vector
Values: 'Profile' | 'Envelope'
Default: 'Profile'

Extreme parameter — Model type
High temperature (default) | Low temperature | High density | Low density | High
pressure | Low pressure

Atmospheric parameter that is the extreme value.

Dependencies

• Selecting MIL-HDBK-310 or MIL-STD-210C for the Specification parameter enables this
parameter.

• The High pressure and Low pressure options appear only when Atmospheric model type is
set to Envelope.

Programmatic Use
Block Parameter: profile_var
Type: character vector
Values: 'High temperature' | 'Low temperature' | 'High density' | 'Low density' |
'High pressure' | 'Low pressure'
Default: 'High temperature'

Frequency of occurrence — Model type
1% (default) | Extreme values | 5% | 10% | 20%
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Percent of time the values would occur.

Dependencies

• Selecting MIL-HDBK-310 or MIL-STD-210C for the Specification parameter enables this
parameter.

• Extreme values, 5%, and 20% are available only when Envelope is selected for Atmospheric
model type.

• 1% and 10% are always available.

Programmatic Use
Block Parameter: profile_percent
Type: character vector
Values: 'Extreme values' | '1%' | '5%' | '10%' | '20%'
Default: '1%'

Altitude of extreme value — Geometric altitude
5 km (16404 ft) (default) | 10 km (32808 ft) | 20 km (65617 ft) | 30 km (98425 ft) |
40 km (131234 ft)

Geometric altitude at which the extreme values occur, specified as 5 km (16404 ft), 10 km
(32808 ft), 20 km (65617 ft), 30 km (98425 ft), or 40 km (131234 ft).

Dependencies

This parameter appears if the Atmospheric model type is set to Profile.

Programmatic Use
Block Parameter: profile_alt
Type: character vector
Values: 5 km (16404 ft) | 10 km (32808 ft) | 20 km (65617 ft) | 30 km (98425 ft) | 40
km (131234 ft)
Default: 40 km (131234 ft)

Action for out-of-range input — Out-of-range block behavior

Warning (default) | None | Error

Out-of-range block behavior, specified as follows.

Action Description
None No action.
Warning Warning in the MATLAB Command Window, model simulation

continues.
Error (default) MATLAB returns an exception, model simulation stops.

Programmatic Use
Block Parameter: action
Type: character vector
Values: 'None' | 'Warning' | 'Error'
Default: 'Warning'
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Version History
Introduced before R2006a

References
[1] Global Climatic Data for Developing Military Products. MIL-HDBK-310, Washington, D.C.:

Department of Defense, 1987.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
CIRA-86 Atmosphere Model | COESA Atmosphere Model | ISA Atmosphere Model | Non-Standard Day
210C
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Nonlinear Second-Order Actuator
Implement second-order actuator with rate and deflection limits
Library: Aerospace Blockset / Actuators

Description
The Second Order Nonlinear Actuator block outputs the actual actuator position using the input
demanded actuator position and other dialog box parameters that define the system.

Ports
Input

Ademand — Demanded actuator position
scalar | array

Demanded actuator position, specified as a scalar or array.
Data Types: double

Output

Aactual — Actual actuator position
scalar | array

Actual actuator position, returned as a scalar or array.
Data Types: double

Parameters
Natural frequency — Natural frequency

1 (default) | scalar

Natural frequency of actuator, specified as a scalar double, in radians per second.

Programmatic Use
Block Parameter: wn_fin
Type: character vector
Values: scalar | double
Default: '1'

Damping ratio — Damping ratio
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0.3 (default) | scalar

Damping ratio of actuator, specified as a scalar double.

Programmatic Use
Block Parameter: z_fin
Type: character vector
Values: scalar | double
Default: '0.3'

Maximum deflection — Largest actuator position allowable

20*pi/180 (default) | scalar

Largest actuator position allowable, specified as a scalar double, in the same units as demanded
actuator position.

Programmatic Use
Block Parameter: fin_max
Type: character vector
Values: scalar | double
Default: '20*pi/180'

Minimum deflection — Smallest actuator position allowable

-20*pi/180 (default) | scalar

Smallest actuator position allowable, specified as a scalar double, in the same units as demanded
actuator position.

Programmatic Use
Block Parameter: fin_min
Type: character vector
Values: scalar | double
Default: '-20*pi/180'

Rate limit — Fastest speed allowable

500*pi/180 (default) | scalar

Fastest speed allowable for actuator motion, specified as a scalar double, in the units of demanded
actuator position per second.

Programmatic Use
Block Parameter: fin_maxrate
Type: character vector
Values: scalar | double
Default: '500*pi/180'

Initial position — Initial position

0 (default) | scalar

Initial position of actuator, specified as a scalar double, in the same units as demanded actuator
position.
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• If the specified value is less than the value of Minimum deflection, the block sets the value of
Minimum deflection as the initial position value.

• If the specified value is greater than the value of Maximum deflection, the block sets the value
of Maximum deflection as the initial position value.

Programmatic Use
Block Parameter: fin_act_0
Type: character vector
Values: scalar | double
Default: '0'

Initial velocity — Initial velocity

0 (default) | scalar

Initial velocity of actuator, specified as a scalar double, in the units of demanded actuator position per
second.

If the absolute value of the specified value is greater than the absolute value of Rate Limit, this
block sets the value of Rate Limit as the initial velocity value.

Programmatic Use
Block Parameter: fin_act_vel
Type: character vector
Values: scalar | double
Default: '0'

Version History
Introduced in R2012a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Linear Second-Order Actuator

Topics
“Explore the NASA HL-20 Model” on page 1-5
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NRLMSISE-00 Atmosphere Model
Implement mathematical representation of 2001 United States Naval Research Laboratory Mass
Spectrometer and Incoherent Scatter Radar Exosphere
Library: Aerospace Blockset / Environment / Atmosphere

Description
The NRLMSISE-00 Atmosphere Model block implements the mathematical representation of the 2001
United States Naval Research Laboratory Mass Spectrometer and Incoherent Scatter Radar
Exosphere (NRLMSISE-00) of the MSIS® class model. This block calculates the neutral atmosphere
empirical model from the surface to lower exosphere (0 to 1,000,000 meters). When configuring the
block for this calculation, you can also take into account the anomalous oxygen, which can affect the
satellite drag above 500,000 meters.

Limitations
• This block has the limitations of the NRLMSISE-00 model. For more information, see https://

ccmc.gsfc.nasa.gov/.
• This block is valid only for altitudes between 0 and 1,000,000 meters (1,000 kilometers).
• The F107 and F107A values used to generate the model correspond to the 10.7 cm radio flux at

the actual distance of the Earth from the Sun rather than the radio flux at 1 AU. These sites
provide both classes of values:

• ftp://ftp.ngdc.noaa.gov/STP/GEOMAGNETIC_DATA/INDICES/KP_AP/
• ftp://ftp.ngdc.noaa.gov/STP/space-weather/solar-data/solar-features/

solar-radio/noontime-flux/penticton/

The format for the data indices for these values are located here:

ftp://ftp.ngdc.noaa.gov/STP/GEOMAGNETIC_DATA/INDICES/KP_AP/kp_ap.fmt

Ports
Input

Port_1 — Geodetic latitudes, longitude, and altitude
three-element matrix

Geodetic latitudes, in degrees, longitude, in degrees, and altitude, in selected length units, specified
as three-element matrix.
Data Types: double

Port_2 — Years
array
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N years, specified as an array.
Data Types: double

Port_3 — Days
array

N days of a year (1 to 365 (or 366)), specified as an array.
Data Types: double

Port_4 — Seconds
array

N seconds in a day, specified as an array, in universal time (UT).
Data Types: double

Port_5 — Local apparent solar time
array

N local apparent solar timed, specified as an array, in hours.
Data Types: double

Port_6 — 81-day average F10.7 flux
array

N 81-day averages of F10.7 flux, centered on day of year (doy), specified as an array.
Data Types: double

Port_7 — Daily average F10.7 flux
array

N daily F10.7 fluxes for previous days, specified as an array.
Data Types: double

Port_8 — Magnetic index information
N-by-7 array

Magnetic index information, specified as an N-by-7. If you specify magneticIndex, you must also
specify f107Average and f107Daily. The magnetic index information consists of:
Daily magnetic index (AP)
3 hour AP for current time
3 hour AP for 3 hours before current time
3 hour AP for 6 hours before current time
3 hour AP for 9 hours before current time
Average of eight 3 hour AP indices from 12 to 33 hours before current time
Average of eight 3 hour AP indices from 36 to 57 hours before current time

The effects of daily magnetic index are not large or established below 80,000 m. As a result, the block
sets the default value to 4. See the limitations in “Limitations” on page 5-541 for more information.
Data Types: double

Port_9 — Flags
array of 23

5 Blocks

5-542



Flags, specified as an array of 21, to enable or disable particular variations for the outputs.

Field Description
Flags(1) F10.7 effect on mean
Flags(2) Independent of time
Flags(3) Symmetrical annual
Flags(4) Symmetrical semiannual
Flags(5) Asymmetrical annual
Flags(6) Asymmetrical semiannual
Flags(7) Diurnal
Flags(8) Semidiurnal
Flags(9) Daily AP. If you set this field to -1, the block uses the entire matrix of magnetic

index information (APH) instead of APH(:,1)
Flags(10) All UT, longitudinal effects
Flags(11) Longitudinal
Flags(12) UT and mixed UT, longitudinal
Flags(13) Mixed AP, UT, longitudinal
Flags(14) Terdiurnal
Flags(15) Departures from diffusive equilibrium
Flags(16) All exospheric temperature variations
Flags(17) All variations from 120,000 meter temperature (TLB)
Flags(18) All lower thermosphere (TN1) temperature variations
Flags(19) All 120,000 meter gradient (S) variations
Flags(20) All upper stratosphere (TN2) temperature variations
Flags(21) All variations from 120,000 meter values (ZLB)
Flags(22) All lower mesosphere temperature (TN3) variations
Flags(23) Turbopause scale height variations

Data Types: double

Output

Port_1 — Temperature
N-by-2 array

Temperature values, returned in a N-by-2 array of values, in selected temperature units. The first
column contains exospheric temperatures, the second column contains temperature at altitude.
Data Types: double

Port_2 — Densities
N-by-9 array

Density values, returned in a N-by-9 array, in selected density units.
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Density Description
Density(1) Density of He
Density(2) Density of O
Density(3) Density of N2
Density(4) Density of O2
Density(5) Density of Ar
Density(6) Total mass density

Density(6), total mass density, is defined as the sum of the mass densities of
He, O, N2, O2, Ar, H, and N. Optionally, Density(6) can include the mass
density of anomalous oxygen making Density(6), the effective total mass
density for drag.

Density(7) Density of H
Density(8) Density of N
Density(9) Anomalous oxygen number density

Data Types: double

Parameters
Units — Input and output units

Metric (MKS) (default) | English

Input and output units, specified as:

Units Temperature Height Density
Metric (MKS) Kelvin Meters kg/m3, some density

outputs 1/m3

English Rankine Feet lbm/ft3, some density
outputs 1/ft3

Programmatic Use
Block Parameter: units
Type: character vector
Values: 'Metric (MKS)' | 'English'
Default: 'Metric (MKS)'

Input local apparent solar time — Apparent solar time

off (default) | on

Select this check box to input the local apparent solar time, in hours. Otherwise, the block inputs the
default value.

Programmatic Use
Block Parameter: 1st input
Type: character vector
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Values: 'off' | 'on'
Default: 'off'

Input flux and magnetic index information — Daily F10.7 flux for previous day and
magnetic index information

off (default) | on

Select this check box to input the 81-day average of F10.7, the daily F10.7 flux for the previous day,
and the array of 7 magnetic index information (see the aph argument in the atmosnrlmsise00
function). Otherwise, the block inputs the default value.

Programmatic Use
Block Parameter: flux_ap_input
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Source for flags — Variation flag source

Internal (default) | External

Variation flag source, specified as Internal or External. If you specify External, specify the
variation flag as an array of 23. If you specify Internal, the flag source is internal to the block.

Dependencies

Setting Source for flags to Internal enables the Flags parameter.

Programmatic Use
Block Parameter: flags_input
Type: character vector
Values: 'Internal' | 'External'
Default: 'Internal'

Flags — Variation flags

ones(1,23) (default)

Variation flag, specified as an array of 23 (ones(1,23)). This parameter applies only when Source
for flags has a value of Internal. You can specify one of the following values for a field. The default
value for each field is 1.

• 0.0

Removes that value's effect on the output.
• 1.0

Applies the main and the cross-term effects of that value on the output.
• 2.0

Applies only the cross-term effect of that value on the output.

The array has the following fields.

 NRLMSISE-00 Atmosphere Model

5-545



Field Description
Flags(1) F10.7 effect on mean
Flags(2) Independent of time
Flags(3) Symmetrical annual
Flags(4) Symmetrical semiannual
Flags(5) Asymmetrical annual
Flags(6) Asymmetrical semiannual
Flags(7) Diurnal
Flags(8) Semidiurnal
Flags(9) Daily AP. If you set this field to -1, the block uses the entire matrix of

magnetic index information (APH) instead of APH(:,1)
Flags(10) All UT, longitudinal effects
Flags(11) Longitudinal
Flags(12) UT and mixed UT, longitudinal
Flags(13) Mixed AP, UT, longitudinal
Flags(14) Terdiurnal
Flags(15) Departures from diffusive equilibrium
Flags(16) All exospheric temperature variations
Flags(17) All variations from 120,000 meter temperature (TLB)
Flags(18) All lower thermosphere (TN1) temperature variations
Flags(19) All 120,000 meter gradient (S) variations
Flags(20) All upper stratosphere (TN2) temperature variations
Flags(21) All variations from 120,000 meter values (ZLB)
Flags(22) All lower mesosphere temperature (TN3) variations
Flags(23) Turbopause scale height variations

Dependencies

Setting Source for flags to Internal enables the Flags parameter.

Programmatic Use
Block Parameter: flags
Type: character vector
Values: 'ones(1,23)'
Default: 'ones(1,23)'

Include anomalous oxygen number density in total mass density — Anomalous
oxygen

off (default) | on

Select this check box to take into account the anomalous oxygen when calculating the neutral
atmosphere empirical model from the surface to lower exosphere (0 to 1,000,000 meters). Taking into
account this number can affect the satellite drag above 500,000 meters.
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Programmatic Use
Block Parameter: oxygen_in
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Action for out-of-range input — Out-of-range block behavior

Warning (default) | None | Error

Out-of-range block behavior, specified as follows.

Action Description
None No action.
Warning Warning in the MATLAB Command Window, model simulation

continues.
Error (default) MATLAB returns an exception, model simulation stops.

Programmatic Use
Block Parameter: action
Type: character vector
Values: 'None' | 'Warning' | 'Error'
Default: 'Warning'

Version History
Introduced in R2007b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
CIRA-86 Atmosphere Model | COESA Atmosphere Model | ISA Atmosphere Model

External Websites
https://ccmc.gsfc.nasa.gov/
ftp://ftp.ngdc.noaa.gov/STP/GEOMAGNETIC_DATA/INDICES/KP_AP/kp_ap.fmt
ftp://ftp.ngdc.noaa.gov/STP/space-weather/solar-data/solar-features/solar-radio/noontime-flux/
penticton/
ftp://ftp.ngdc.noaa.gov/STP/GEOMAGNETIC_DATA/INDICES/KP_AP/
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Orbit Propagator
Propagate orbit of one or more spacecraft
Library: Aerospace Blockset / Spacecraft / Spacecraft Dynamics

Description
The Orbit Propagator block propagates the orbit of one or more spacecraft by a propagation method.
The library contains two versions of the Orbit Propagator block preconfigured for these propagation
methods:

• Kepler (unperturbed) — Kepler universal variable formulation (quicker)
• Numerical (high precision) — More accurate

The size of the provided initial conditions determines the number of spacecraft being modeled. If you
supply more than one value for a parameter in the Orbit tab, the block outputs a constellation of
satellites. Any parameter with a single provided value is expanded and applied to all the satellites in
the constellation. For example, if you provide a single value for all the parameters on the block except
True anomaly, which contains six values, the block creates a constellation of six satellites, varying
true anomaly only.

The block applies the same expansion behavior to input port A_icrf (applied acceleration). This port
accepts either a single value expanded to all spacecraft being modeled, or individual values to apply
to each spacecraft.

For more information on the propagation methods the Orbit Propagator block uses, see “Orbit
Propagation Methods” on page 5-578.

You can define initial orbital states in the Orbit tab as:

• A set of orbital elements
• Position and velocity state vectors in International Celestial Reference Frame (ICRF) or fixed-
frame coordinate systems.

The block uses quaternions, which are defined using the scalar-first convention.

For more information on the coordinate systems the Orbit Propagator block uses, see “Coordinate
Systems” on page 5-578.

To help model the drag on spacecraft for high precision orbit propagation, the Orbit Propagator block
supports atmospheric drag. Atmospheric drag affects spacecraft flying at low Earth orbit (LEO); it is
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less relevant further away from Earth. For the atmospheric drag equation, see “Atmospheric Drag” on
page 5-583.

Ports
Input

Aicrf — Applied acceleration
3-element vector | m-3 array

Acceleration applied to the spacecraft with respect to the port coordinate system (ICRF or fixed-
frame), specified as a 3-element vector or m-by-3 array, at the current time step.

Dependencies

To enable this port:

• Set Propagation method to Numerical (high precision).
• Select the Input external accelerations check box.

Data Types: double

φθψ — Moon libration angles
3-element vector

Moon libration angles for transformation between the ICRF and Moon-centric fixed-frame using the
Moon-centric Principal Axis (PA) system, specified as a 3-element vector. To get these values, use the
Moon Libration block.

Note The fixed-frame used by this block when Central body is set to Moon is the Mean Earth/pole
axis (ME) system. For more information, see “Algorithms” on page 5-578.

Dependencies

To enable this port:

• Set Propagation method to Numerical (high precision).
• Set Central body to Moon.
• Select the Input Moon libration angles check box.

Data Types: double

αδW — Right ascension, declination, and rotation angle
3-element vector

Central body spin axis instantaneous right ascension, declination, and rotation angle, specified as a 3-
element vector. This port is available only for custom central bodies.

Dependencies

To enable this port:

• Set Propagation method to Numerical (high precision).

 Orbit Propagator

5-549



• Set Central body to Custom.
• Set Central body spin axis source to Port.

Data Types: double

m — Spacecraft mass used by atmospheric drag calculation
scalar | vector of size numSat

Spacecraft mass used by atmospheric drag calculation, specified as scalar or vector of size numSat.
numSat is the number of spacecraft.

Dependencies

To enable this port:

• Set the Propagation method parameter to Numerical (high precision).
• Set the Central Body parameter to Earth.
• Select the Include atmospheric drag check box.
• Set the Mass source parameter to Dialog.

Data Types: double

ρ — Atmospheric density
scalar

Atmospheric density to calculate acceleration due to atmospheric drag.

Dependencies

To enable this port:

• Set the Propagation method parameter to Numerical (high precision).
• Set the Central Body parameter to Earth.
• Select the Include atmospheric drag check box.
• Set the Atmospheric density source parameter to Port.

Data Types: double

F107a — 81-day average Ottawa F10.7 cm solar flux
scalar

81-day average Ottawa F10.7 cm solar flux, centered on the current day specified in Start date/time.
These F107 Average values correspond to the 10.7 cm radio flux at the actual distance of the Earth
from the Sun. This site provides both classes of values:

https://www.ngdc.noaa.gov/stp/space-weather/solar-data/solar-features/solar-radio/noontime-flux/
penticton/

Dependencies

To enable this port:

• Set the Propagation method parameter to Numerical (high precision).
• Set the Central Body parameter to Earth.
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• Select the Include atmospheric drag check box.
• Set the Atmospheric density source parameter to Dialog.

Data Types: double

F107 — Daily Ottawa F10.7 cm solar flux
scalar

Daily Ottawa F10.7 cm solar flux, centered on the current day specified in Start date/time. The
f107Daily values do not correspond to the radio flux at 1 AU. This site provides both classes of values:

https://www.ngdc.noaa.gov/stp/space-weather/solar-data/solar-features/solar-radio/noontime-flux/
penticton/
Dependencies

To enable this port:

• Set the Propagation method parameter to Numerical (high precision).
• Set the Central Body parameter to Earth.
• Select the Include atmospheric drag check box.
• Set the Atmospheric density source parameter to Dialog.

Data Types: double

aph — Daily magnetic index information
N-by-7 array

Daily magnetic index information (aph), specified as an N-by-7 array. The magnetic index information
consists of:
Daily magnetic index (AP)
3 hour AP for current time
3 hour AP for 3 hours before current time
3 hour AP for 6 hours before current time
3 hour AP for 9 hours before current time
Average of eight 3 hour AP indices from 12 to 33 hours before current time
Average of eight 3 hour AP indices from 36 to 57 hours before current time

The effects of daily magnetic index are not large or established below 80,000 m. For more
information, see Limitations on NRLMSISE-00 Atmosphere Model.
Dependencies

To enable this port:

• Set the Propagation method parameter to Numerical (high precision).
• Set the Central Body parameter to Earth.
• Select the Include atmospheric drag check box.
• Set the Atmospheric density source parameter to Dialog.

Data Types: double

Flags — Variation flags
array of 23
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Variation flags, specified as an array of 23, to enable or disable particular variations for the outputs.
You can specify one of the following values for a field. The default value for each field is 1.

• 0.0

Removes the value effect on the output.
• 1.0

Applies the main and the cross-term effects of that value on the output.
• 2.0

Applies only the cross-term effect of that value on the output.

Field Description
Flags(1) F10.7 effect on mean
Flags(2) Independent of time
Flags(3) Symmetrical annual
Flags(4) Symmetrical semiannual
Flags(5) Asymmetrical annual
Flags(6) Asymmetrical semiannual
Flags(7) Diurnal
Flags(8) Semidiurnal
Flags(9) Daily AP. If you set this field to -1, the block uses the entire matrix of magnetic

index information (APH) instead of APH(:,1)
Flags(10) All UT, longitudinal effects
Flags(11) Longitudinal
Flags(12) UT and mixed UT, longitudinal
Flags(13) Mixed AP, UT, longitudinal
Flags(14) Terdiurnal
Flags(15) Departures from diffusive equilibrium
Flags(16) All exospheric temperature variations
Flags(17) All variations from 120,000 meter temperature (TLB)
Flags(18) All lower thermosphere (TN1) temperature variations
Flags(19) All 120,000 meter gradient (S) variations
Flags(20) All upper stratosphere (TN2) temperature variations
Flags(21) All variations from 120,000 meter values (ZLB)
Flags(22) All lower mesosphere temperature (TN3) variations
Flags(23) Turbopause scale height variations

Dependencies

To enable this port:

• Set the Propagation method parameter to Numerical (high precision).
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• Set the Central Body parameter to Earth.
• Select the Include atmospheric drag check box.
• Set the Atmospheric density source parameter to Dialog.
• Set the Flags source parameter to Port.

Data Types: double

Cd — Atmospheric drag coefficient
scalar | vector of size numSat

Atmospheric drag coefficient, specified as a scalar or vector of size numSat.

Dependencies

To enable this port:

• Set the Propagation method parameter to Numerical (high precision).
• Set the Central Body parameter to Earth.
• Select the Include atmospheric drag check box.
• Set the Drag coefficient source parameter to Port.

Data Types: double

Ad — Atmospheric drag area
scalar | vector of size numSat

Atmospheric drag area, specified as a scalar or vector of size numSat.

Dependencies

To enable this port:

• Set the Propagation method parameter to Numerical (high precision).
• Set the Central Body parameter to Earth.
• Select the Include atmospheric drag check box.
• Set the Drag area source parameter to Port.

Data Types: double

Output

Xicrf — Position of spacecraft
3-element vector | numSat-by-3

Position of the spacecraft with respect to (ICRF or fixed-frame), returned as a 3-element vector or
numSat-by-3 array, where m is number of spacecraft, at the current time step. The size of the initial
conditions provided in the Orbit tab control the port dimension. numSat is the number of spacecraft.
Data Types: double

Vicrf — Velocity
3-element vector | numSat-by-3 array
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Velocity of the spacecraft with respect to ICRF or fixed-frame, returned as a 3-element vector or
numSat-by-3 array, at the current time step. numSat-by-3 array. The size of the initial conditions
provided in the Orbit tab control the port dimension.
Data Types: double

qicrf2ff — Transformation
4-element quaternion (scalar first)

Transformation between the ICRF coordinate system and fixed-frame, returned as a 4-element vector
(scalar first), at the current time step.

Dependencies

To enable this port:

• Set Propagation method to Numerical (high precision).
• Select the Output quaternion (ICRF to Fixed-frame) check box.

Data Types: double

tutc — Time at current time step
scalar | 6-element vector

Time at current time step, returned as a:

• scalar — If you specify the Start data/time parameter as a Julian date.
• 6-element vector — If you specify the Start data/time parameter as a Gregorian date with six

elements (year, month, day, hours, minutes, seconds).

This value is equal to the Start date/time parameter value + the elapsed simulation time.

Dependencies

To enable this parameter, select the Output current date/time (UTC Julian date) check box.
Data Types: double

Parameters
Main

Propagation method — Orbit propagation method

Kepler (unperturbed) | Numerical (high precision)

Orbit propagation method, specified as:

• Kepler (unperturbed) — Uses a universal variable formulation of the Kepler problem to
determine the spacecraft position and velocity at each time step. This method is faster than
Numerical (high precision).

• Numerical (high precision) — Determine the spacecraft position and velocity at each time
step using numerical integration. This option models central body gravity based on the settings in
the Central body tab. This method is more accurate than Kepler (unperturbed), but slower.
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Programmatic Use
Block Parameter: propagator
Type: character vector
Values: 'Kepler (unperturbed)' | 'Numerical (high precision)'
Default: 'Kepler (unperturbed)'

Input external accelerations — Input additional accelerations

off (default) | on

To enable additional external accelerations to be included in the integration of the spacecraft
equations of motion, select this check box. Otherwise, clear this check box.

Dependencies

To enable this check box, set Propagation method to Numerical (high precision).

Programmatic Use
Block Parameter: accelIn
Type: character vector
Values: 'off' | 'on'
Default: 'off'

External acceleration coordinate frame — Frame for additional accelerations

ICRF (default) | Fixed-frame

Input additional accelerations, specified as ICRF or Fixed-frame. These accelerations are included
in integration of the spacecraft equations of motion.

Dependencies

To enable this parameter:

• Set Propagation method to Numerical (high precision)
• Select the Input external accelerations check box

Programmatic Use
Block Parameter: accelFrame
Type: character vector
Values: 'ICRF' | 'Fixed-frame'
Default: 'ICRF'

State vector output coordinate frame — Port coordinate frame

ICRF (default) | Fixed-frame

Coordinate frame for output ports, specified as ICRF or Fixed-frame. These port labels are
affected:

• Output port X
• Output port V

Dependencies

To enable this parameter, set Propagation method to Numerical (high precision).
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Programmatic Use
Block Parameter: outportFrame
Type: character vector
Values: 'ICRF' | 'Fixed-frame'
Default: 'ICRF'

Start date/time (UTC Julian date) — Initial start time for simulation

juliandate (2020, 1, 1, 12, 0, 0) (default) | valid scalar Julian date | valid Gregorian date
including year, month, day, hours, minutes, seconds as 6-element vector

Initial start date and time of simulation, specified as a Julian or Gregorian date. The block defines
initial conditions using this value.

Tip To calculate the Julian date, use the juliandate function.

Programmatic Use
Block Parameter: startDate
Type: character vector
Values: 'juliandate(2020, 1, 1, 12, 0, 0)' | valid scalar Julian date | valid Gregorian date
including year, month, day, hours, minutes, seconds as 6-element vector
Default: 'juliandate(2020, 1, 1, 12, 0, 0)'

Output current date/time (UTC Julian date) — Add output port tutc

on (default) | off

To output the current date or time, select this check box. Otherwise, clear this check box.

Programmatic Use
Block Parameter: dateOut
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Mass source — Mass source

Dialog (default) | Port

Mass source, specified as Dialog or Port.

Dependencies

To enable this parameter:

• Set the Propagation method parameter to Numerical (high precision).
• Set the Central Body parameter to Earth.
• Select the Include atmospheric drag check box.

Programmatic Use
Block Parameter: massSrc
Type: character vector
Values: 'Dialog' | 'Port'
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Default: 'Dialog'

Mass — Spacecraft mass used by atmospheric drag calculation

4.0 (default) | scalar | vector of size numSat

Spacecraft mass used by atmospheric drag calculation, specified as scalar or vector of size numSat.
numSat is the number of spacecraft.

Dependencies

To enable this parameter:

• Set the Propagation method parameter to Numerical (high precision).
• Set the Central Body parameter to Earth.
• Select the Include atmospheric drag check box.
• Set the Mass source to Dialog.

Programmatic Use
Block Parameter: mass
Type: character vector
Values: scalar | vector of size numSat
Default: '4.0'

Action for out-of-range input — Out-of-range block behavior

Warning (default) | Error | None

Out-of-range block behavior, specified as follows:

Action Description
None No action.
Warning Warning displays in the MATLAB Command Window. Model

simulation continues.
Error (default) MATLAB returns an exception. Model simulation stops.

Programmatic Use
Block Parameter: action
Type: character vector
Values: 'None' | 'Warning' | 'Error'
Default: 'Warning'

Orbit

Define the initial states of the space craft.

Initial state format — Input method for initial states of orbit

Orbital elements (default) | ICRF state vector | Fixed-frame state vector

Input method for initial states of orbit, specified as Orbital elements, ICRF state vector, or
Fixed-frame state vector.
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Dependencies

Available options are based on Propagation method settings:

Kepler (unperturbed) Numerical (high precision)
Orbital elements Orbital elements
ICRF state vector ICRF state vector
— Fixed-frame state vector

Programmatic Use
Block Parameter stateFormatKep when propagator is set to Kepler (unperturbed),
stateFormatNum when propagator is set to Numerical (high precision)
Type: character vector
Values: 'Orbital elements' | 'ICRF state vector' when propagator is set to 'Kepler
(unperturbed)' | 'Orbital elements' | 'ICRF state vector' | 'Fixed-frame state'
when propagator is set to 'Numerical (high precision)'
Default: 'Orbital elements'

Orbit Type — Orbit classification

Keplerian (default) | Elliptical equatorial | Circular | Circular equatorial

Orbit classification, specified as:

• Keplerian — Model elliptical orbits using six standard Keplerian orbital elements.
• Elliptical equatorial — Define an equatorial orbit, where inclination is 0 or 180 degrees

and the right ascension of the ascending node is undefined.
• Circular — Define a circular orbit, where eccentricity is 0 and the argument of periapsis is
undefined.

• Circular equatorial — Define a circular orbit, where eccentricity is 0 or 10 degrees.
Argument of periapsis and the right ascension of the ascending node are undefined.

Dependencies

To enable this parameter, set Initial state format to Orbital elements.
Programmatic Use
Block Parameter: orbitType
Type: character vector
Values: 'Keplerian' | 'Elliptical equatorial' | 'Circular inclined' | 'Circular
equatorial'
Default: 'Keplerian'

Semi-major axis — Half of major axis of ellipse

6786000 (default) | 1D array of size numSat

Half of ellipsis major axis, specified as a 1D array whose size is the number of spacecraft.

• For parabolic orbits, this block interprets this parameter as the periapsis radius (distance from
periapsis to the focus point of orbit).

• For hyperbolic orbits, this block interprets this parameter as the distance from periapsis to the
hyperbola center.
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Dependencies

To enable this parameter, set Initial state format to Orbital elements.

Programmatic Use
Block Parameter: semiMajorAxis
Type: character vector
Values: scalar | 1D array of size m, number of spacecraft
Default: '6786000'

Eccentricity — Deviation of orbit

0.01 (default) | scalar | value between 0 and 1, or greater than 1 for Keplerian orbit type | 1D array of
size numSat

Deviation of the orbit from a perfect circle, specified as a scalar or 1D array of size that is number of
spacecraft.

If Orbit type is set to Keplerian, value can be:

• 0 for circular orbit
• Between 0 and 1 for elliptical orbit
• 1 for parabolic orbit
• Greater than 1 for hyperbolic orbit

Dependencies

To enable this parameter, set:

• Initial state format to Orbital elements.
• Orbit type to Keplerian or Elliptical equatorial.

Programmatic Use
Block Parameter: eccentricity
Type: character vector
Values: 0.01 | scalar | value between 0 and 1, or greater than 1 for Keplerian orbit type | 1D array of
size numSat
Default: '0.01'

Inclination (deg) — Tilt angle of orbital plane

50 (default) | scalar | 1D array of size numSat | degrees between 0 and 180 | radians between 0 and
pi

Vertical tilt of the ellipse with respect to the reference plane measured at the ascending node,
specified as a scalar or 1D array of size numSat, in specified units. numSat is the number of
spacecraft.

Dependencies

To enable this parameter, set:

• Initial state format to Orbital elements
• Orbit type to Keplerian or Circular inclined
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Programmatic Use
Block Parameter: inclination
Type: character vector
Values: 50 | scalar | 1D array of size numSat | degrees between 0 and 180 | radians between 0 and pi
Default: '50'

RAAN (deg) — Angular distance in equatorial plane

95 (default) | scalar value between 0 and 360 | 1D array of size numSat

Right ascension of ascending node (RAAN), specified as a scalar value between 0 and 360 or 1D array
of size numSat, in specified units. numSat is the number of spacecraft. RAAN is the angular distance
along the reference plane from the ICRF x-axis to the location of the ascending node (the point at
which the spacecraft crosses the reference plane from south to north).

Dependencies

To enable this parameter, set:

• Initial state format to Orbital elements.
• Orbit type to Keplerian or Circular inclined.

Programmatic Use
Block Parameter: raan
Type: character vector
Values: 95 | scalar value between 0 and 360 | 1D array of size m number of spacecraft
Default: '95'

Argument of periapsis (deg) — Angle from spacecraft ascending node to periapsis

93 (default) | degrees between 0 and 360 | radians between 0 and 2*pi | 1D array of size m, number
of spacecraft

Angle from the spacecraft ascending node to periapsis (closest point of orbit to the central body),
specified as a 1D array of size m that is number of spacecraft, in specified units.

Dependencies

To enable this parameter, set:

• Initial state format to Orbital elements
• Orbit type to Keplerian

Programmatic Use
Block Parameter: argPeriapsis
Type: character vector
Values: '95' | scalar value between 0 and 360 | 1D array of size numSat
Default: '93'

True anomaly — Angle between periapsis and initial position of spacecraft

203 (default) | scalar | degrees between 0 and 360 | radians between 0 and 2*pi | 1D array of size
numSat
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Angle between periapsis (closest point of orbit to the central body) and the initial position of
spacecraft along its orbit at Start date/time, specified as a scalar or 1D array of size numSat, in
specified units. numSat is the number of spacecraft.

Dependencies

To enable this parameter, set:

• Initial state format to Orbital elements.
• Orbit type to Keplerian or Elliptical inclined.

Programmatic Use
Block Parameter: trueAnomaly
Type: character vector
Values: '203' | scalar | degrees between 0 and 360 | radians between 0 and 2*pi | 1D array of size
numSat
Default: '203'

Argument of latitude (deg) — Angle between ascending node and initial position of
spacecraft

200 (default) | scalar | degrees between 0 and 360 | radians between 0 and 2*pi | 1D array of size
numSat

Angle between the ascending node and the initial position of spacecraft along its orbit at Start date/
time, specified as a scalar or 3-element vector or 1D array of size number of spacecraft, in specified
units.

Dependencies

To enable this parameter, set:

• Initial state format to Orbital elements.
• Orbit Type to Circular inclined.

Programmatic Use
Block Parameter: argLat
Type: character vector
Values: '200' | scalar | degrees between 0 and 360 | radians between 0 and 2*pi | 1D array of size
numSat
Default: '200'

Longitude of periapsis (deg) — Angle between ICRF x-axis and eccentricity vector

100 (default) | scalar | degrees between 0 and 360 | radians between 0 and 2*pi | 1D array of size
numSat

Angle between the ICRF x-axis and the eccentricity vector, specified as a scalar or 3-element vector
or 1D array of size number of spacecraft, in specified units.

Dependencies

To enable this parameter, set:

• Initial state format to Orbital elements.
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• Orbit type to Elliptical equatorial.

Programmatic Use
Block Parameter: lonPeriapsis
Type: character vector
Values: 100 | scalar | degrees between 0 and 360 | radians between 0 and 2*pi | 1D array of size m,
number of spacecraft
Default: '100'

True longitude (deg) — Angle between ICRF x-axis and initial position of spacecraft

150 (default) | scalar | degrees between 0 and 360 | radians between 0 and 2*pi | 1D array of size
numSat

Angle between the ICRF x-axis and the initial position of spacecraft along its orbit at Start date/
time, specified as a scalar or 1D array of size numSat, in specified units. numSat is the number of
spacecraft.

Dependencies

To enable this parameter, set:

• Initial state format to Orbital elements.
• Orbit type to Circular equatorial.

Programmatic Use
Block Parameter: trueLon
Type: character vector
Values: '150' | scalar | degrees between 0 and 360 | radians between 0 and 2*pi | 1D array of size
numSat
Default: '150'

ICRF position — Cartesian position vector of spacecraft

[3649700.0 3308200.0 -4676600.0] (default) | 3-element vector | | numSat-by-3 array

Cartesian position vector of spacecraft in ICRF coordinate system at Start date/time, specified as a
3-element vector for single spacecraft or numSat-by-3 array for multiple spacecraft. numSat is the
number of spacecraft.

Dependencies

To enable this parameter, set Initial state format to ICRF state vector.

Programmatic Use
Block Parameter: inertialPosition
Type: character vector
Values: [3649700.0 3308200.0 -4676600.0] | 3-element vector for single spacecraft or 2-D
array of size m-by-3 array of multiple spacecraft
Default: '[3649700.0 3308200.0 -4676600.0]'

ICRF velocity — Cartesian velocity vector of spacecraft

[-2750.8 6666.4 2573.4] (default) | 3-element vector for single spacecraft or 2-D array of size
m-by-3 array of multiple spacecraft
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Cartesian velocity vector of spacecraft in ICRF coordinate system at Start date/time, specified as a
3-element vector for single spacecraft or 2-D array of size m-by-3 array of multiple spacecraft.

Dependencies

To enable this parameter, set Initial state format to ICRF state vector.

Programmatic Use
Block Parameter: inertialVelocity
Type: character vector
Values: [-2750.8 6666.4 2573.4] | 3-element vector for single spacecraft or 2-D array of size m-
by-3 array of multiple spacecraft
Default: '[-2750.8 6666.4 2573.4]'

Fixed-frame position — Position vector of spacecraft

[-4142689.0 -2676864.7 -4669861.6] (default) | 3-element vector for single spacecraft or 2-D array of
size m-by-3 array of multiple spacecraft

Cartesian position vector of spacecraft in fixed-frame coordinate system at Start date/time, specified
as a 3-element vector for single spacecraft or 2-D array of size m-by-3 array of multiple spacecraft.

Dependencies

To enable this parameter, set:

• Propagation method to Numerical (high precision).
• set Initial state format to Fixed-frame state vector.

Programmatic Use
Block Parameter: fixedPosition
Type: character vector
Values: '[-4142689.0 -2676864.7 -4669861.6]' | 3-element vector for single spacecraft or 2-
D array of size m-by-3 array of multiple spacecraft
Default: '[-2750.8 6666.4 2573.4]'

Fixed-frame velocity — Velocity vector of spacecraft

[1452.7 -6720.7 2568.1] (default) | 3-element vector for single spacecraft or 2-D array of size m-by-3
array of multiple spacecraft

Cartesian velocity vector of spacecraft in fixed-frame coordinate system at Start date/time, specified
as a 3-element vector for single spacecraft or 2-D array of size m-by-3 array of multiple spacecraft.

Dependencies

To enable this parameter, set:

• Propagation method to Numerical (high precision).
• Initial state format to Fixed-frame state vector.

Programmatic Use
Block Parameter: fixedVelocity
Type: character vector
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Values: '[1452.7 -6720.7 2568.1]' | 3-element vector for single spacecraft or 2-D array of size
m-by-3 array of multiple spacecraft
Default: '[1452.7 -6720.7 2568.1]'

Central Body

Central body — Celestial body around which spacecraft orbits

Earth (default) | Moon | Mercury | Venus | Mars | Jupiter | Saturn | Uranus | Neptune | Custom

Celestial body, specified as Earth, Moon, Mercury, Venus, Mars, Jupiter, Saturn, Uranus,
Neptune, or Custom, around which the spacecraft defined in the Orbit tab orbits.

Programmatic Use
Block Parameter: centralBody
Type: character vector
Values: 'Earth' | 'Moon' |'Mercury' | 'Venus' | 'Mars' | 'Jupiter' | 'Saturn' | 'Uranus' |
'Neptune' | 'Custom' |
Default: 'Earth'

Gravitational potential model — Control gravity model for central body

Spherical harmonics when Central body set to Earth, Moon, Mars, or Custom, Oblate ellipsoid
when Central body set to Mercury, Venus, Jupiter, Saturn, Uranus, or Neptune (default) | None
| Point-mass | Oblate ellipsoid (J2)

Control the gravity model for the central body, specified as Spherical harmonics, Point-mass, or
Oblate ellipsoid (J2).

Dependencies

To enable this parameter, set Propagation method to Numerical (high precision). Available
options are based on Central body settings:

Earth, Moon, Mars, or Custom Mercury, Venus, Jupiter, Saturn, Uranus, or
Neptune

None None
Spherical harmonics Oblate ellipsoid (J2)
Point-mass Point-mass
Oblate ellipsoid (J2) —

Programmatic Use
Block Parameter: gravityModel when centralBody set to 'Earth', 'Moon', 'Mars', or
'Custom' | gravityModelnoSH when centralBody set to Mercury, Venus, Jupiter, Saturn,
Uranus, or Neptune
Type: character vector
Values: 'Spherical harmonics' | 'None' | 'Point-mass' | 'Oblate ellipsoid (J2)' when
centralBody set to 'Earth', 'Moon', 'Mars', or 'Custom'; 'Point-mass' | 'Oblate
ellipsoid (J2)' when centralBody set to Mercury, Venus, Jupiter, Saturn, Uranus, or
Neptune
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Default: 'Spherical harmonics' when centralBody set to 'Earth', 'Moon', 'Mars', or
'Custom'; 'Oblate ellipsoid (J2)' when centralBody set to Mercury, Venus, Jupiter,
Saturn, Uranus, or Neptune

Spherical harmonic model — Spherical harmonic model

EGM2008 for Central body set to Earth, LP-100K for Central body set to Moon, GMM2B for Central
body set to Mars, (default) | EGM96 | EIGEN-GL04C | LP-165P

Spherical harmonic gravitational potential model, specified according to the specified Central body.
Dependencies

To enable this parameter, set Propagation method to Numerical (high precision). Available
options are based on Central body settings:

Central body Spherical Harmonic Model Option
Earth EGM2008, EGM96, or EIGEN-GL04C
Moon LP-100K or LP-165P
Mars GMM2B

Programmatic Use
Block Parameter: 'earthSH' when centralBody set to 'Earth' | 'moonSH' when
centralBody set to 'Moon' | 'marsSH' when centralBody set to 'Mars'
Type: character vector
Values: 'EGM2008' | 'EGM96' | 'EIGEN-GL04C' when centralBody set to 'earthSH';
'LP-100K' | 'LP-165P' when centralBody set to 'moonSH'; 'GMM2B' when centralBody set to
'marsSH'
Default: 'Spherical harmonics'

Spherical harmonic coefficient file — Harmonic coefficient MAT-file

aerogmm2b.mat (default) | harmonic coefficient MAT-file

Harmonic coefficient MAT-file that contains definitions for a custom planetary model, specified as a
character vector or string.

This file must contain:

Variable Description
Re Scalar of planet equatorial radius in meters (m).
GM Scalar of planetary gravitational parameter in meters cubed per second squared

(m3/s2).
degree Scalar of maximum degree.
C (degree+1)-by-(degree+1) matrix containing normalized spherical harmonic

coefficients matrix, C.
S (degree+1)-by-(degree+1) matrix containing normalized spherical harmonic

coefficients matrix, S.

Dependencies

To enable this parameter, set:
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• Propagation method to Numerical (high precision).
• Central body to Custom.
• Gravitational potential model to Spherical harmonics.

Programmatic Use
Block Parameter: shFile
Type: character vector
Values: 'aerogmm2b.mat' | harmonic coefficient MAT-file
Default: 'aerogmm2b.mat'

Degree — Degree of harmonic model

120 (default) | scalar | maximum of 2159

Degree of harmonic model, specified as a double scalar:

Planet
Model

Recommended Degree Maximum Degree

EGM2008 120 2159
EGM96 70 360
LP100K 60 100
LP165P 60 165
GMM2B 60 80
EIGENGL04C 70 360

Dependencies

To enable this parameter, set:

• Propagation method to Numerical (high precision).
• Central body to Earth, Moon, Mars, or Custom.
• Gravitational potential model to Spherical harmonics.

Programmatic Use
Block Parameter: shDegree
Type: character vector
Values: '80' | scalar
Default: '80'

Use Earth orientation parameters (EOPs) — Use Earth orientation parameters

on (default) | off

Select this check box to use Earth orientation parameters for the transformation between the ICRF
and fixed-frame coordinate systems. Otherwise, clear this check box.

Dependencies

To enable this parameter, set:

• Propagation method to Numerical (high precision).
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• Central body to Earth.

Programmatic Use
Block Parameter: useEOPs
Type: character vector
Values: 'on' | 'off'
Default: 'on'

IERS EOP data file — Earth orientation data

aeroiersdata.mat (default) | MAT-file

Custom list of Earth orientation data, specified in a MAT-file.

Dependencies

To enable this parameter:

• Select the Use Earth orientation parameters (EOPs) to check box.
• Set Propagation method to Numerical (high precision).
• Set Central body to Earth.

Programmatic Use
Block Parameter: eopFile
Type: character vector
Values: 'aeroiersdata.mat' | MAT-file
Default: 'aeroiersdata.mat'

Input Moon libration angles — Moon libration angle rate

off (default) | on

To specify libration angles (φ θ ψ) for Moon orientation, select this check box.

Dependencies

To enable this parameter, set:

• Propagation method to Numerical (high precision).
• Central body to Moon.

Programmatic Use
Block Parameter: useMoonLib
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Output quaternion (ICRF to Fixed-frame) — Add output transformation quaternion
port

off (default) | on

To add output transformation quaternion port for the quaternion transformation from the ICRF to the
Fixed-frame coordinate system, select this check box.
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Dependencies

To enable this check box, set Propagation method to Numerical (high precision).

Programmatic Use
Block Parameter: outputTransform
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Central body spin axis source — Central body spin source

Port (default) | Dialog

Central body spin axis, specified as Port or Dialog. The block uses the spin axis to calculate the
transformation from the ICRF to the fixed-frame coordinate system for the custom central body.

Dependencies

To enable this parameter, set:

• Propagation method to Numerical (high precision).
• Central body to Custom.

Programmatic Use
Block Parameter: cbPoleSrc
Type: character vector
Values: 'Port' | 'Dialog'
Default: 'Port'

Spin axis right ascension (RA) at J2000 (deg) — Right ascension of central body
spin axis at J2000

317.68143 (default) | double scalar

Right ascension of central body spin axis at J2000 (2451545.0 JD, 2000 Jan 1 12:00:00 TT), specified
as a double scalar.

Dependencies

To enable this parameter, set:

• Propagation method to Numerical (high precision).
• Central body to Custom.
• Central body spin axis source to Dialog.

Programmatic Use
Block Parameter: cbRA
Type: character vector
Values: '317.68143' | double scalar
Default: '317.68143'

Spin axis RA rate (deg/century) — Right ascension rate of central body spin axis

-0.1061 (default) | double scalar
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Right ascension rate of the central body spin axis, specified as a double scalar, in specified angle
units/century.

Dependencies

To enable this parameter, set:

• Propagation method to Numerical (high precision).
• Central body to Custom.
• Central body spin axis source to Dialog.

Programmatic Use
Block Parameter: cbRARate
Type: character vector
Values: '-0.1061' | double scalar
Default: '-0.1061'

Spin axis declination (Dec) at J2000 (deg) — Declination of central body spin axis at
J2000

52.88650 (default) | double scalar

Declination of the central body spin axis at J2000 (2451545.0 JD, 2000 Jan 1 12:00:00 TT), specified
as a double scalar.

Dependencies

To enable this parameter, set:

• Propagation method to Numerical (high precision).
• Central body to Custom.
• Central body spin axis source to Dialog.

Programmatic Use
Block Parameter: cbDec
Type: character vector
Values: '52.88650' | double scalar
Default: '52.88650'

Spin axis Dec rate (deg/century) — Declination rate of central body spin axis

-0.0609 (default) | double scalar

Declination rate of the central body spin axis, specified as a double scalar, in specified angle units/
century.

Dependencies

To enable this parameter, set:

• Propagation method to Numerical (high precision).
• Central body to Custom.
• Central body spin axis source to Dialog.
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Programmatic Use
Block Parameter: cbDecRate
Type: character vector
Values: '-0.0609' | double scalar
Default: '-0.0609'

Initial rotation angle at J2000 (deg) — Rotation angle of central body x-axis

176.630 (default) | double scalar

Rotation angle of the central body x axis with respect to the ICRF x-axis at J2000 (2451545.0 JD, 2000
Jan 1 12:00:00 TT), specified as a double scalar, in specified angle units.

Dependencies

To enable this parameter, set:

• Propagation method to Numerical (high precision).
• Central body to Custom.
• Central body spin axis source to Dialog.

Programmatic Use
Block Parameter: cbRotAngle
Type: character vector
Values: '176.630' | double scalar
Default: '176.630'

Rotation rate (deg/day) — Rotation rate of central body x-axis

350.89198226 (default) | double scalar

Rotation rate of the central body x axis with respect to the ICRF x-axis (2451545.0 JD, 2000 Jan 1
12:00:00 UTC), specified as a double scalar, specified angle units/day.

Dependencies

To enable this parameter, set:

• Propagation method to Numerical (high precision).
• Central body to Custom.
• Central body spin axis source to Dialog.

Programmatic Use
Block Parameter: cbRotRate
Type: character vector
Values: '350.89198226' | double scalar
Default: '350.89198226'

Equatorial radius — Equatorial radius

3396200 (default) | double scalar

Equatorial radius for a custom central body, specified as a double scalar.
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Dependencies

To enable this parameter, set:

• Propagation method to Numerical (high precision).
• Gravitational potential model to None, Point-mass, or Oblate ellipsoid (J2).

Programmatic Use
Block Parameter: customR
Type: character vector
Values: '3396200' | double scalar
Default: '3396200'

Flattening — Flattening ratio

0.00589 (default) | double scalar

Flattening ratio for custom central body, specified as a double scalar.

Dependencies

To enable this parameter, set:

• Central body to Custom.
• Gravitational potential model to Point-mass, Oblate ellipsoid (J2), or Spherical

harmonics.

Programmatic Use
Block Parameter: customF
Type: character vector
Values: '0.00589' | double scalar
Default: '0.00589'

Gravitational parameter — Gravitational parameter

4.305e13 (default) | double scalar

Gravitational parameter for a custom central body, specified as a double scalar.

Dependencies

To enable this parameter, set:

• Central body to Custom.
• Gravitational potential model to None, Point-mass, or Oblate ellipsoid (J2).

Programmatic Use
Block Parameter: customMu
Type: character vector
Values: '4.305e13' | double scalar
Default: '4.305e13'

Second degree zonal harmonic (J2) — Most significant or largest spherical harmonic
term
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1.0826269e-03 (default) | double scalar

Most significant or largest spherical harmonic term, which accounts for oblateness of a celestial body,
specified as a double scalar.

Dependencies

To enable this parameter, set:

• Propagation method to Numerical (high precision).
• Central body to Custom.
• Gravitational potential model to Oblate ellipsoid (J2).

Programmatic Use
Block Parameter: customJ2
Type: character vector
Values: '1.0826269e-03' | double scalar
Default: '1.0826269e-03'

Drag

Include atmospheric drag — Option to include atmospheric drag

off (default) | on

To include atmospheric drag, select this check box.

Dependencies

To enable this parameter:

• Set the Propagation method parameter to Numerical (high precision).
• Set the Central Body parameter to Earth.

Programmatic Use
Block Parameter: useDrag
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Atmospheric density source — Source of atmospheric density value

Dialog (default) | Port

Source of atmospheric density value, specified as Dialog or Port.

Dependencies

To enable this parameter:

• Set the Propagation method parameter to Numerical (high precision).
• Set the Central Body parameter to Earth.
• Select the Include atmospheric drag check box.
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Programmatic Use
Block Parameter: atmosSrc
Type: character vector
Values: 'Dialog' | 'Port'
Default: 'Dialog'

Atmospheric model — Atmospheric model

NRLMSISE-00 (default)

Atmospheric model for atmospheric drag calculation, specified as NRLMSISE-00.

Dependencies

To enable this parameter:

• Set the Propagation method parameter to Numerical (high precision).
• Set the Central Body parameter to Earth.
• Select the Include atmospheric drag check box.
• Set the Atmospheric density source parameter to Dialog.

Programmatic Use
Block Parameter: atmosModel
Type: character vector
Values: 'NRLMSISE-00'
Default: 'NRLMSISE-00'

Flags source — Variation flag source

Dialog (default) | Port

Variation flag source, specified as Dialog or Port.

Dependencies

To enable this parameter:

• Set the Propagation method parameter to Numerical (high precision).
• Set the Central Body parameter to Earth.
• Select the Include atmospheric drag check box.

Programmatic Use
Block Parameter: fluxFlagsSrc
Type: character vector
Values: 'Dialog' | 'Port'
Default: 'Dialog'

Flags — Variation flags

ones(1,23) (default)

Variation flags, specified as an array of 23 (ones(1,23)). You can specify one of the following values
for a field. The default value for each field is 1.
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• 0.0 — Removes the effect on the output.
• 1.0 — Applies the main and the cross-term effects of that value on the output.
• 2.0 — Applies only the cross-term effect of that value on the output.

The array has these fields.

Field Description
Flags(1) F10.7 effect on mean
Flags(2) Independent of time
Flags(3) Symmetrical annual
Flags(4) Symmetrical semiannual
Flags(5) Asymmetrical annual
Flags(6) Asymmetrical semiannual
Flags(7) Diurnal
Flags(8) Semidiurnal
Flags(9) Daily AP. If you set this field to -1, the block uses the entire matrix of

magnetic index information (APH) instead of APH(:,1).
Flags(10) All UT, longitudinal effects
Flags(11) Longitudinal
Flags(12) UT and mixed UT, longitudinal
Flags(13) Mixed AP, UT, longitudinal
Flags(14) Terdiurnal
Flags(15) Departures from diffusive equilibrium
Flags(16) All exospheric temperature variations
Flags(17) All variations from 120,000 meter temperature (TLB)
Flags(18) All lower thermosphere (TN1) temperature variations
Flags(19) All 120,000 meter gradient (S) variations
Flags(20) All upper stratosphere (TN2) temperature variations
Flags(21) All variations from 120,000 meter values (ZLB)
Flags(22) All lower mesosphere temperature (TN3) variations
Flags(23) Turbopause scale height variations

Dependencies

To enable this parameter:

• Set the Propagation method parameter to Numerical (high precision).
• Set the Central Body parameter to Earth.
• Select the Include atmospheric drag check box.
• Set the Flags source to Dialog.

Programmatic Use
Block Parameter: fluxFlags
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Type: character vector
Values: 'ones(1,23)'
Default: 'ones(1,23)'

Include anomalous oxygen in density calculation — Option to include anomalous
oxygen in density calculation

off (default) | on

To include anomalous oxygen in density calculations, select this check box.

Dependencies

To enable this parameter:

• Set the Propagation method parameter to Numerical (high precision).
• Set the Central Body parameter to Earth.
• Select the Include atmospheric drag check box.

Programmatic Use
Block Parameter: useOxygen
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Drag coefficient source — Source of drag coefficient

Dialog (default) | Port

Source of drag coefficient, specified as Dialog or Port.

Dependencies

To enable this parameter:

• Set the Propagation method parameter to Numerical (high precision).
• Set the Central Body parameter to Earth.
• Select the Include atmospheric drag check box.

Programmatic Use
Block Parameter: dragCoeffSrc
Type: character vector
Values: 'Dialog' | 'Source'
Default: 'Dialog'

Drag coefficient — Spacecraft coefficient of drag

2.179 (default) | scalar | vector of size numSat

Spacecraft coefficient of drag used by atmospheric drag calculation, specified as a scalar or as a
vector of size numSat.

Dependencies

To enable this parameter:
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• Set the Propagation method parameter to Numerical (high precision).
• Set the Central Body parameter to Earth.
• Select the Include atmospheric drag check box.
• Set the Drag coefficient source parameter to Dialog.

Programmatic Use
Block Parameter: dragCoeff
Type: character vector
Values: scalar | vector of size numSat
Default: '2.179'

Drag area source — Source of drag area

Dialog (default) | Port

Source of drag area, specified as Dialog or Port.

Dependencies

To enable this parameter:

• Set the Propagation method parameter to Numerical (high precision).
• Set the Central Body parameter to Earth.
• Select the Include atmospheric drag check box.
• Set the Drag coefficient source parameter to Dialog.

Programmatic Use
Block Parameter: dragAreaSrc
Type: character vector
Values: 'Dialog' | 'Source'
Default: 'Dialog'

Drag area — Area to compute acceleration due to atmospheric drag

1.0 (default) | scalar | vector of size numSat

Area to compute acceleration due to atmospheric drag, specified as a scalar or as a vector of size
numSat. This area of the spacecraft is perpendicular to the spacecraft relative velocity.

Dependencies

To enable this parameter:

• Set the Propagation method parameter to Numerical (high precision).
• Set the Central Body parameter to Earth.
• Select the Include atmospheric drag check box.
• Set the Drag coefficient source parameter to Dialog.

Programmatic Use
Block Parameter: dragArea
Type: character vector
Values: scalar | vector of size numSat
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Default: '1.0'

Units

Units — Parameter and port units

Metric (m/s) (default) | Metric (km/s) | Metric (km/h) | English (ft/s) | English
(kts)

Parameter and port units, specified as:

Units Distance Velocity Acceleratio
n

Mass Area Density

Metric
(m/s)

meters meters/sec meters/sec2 Kilograms m2 kg/m3, some
density
outputs 1/m3

Metric
(km/s)

kilometers kilometers/s
ec

kilometers/s
ec2

Kilograms m2 kg/m3, some
density
outputs 1/m3

Metric
(km/h)

kilometers kilometers/
hour

kilometers/
hour2

Kilograms m2 kg/m3, some
density
outputs 1/m3

English
(ft/s)

feet feet/sec feet/sec2 Slugs feet2 lbm/ft3, some
density
outputs 1/ft3

English
(kts)

nautical mile knots knots/sec Slugs feet2 lbm/ft3, some
density
outputs 1/ft3

Programmatic Use
Block Parameter: units
Type: character vector
Values: 'Metric (m/s)' | 'Metric (km/s)' | 'Metric (km/h)' | 'English (ft/s)' |
'English (kts)'
Default: 'Metric (m/s)'

Angle units — Angle units

Degrees (default) | Radians

Parameter and port units for angles, specified as Degrees or Radians.

Programmatic Use
Block Parameter: angleUnits
Type: character vector
Values: 'Degrees' | 'Radians'
Default: 'Degrees'

Time format — Time format for start date and time output

Julian date (default) | Gregorian
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Time format for Start date/time (UTC Julian date) and output port tutc, specified as Julian date
or Gregorian.

Programmatic Use
Block Parameter: timeFormat
Type: character vector
Values: 'Julian date' | 'Gregorian'
Default: 'Julian date'

Algorithms
Coordinate Systems

The Orbit Propagator block works in the ICRF and fixed-frame coordinate systems:

• ICRF — International Celestial Reference Frame. This frame can be treated as equal to the ECI
coordinate system realized at J2000 (Jan 1 2000 12:00:00 TT. For more information, see “ECI
Coordinates” on page 2-11).

• Fixed-frame — Fixed-frame is a generic term for the coordinate system that is fixed to the central
body (its axes rotate with the central body and are not fixed in inertial space).

• When Propagation method is Numerical (high precision), Central Body is Earth,
and the Use Earth orientation parameters (EOPs) check box is selected, the Fixed-frame
for Earth is the International Terrestial Reference Frame (ITRF). This reference frame is
realized by the IAU2000/2006 reduction from the ICRF coordinate system using the earth
orientation parameter file provided. If the Use Earth orientation parameters (EOPs) check
box is cleared, the block still uses the IAU2000/2006 reduction, but with Earth orientation
parameters set to 0.

• When Propagation method is High precision (numerical), Central Body is Moon, and
the Input Moon libration angles check box is selected, the fixed-frame coordinate system for
the Moon is the Mean Earth/pole axis frame (ME). This frame is realized by two
transformations. First, the values in the ICRF frame are transformed into the Principal Axis
system (PA), the axis defined by the libration angles provided as inputs to the block. For more
information, see Moon Libration. The states are then transformed into the ME system using a
fixed rotation from the "Report of the IAU/IAG Working Group on cartographic coordinates and
rotational elements: 2006" [5]. If Input Moon libration angles check box is cleared, the fixed
frame is defined by the directions of the poles of rotation and prime meridians defined in the
"Report of the IAU/IAG Working Group on cartographic coordinates and rotational elements:
2006" [5].

• When Propagation method is Numerical (high precision) and Central Body is
Custom, the fixed-frame coordinate system is defined by the poles of rotation and prime
meridian defined by the block input α, δ, W, or the spin axis properties.

In all other cases, the fixed frame for each central body is defined by the directions of the poles of
rotation and prime meridians defined in the "Report of the IAU/IAG Working Group on cartographic
coordinates and rotational elements: 2006" [5].

Orbit Propagation Methods

The Orbit Propagator block supports two top-level orbit propagation methods: Kepler
(unperturbed) and Numerical (high precision).
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Kepler (unperturbed)

This option uses universal variables and Newton-Raphson iteration to propagate satellite orbits over
time. This analytical algorithm is fast, but has limitations. Propagated orbits account only for central
body spherical (point-mass) gravity. This formulation includes no other perturbations.

This propagation method is always performed in the ICRF intertial coordinate system with origin at
the center of the central body. Given initial intertial position r0 and velocity v0 at time t0, first find
orbital energy, ξ, and the reciprocal of the semi-major axis, α:

ξ =
v02
2 − μ

r0

α = −2ξ
μ ,

where μ is the standard gravitation parameter of the central body. Next, determine the orbit type
from the sign of α.

• α>0 => Circular or elliptical
• α<0 => Hyperbolic
• α≈0 => Parabolic

To initialize the Newton-Raphson iteration, select an initial guess for χ based on the orbit type:

• Circular or elliptical orbit

χ0 ≈ μ(Δt)α,

where Δt is the propagation step size (simulation time step). If Δt exceeds the orbital period

T = 2π a3
μ , wrap Δt.

• Parabolic Orbit

χ0 ≈ p2cot(2w),

where:

h = r0 × v0

p = h ⋅ h
μ

cot(2s) = 3 μ
p3 (Δt)

tan3(w) = tan(s) .
• Hyperbolic orbit:

χ0 ≈ sign(Δt) − 1
α ln( −2μα(Δt)

r0 ⋅ v0 + sign(Δt) − μ
α (1− r0α)

) .

Perform Newton-Raphson iteration while |xn-xn-1| > tolerance.
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χn + 1 = χn +
μ(Δt)− χn3c3−

r0 ⋅ v0
μ χn2c2− r0 χn(1− ψc3)

χn2c2 +
r0 ⋅ v0

μ χn(1− ψc3) + r0(1− ψc2)

χn χn + 1,

where:

ψ = χn2α .

(if ψ>0),

c2 = 1− cos( ψ)
ψ

c3 = ψ − sin( ψ)
ψ3 .

(if ψ<0),

c2 = 1− cosh( −ψ)
ψ

c3 = sinh( −ψ)− −ψ

(− ψ)3
.

(if ψ≈0),

c2 = 1
2

c3 = 1
6 .

Calculate universal variables f , ḟ , g, and ġ.

f = 1−
χn2
r0

c2

ḟ = μ
rr0

χn(ψc3− 1)

g = (Δt)−
χn3

μ c3

ġ = 1−
χn2

r c2 .

Assemble position and velocity output vectors:

ricrf = f r0 + gv0

vicrf = ḟ r0 + ġv0 .

Numerical (high precision)

This option uses the Simulink solver to integrate position and velocity from central body gravitational
acceleration at each simulation timestep (Δt). The method for computing central body acceleration
depends on the current setting for parameter Gravitational potential model. You can also include
custom acceleration components in to the propagation algorithm using the block Aicrf (applied
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acceleration) input port. For gravity models that include nonspherical acceleration terms, the block
computes nonspherical gravity in a fixed-frame coordinate system (ITRF, in the case of Earth).
Numerical integration, however, is always performed in the inertial ICRF coordinate system.
Therefore, at each timestep, the block:

1 Transforms position and velocity states into the fixed-frame.
2 Calculates nonspherical gravity in the fixed-frame.
3 Transforms resulting acceleration into the inertial frame, where it is summed with the other

acceleration terms and integrated.

aicrf = a central body gravity + a applied

aicrf integrate ricrf, vicrf

• Point-mass (available for all central bodies)

This option treats the central body as a point-mass, including only the effects of spherical gravity
using Newton's law of universal gravitation.

a centralbodygravity = − μ
r2

ricrf
r ,

where μ is the standard gravitation parameter of the central body.
• Oblate ellipsoid (J2) (available for all central bodies)

In addition to spherical gravity, this option includes the perturbing effects of the second-degree,
zonal harmonic gravity coefficient J2, accounting for the oblateness of the central body. J2 accounts
for the vast majority of the central bodies gravitational departure from a perfect sphere.

a centralbodygravity = − μ
r2

ricrf
r + f ixed2inertial(a nonspherical),

where:

a nonspherical =

[1
r
∂
∂r U −

rffk
r2 rffi2 + rff j2

∂
∂ϕ U]rffi i

+ [1
r
∂
∂r U +

rffk
r2 rffi2 + rff j2

∂
∂ϕ U]rff j j

+ 1
r ( ∂∂r U)rk +

rffi2 + rff j2

r2
∂
∂ϕ U k,

given the partial derivatives in spherical coordinates:

∂
∂r U = 3μ

r2 (
Rcb

r P2, 0[sin(ϕ)] J2

∂
∂ϕ U = − μ

r (
Rcb

r P2, 1[sin(ϕ)] J2
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where:

• ϕ and λ — Satellite geocentric latitude and longitude.
• P2,0 and P2,1 — Associated Legendre functions.
• μ — Standard gravitation parameter of the central body.
• Rcb — Central body equatorial radius.

The transformation fixed2inertial converts fixed-frame position, velocity, and acceleration
into the ICRF coordinate system with origin at the center of the central body, accounting for
centrifugal and coriolis acceleration. For more information about the fixed and intertial coordinate
systems used for each central body, see “Coordinate Systems” on page 5-578.

• Spherical Harmonics (available for Earth, Moon, Mars, Custom)

This option adds increased fidelity by including higher-order perturbation effects accounting for
zonal, sectoral, and tesseral harmonics. For reference, the second-degree, zeroth order zonal
harmonic J2=-C20. The Spherical Harmonics model accounts for harmonics up to max degree
l=lmax, which varies by central body and geopotential model.

a centralbodygravity = − μ
r2

ricrf
r + f ixed2inertial(a nonspherical),

where:

a nonspherical =

1
r
∂
∂r U −

rffk
r2 rffi2 + rff j2

∂
∂ϕ U]rffi− [ 1

rffi2 + rff j2
∂
∂λ U rff j i

+ 1
r
∂
∂r U +

rffk
r2 rffi2 + rff j2

∂
∂ϕ U]rff j + [ 1

rffi2 + rff j2
∂
∂λ U rffi j

+ 1
r ( ∂∂r U)rffk +

rffi2 + rff j2

r2
∂
∂ϕ U k,

given the following partial derivatives in spherical coordinates:

∂
∂r U = − μ

r2∑
l = 2

lmax

∑
m = 0

l

(
Rcb

r (l + 1)Pl, m[sin(ϕ)] Cl, mcos(mλ) + Sl, msin(mλ)

∂
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∑
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l
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∂
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lmax

∑
m = 0

l

(
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r (m)Pl, m[sin(ϕ)] Sl, mcos(mλ)− Cl, msin(mλ) ,
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where:

• ϕ and λ — Satellite geocentric latitude and longitude.
• Pl,m — Associated Legendre functions.
• μ — Standard gravitation parameter of the central body.
• Rcb — Central body equatorial radius.
• Cl,m and Sl,m — Nonnormalized harmonic coefficients.

The transformation fixed2inertial converts fixed-frame position, velocity, and acceleration
into the ICRF coordinate system with origin at the center of the central body, accounting for
centrifugal and coriolis acceleration. For more information about the fixed and intertial coordinate
systems used for each central body, see “Coordinate Systems” on page 5-578.

Atmospheric Drag

The Orbit Propagator block uses this atmospheric drag equation:

adrag = − 1
2ρ

CDA
m vrel

2

where:

• m — Spacecraft mass used by atmospheric drag calculation.
• CD — Coefficient of drag assuming that it is dimensionless at approximately 2.179.
• ρ — Atmospheric density.
• A — Area normal to vrel, where

v rel = v sat + v atmos

• vrel — Velocity relative to atmosphere.

Version History
Introduced in R2020b
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
CubeSat Vehicle | Moon Libration | Attitude Profile | Spacecraft Dynamics | NRLMSISE-00
Atmosphere Model

Topics
“Model and Simulate CubeSats” on page 2-64

5 Blocks

5-584



Pack net_fdm Packet for FlightGear
Generate net_fdm packet for FlightGear
Library: Aerospace Blockset / Animation / Flight Simulator Interfaces

Description
The Pack net_fdm Packet for FlightGear block creates, from separate inputs, a FlightGear net_fdm
data packet compatible with a particular version of FlightGear flight simulator. This block accepts all
signals supported by the FlightGear net_fdm data packet. These signals are arranged into six
groups:

• Position/attitude inputs
• Velocity/acceleration inputs
• Control surface position inputs
• Engine/fuel inputs
• Landing gear inputs
• Environment inputs

To enable or disable the inputs for these groups, select the associated block parameter. The block
input ports change depending on the requested signal groups. The block inserts zeros for packet
values that are part of inactive signal groups.

The Aerospace Blockset product supports FlightGear versions starting from v2.6. If you are using a
FlightGear version older than 2.6, the model displays a notification from the Simulink Upgrade
Advisor. Consider using the Upgrade Advisor to upgrade your FlightGear version. For more
information, see “Supported FlightGear Versions” on page 2-19.

Ports
Input

Position/Attitude Inputs

l — Longitude
scalar

Longitude, specified as a scalar, in rad.

Dependencies

To enable this port, select the Show position/attitude inputs check box.
Data Types: double
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μ — Latitude
scalar

Latitude, specified as a scalar, in rad.
Dependencies

To enable this port, select the Show position/attitude inputs check box.
Data Types: double

h — Altitude
scalar

Altitude, specified as a scalar, in m.
Dependencies

To enable this port, select the Show position/attitude inputs check box.
Data Types: double

ϕ — Roll
scalar

Roll, specified as a scalar, in rad.
Dependencies

To enable this port, select the Show position/attitude inputs check box.
Data Types: single

θ — Pitch
scalar

Pitch, specified as a scalar, in rad.
Dependencies

To enable this port, select the Show position/attitude inputs check box.
Data Types: single

ψ — Yaw
scalar

Yaw, specified as a scalar, in rad.
Dependencies

To enable this port, select the Show position/attitude inputs check box.
Data Types: single

Velocity/Acceleration Inputs

α — Angle of attack
scalar

Angle of attack, specified as a scalar, in rad.
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Dependencies

To enable this port, select the Show velocity/acceleration inputs check box.
Data Types: single

β — Sideslip angle
scalar

Sideslip angle, specified as a scalar, in rad.

Dependencies

To enable this port, select the Show velocity/acceleration inputs check box.
Data Types: single

dφ/dt — Roll rate
scalar

Roll rate, specified as a scalar, in rad/sec.

Dependencies

To enable this port, select the Show velocity/acceleration inputs check box.
Data Types: single

dθ/dt — Pitch rate
scalar

Pitch rate, specified as a scalar, in rad/sec.

Dependencies

To enable this port, select the Show velocity/acceleration inputs check box.
Data Types: single

dψ/dt — Yaw rate
scalar

Yaw rate, specified as a scalar, in rad/sec.

Dependencies

To enable this port, select the Show velocity/acceleration inputs check box.
Data Types: single

Vcas — Calibrated airspeed
scalar

Calibrated airspeed, specified as a scalar, in knots.

Dependencies

To enable this port, select the Show velocity/acceleration inputs check box.
Data Types: single
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climb_rate — Rate of climb
scalar

Rate of climb, specified as a scalar, in feet/sec.

Dependencies

To enable this port, select the Show velocity/acceleration inputs check box.
Data Types: single

vnorth — North velocity in body frame
scalar

North velocity in body frame, specified as a scalar, in ft/sec.

Dependencies

To enable this port, select the Show velocity/acceleration inputs check box.
Data Types: single

veast — East velocity in body frame
scalar

East velocity in body frame, specified as a scalar, in feet/sec.

Dependencies

To enable this port, select the Show velocity/acceleration inputs check box.
Data Types: single

vdown — Down velocity
scalar

Down velocity, specified as a scalar, in feet/sec.

Dependencies

To enable this port, select the Show velocity/acceleration inputs check box.
Data Types: single

vwind body north — North velocity in body frame relative to local airmass
scalar

North velocity in body frame relative to local airmass, specified as a scalar, in ft/sec.

Dependencies

To enable this port, select the Show velocity/acceleration inputs check box.
Data Types: single

vwind body east — East velocity in body frame relative to local airmass
scalar

East velocity in body frame relative to local airmass, specified as a scalar, in ft/sec.
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Dependencies

To enable this port, select the Show velocity/acceleration inputs check box.
Data Types: single

vwind body down — Down velocity in body frame relative to airmass
scalar

Down velocity in body frame relative to airmass, specified as a scalar, in ft/sec.

Dependencies

To enable this port, select the Show velocity/acceleration inputs check box.
Data Types: single

AX pilot — X acceleration in body frame
scalar

X acceleration in body frame, specified as a scalar, in ft/sec2.

Dependencies

To enable this port, select the Show velocity/acceleration inputs check box.
Data Types: single

AY pilot — Y acceleration in body frame
scalar

Y acceleration in body frame, specified as a scalar, in ft/sec2.

Dependencies

To enable this port, select the Show velocity/acceleration inputs check box.
Data Types: single

AZ pilot — Z acceleration in body frame
scalar

Z acceleration in body frame, specified as a scalar, in ft/sec2.

Dependencies

To enable this port, select the Show velocity/acceleration inputs check box.
Data Types: single

stall_warning — Amount of stall
scalar

Amount of stall [0-1], specified as a scalar.

Dependencies

To enable this port, select the Show velocity/acceleration inputs check box.
Data Types: single
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slip_degree — Slip ball deflection
scalar

Slip ball deflection, specified as a scalar, in degrees.
Dependencies

To enable this port, select the Show velocity/acceleration inputs check box.
Data Types: single

Control Surface Position Inputs

elevator — Normalized elevator position
scalar

Normalized elevator position, specified as a scalar.
Dependencies

To enable this port, select the Show control surface position inputs check box.
Data Types: single

elevator_trim_tab — Normalized elevator trim tab position
scalar

Normalized elevator trim tab position, specified as a scalar.
Dependencies

To enable this port, select the Show control surface position inputs check box.
Data Types: single

left_flap — Normalized left flap position
scalar

Normalized left flap position, specified as a scalar.
Dependencies

To enable this port, select the Show control surface position inputs check box.
Data Types: single

right_flap — Normalized right flap position
scalar

Normalized right flap position, specified as a scalar.
Dependencies

To enable this port, select the Show control surface position inputs check box.
Data Types: single

left_aileron — Normalized left aileron position
scalar

Normalized left aileron position. specified as a scalar.
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Dependencies

To enable this port, select the Show control surface position inputs check box.
Data Types: single

right_aileron — Normalized right aileron position
scalar

Normalized right aileron position, specified as a scalar.

Dependencies

To enable this port, select the Show control surface position inputs check box.
Data Types: single

rudder — Normalized rudder position
scalar

Normalized rudder position, specified as a scalar.

Dependencies

To enable this port, select the Show control surface position inputs check box.
Data Types: single

nose_wheel — Normalized nose wheel position
scalar

Normalized nose wheel position, specified as a scalar.

Dependencies

To enable this port, select the Show control surface position inputs check box.
Data Types: single

speedbrake — Normalized speedbrake position
scalar

Normalized speedbrake position, specified as a scalar.

Dependencies

To enable this port, select the Show control surface position inputs check box.
Data Types: single

spoilers — Normalized spoilers position
scalar

Normalized spoilers position, specified as a scalar.

Dependencies

To enable this port, select the Show control surface position inputs check box.
Data Types: single
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Engine/Fuel Inputs

num_engines — Number of engines
scalar

Number of engines, specified as a scalar.
Dependencies

To enable this port, select the Show engine/fuel inputs check box.
Data Types: uint32

eng_state — Engine state
vector

Engine state (off, cranking, running), specified as a vector.
Dependencies

To enable this port, select the Show engine/fuel inputs check box.
Data Types: uint32

rpm — Engine RPM
vector

Engine RPM, specified as a vector, in rev/min.
Dependencies

To enable this port, select the Show engine/fuel inputs check box.
Data Types: single

fuel_flow — Fuel flow
vector

Fuel flow, specified as a vector, in gal/hr.
Dependencies

To enable this port, select the Show engine/fuel inputs check box.
Data Types: single

fuel_px — Fuel pressure
vector

Fuel pressure, specified as a vector, in psi.
Dependencies

To enable this port, select the Show engine/fuel inputs check box.
Data Types: single

egt — Exhaust gas temperature
vector

Exhaust gas temperature, specified as a vector, in deg F.
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Dependencies

To enable this port, select the Show engine/fuel inputs check box.
Data Types: single

cht — Cylinder head temperature
scalar

Cylinder head temperature, specified as a vector, in deg F.

Dependencies

To enable this port, select the Show engine/fuel inputs check box.
Data Types: single

mp_osi — Manifold pressure
vector

Manifold pressure, specified as a vector, in psi.

Dependencies

To enable this port, select the Show engine/fuel inputs check box.
Data Types: single

tit — Turbine inlet temperature
vector

Turbine inlet temperature, specified as a vector, in deg F.

Dependencies

To enable this port, select the Show engine/fuel inputs check box.
Data Types: single

oil_temp — Oil temperature
vector

Oil temperature, specified as a vector, in deg F.

Dependencies

To enable this port, select the Show engine/fuel inputs check box.
Data Types: single

oil_px — Oil pressure
vector

Oil pressure, specified as a vector, in psi.

Dependencies

To enable this port, select the Show engine/fuel inputs check box.
Data Types: single
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num_tanks — Number of fuel tanks
scalar

Number of fuel tanks, specified as a scalar.
Dependencies

To enable this port, select the Show engine/fuel inputs check box.
Data Types: uin32

fuel_quantity — Fuel quantity per tank
vector

Fuel quantity per tank, specified as a vector, in gal.
Dependencies

To enable this port, select the Show engine/fuel inputs check box.
Data Types: single

Landing Gear Inputs

num_wheels — Number of wheels
scalar

Number of wheels, specified as a scalar.
Dependencies

To enable this port, select the Show landing gear inputs check box.
Data Types: uint32

wow — Weight on wheels switch
vector

Weight on wheels switch, specified as a vector.
Dependencies

To enable this port, select the Show landing gear inputs check box.
Data Types: uint32

gear_pos — Landing gear normalized position
vector

Landing gear normalized position, specified as a vector.
Dependencies

To enable this port, select the Show landing gear inputs check box.
Data Types: single

gear_steer — Landing gear normalized steering
vector

Landing gear normalized steering, specified as a vector.
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Dependencies

To enable this port, select the Show landing gear inputs check box.
Data Types: single

gear_compression — Landing gear normalized compression
vector

Landing gear normalized compression, specified as a vector.

Dependencies

To enable this port, select the Show landing gear inputs check box.
Data Types: single

Environment Inputs

agl — Altitude above ground level
scalar

Altitude above ground level, specified as a scalar, in m.

Dependencies

To enable this port, select the Show environment inputs check box.
Data Types: single

cur_time — Current UNIX® time
scalar

Current UNIX time, specified as a scalar, in sec.

Dependencies

To enable this port, select the Show environment inputs check box.
Data Types: uint32

warp — Offset in seconds to UNIX time
scalar

Offset in seconds to UNIX time, specified as a scalar, in sec.

Dependencies

To enable this port, select the Show environment inputs check box.
Data Types: int32

visibility — Visibility
scalar

Visibility (for visual effects), specified as a scalar, in m.

Dependencies

To enable this port, select the Show environment inputs check box.
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Data Types: single

Output

net_fdm — Packet generated for FlightGear
array

Packet generated for FlightGear, specified as an array.
Data Types: single | double | uint32

Parameters
Show position/altitude inputs — Position and altitude inputs

on (default) | off

Select this check box to include the position and altitude inputs in the FlightGear net_fdm data
packet.

Dependencies

Select this check box to enable these input ports.

Signal Group 1: Position/Altitude Inputs

Name Units Type Width Description
longitude rad double 1 Geodetic longitude
latitude rad double 1 Geodetic latitude
altitude m double 1 Altitude above sea level
theta rad single 1 Pitch
phi rad single 1 Roll
psi rad single 1 Yaw

Programmatic Use
Block Parameter: ShowPositionAttitudeInputs
Type: character vector
Values: 'off' | 'on'
Default: 'on'

Show velocity/acceleration inputs — Velocity and acceleration inputs

off (default) | on

Select this check box to include the velocity and acceleration inputs in the FlightGear net_fdm data
packet.

Dependencies

Select this check box to enable these input ports.
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Signal Group 2: Velocity/Acceleration Inputs

Name Units Type Width Description
alpha rad double 1 Angle of attack
beta rad single 1 Sideslip angle
dphi/dt rad/sec single 1 Roll rate
dtheta/dt rad/sec single 1 Pitch rate
dpsi/dt rad/sec single 1 Yaw rate
Vcas knot single 1 Calibrated airspeed
climb_rate feet/sec single 1 Rate of climb
v_north feet/sec single 1 North velocity in body

frame
v_east feet/sec single 1 East velocity in body frame
v_down feet/sec single 1 Down velocity
v_wind_body_north feet/sec single 1 North velocity in body

frame relative to local
airmass

v_wind_body_east feet/sec single 1 East velocity in body frame
relative to local airmass

v_wind_body_down feet/sec single 1 Down velocity in body
frame relative to airmass

Axpilot feet/sec2 single 1 X acceleration in body
frame

Aypilot feet/sec2 single 1 Y acceleration in body
frame

Azpilot feet/sec2 single 1 Z acceleration in body
frame

stall_warning — single 1 Amount of stall [0-1]
slip_deg degrees single 1 Slip ball deflection

Programmatic Use
Block Parameter: ShowVelocityAccelerationInputs
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Show control surface position inputs — Control surface position inputs

off (default) | on

Select this check box to include the control surface position inputs in the FlightGear net_fdm data
packet.

Dependencies

Select this check box to enable these input ports.
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Signal Group 3: Control Surface Position Inputs

Name Units Type Width Description
elevator 1 (dimensionless) single 1 Normalized elevator

position
elevator_trim_tab 1 (dimensionless) single 1 Normalized elevator trim

tab position
left_flap 1 (dimensionless) single 1 Normalized left flap

position
right_flap 1 (dimensionless) single 1 Normalized right flap

position
left_aileron 1 (dimensionless) single 1 Normalized left aileron

position
right_aileron 1 (dimensionless) single 1 Normalized right aileron

position
rudder 1 (dimensionless) single 1 Normalized rudder

position
nose_wheel 1 (dimensionless) single 1 Normalized nose wheel

position
speedbrake 1 (dimensionless) single 1 Normalized speedbrake

position
spoilers 1 (dimensionless) single 1 Normalized spoilers

position

Programmatic Use
Block Parameter: ShowControlSurfacePositionInputs
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Show engine/fuel inputs — Engine and fuel inputs

off (default) | on

Select this check box to include the engine and fuel inputs in the FlightGear net_fdm data packet.

Dependencies

Select this check box to enable these input ports.
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Signal Group 4: Engine/Fuel Inputs

Name Units Type Width Description
num_engines — uint32 1 Number of engines
eng_state — uint32 4 Engine state (off, cranking,

running)
rpm rev/min single 4 Engine RPM
fuel_flow gal/hour single 4 Fuel flow
fuel_px psi single 4 Fuel pressure
egt deg F single 4 Exhaust gas temperature
cht deg F single 4 Cylinder head temperature
mp_osi psi single 4 Manifold pressure
tit deg F single 4 Turbine inlet temperature
oil_temp deg F single 4 Oil temperature
oil_px psi single 4 Oil pressure
num_tanks — uint32 1 Number of fuel tanks
fuel_quantity gal single 4 Fuel quantity per tank

Programmatic Use
Block Parameter: ShowEngineFuelInputs
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Show landing gear inputs — Landing gear inputs

off (default) | on

Select this check box to include the landing gear inputs in the FlightGear net_fdm data packet.

Dependencies

Select this check box to enable these input ports.

Signal Group 5: Landing Gear Inputs

Name Units Type Width Description
num_wheels — uint32 1 Number of wheels
wow — uint32 3 Weight on wheels switch
gear_pos — single 3 Landing gear normalized

position
gear_steer — single 3 Landing gear normalized

steering
gear_compression — single 3 Landing gear normalized

compression
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Programmatic Use
Block Parameter: ShowLandingGearInputs
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Show environment inputs — Environment inputs

off (default) | on

Select this check box to include the environment inputs in the FlightGear net_fdm data packet.

Dependencies

Select this check box to enable these input ports.

Signal Group 6: Environment Inputs

Name Units Type Width Description
agl m single 1 Altitude above ground

level
cur_time sec uint32 1 Current UNIX time
warp sec int32 1 Offset in seconds to UNIX

time
visibility m single 1 Visibility in meters (for

visual effects)

Programmatic Use
Block Parameter: ShowEnvironmentInputs
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Sample time — Sample time

1/30 (default) | scalar

Specify the sample time (-1 for inherited).

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar
Default: '1/30'

Version History
Introduced before R2006a

See Also
FlightGear Preconfigured 6DoF Animation | Generate Run Script | Receive net_ctrl Packet from
FlightGear | Send net_fdm Packet to FlightGear | Unpack net_ctrl Packet from FlightGear
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Topics
“Flight Simulator Interface” on page 2-19
“Work with the Flight Simulator Interface” on page 2-23
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Pilot Joystick
Provide joystick interface on Windows platform
Library: Aerospace Blockset / Animation / Animation Support Utilities

Description
The Pilot Joystick block provides a pilot joystick interface for a Windows platform. Roll, pitch, yaw,
and throttle are mapped to the joystick X, Y, R, and Z channels respectively.

You can also configure the block to output all channels by setting the Output configuration
parameter to AllOutputs. For more information, see Pilot Joystick All. The Pilot Joystick and Pilot
Joystick All blocks are identical blocks with different Output configuration default settings.

This block does not produce deployable code.

Limitations
• If the joystick does not support an R (rudder or twist) channel, yaw output is set to zero. Outputs

are of type double, except when Joystick ID is set to AllOutputs mode, which is a uint32
flagword of bits. On non Microsoft platforms, this block outputs zeros.

• Pitch value has the opposite sense as that delivered by the FlightGear joystick interface.

Ports
Output

roll — Roll
range [-1, 1]

Roll command, specified in the range [-1, 1], that corresponds to the joystick left and right directions.

Dependencies

To enable this port, set Output configuration to FourAxis.
Data Types: double

pitch — Pitch
range [-1, 1]

Pitch command, specified in the range [-1, 1], that corresponds to the joystick forward or down and
back and up directions.

Dependencies

This output port is enabled when the Output configuration parameter is set to FourAxis.
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Data Types: double

yaw — Yaw
range [-1, 1]

Yaw command, specified in the range [-1, 1], that corresponds to the joystick twist left and twist right
directions.

Dependencies

To enable this port, set Output configuration to FourAxis.
Data Types: double

throttle — Throttle
range [ 0, 1]

Throttle command, specified in the range [0, 1], that corresponds to the joystick min and max
position.

Dependencies

To enable this port, set Output configuration to FourAxis.
Data Types: double

Parameters
Joystick ID — Joystick ID

Joystick1 (default) | Joystick2 | None

Specify the joystick ID as Joystick1, Joystick2, or None.

Programmatic Use
Block Parameter: JoystickID
Type: character vector
Values: Joystick1 | Joystick2 | None
Default: 'Joystick1'

Output configuration — Joystick output configuration

FourAxis (default) | AllOutputs

Joystick output configuration, specified as FourAxis or AllOutputs. For more information on the
AllOutputs configuration, see Pilot Joystick All.

Programmatic Use
Block Parameter: OutputConfiguration
Type: character vector
Values: FourAxis | AllOutputs
Default: 'FourAxis'

Sample time — Sample time

1/30 (default) | -1 | scalar
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Specify the sample time (-1 for inherited), specified as a scalar.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar
Default: '1/30'

Version History
Introduced before R2006a

See Also
Pilot Joystick All | Simulation Pace
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Pilot Joystick All
Provide joystick interface in All Outputs configuration on Windows platform
Library: Aerospace Blockset / Animation / Animation Support Utilities

Description
The Pilot Joystick All block provides a pilot joystick interface for a Windows platform. Analog is
mapped to the joystick X, Y, Z, R, U, and V channels. Buttons and POV are mapped to up to 32 joystick
button states and the joystick point-of-view hat.

You can also configure the block to output four axes by setting the Output configuration parameter
to FourAxis.

This block does not produce deployable code.

Limitations
• If the joystick does not support an R (rudder or twist) channel, yaw output is set to zero. Outputs

are of type double, except when Joystick ID is set to AllOutputs mode, which is a uint32
flagword of bits. On non Microsoft platforms, this block outputs zeros.

• Pitch value has the opposite sense as that delivered by the FlightGear joystick interface.

Ports
Output

analog — Analog output
range [-1, 1] | range [ 0, 1]

Analog output, returned according to:

Array Number Channel Output Range Joystick Description
1 X [-1, 1] [left, right] Roll command
2 Y [-1, 1] [forward/down,

back/up]
Pitch command

3 Z [ 0, 1] [min, max] Throttle command
4 R [-1, 1] [left, right] Yaw command
5 U [ 0, 1] [min, max] U channel value
6 V [ 0, 1] [min, max] V channel value

Data Types: double
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buttons — Button
flagword with 32 button states

Button output, returned as a flagword containing up to 32 button states on the buttons channel. Bit 0
is button 1, Bit 1 is button 2, and so forth.
Data Types: uint32

POV — Point-of-view
hat

Point-of-view, returned as a hat value in degrees on the POV channel. Zero degrees is straight ahead,
90 degrees is to the left, and so forth.
Data Types: double

Parameters
Joystick ID — Joystick ID
Joystick1 (default) | Joystick2 | None

Specify the joystick ID as Joystick1, Joystick2, or None.

Programmatic Use
Block Parameter: JoystickID
Type: character vector
Values: Joystick1 | Joystick2 | None
Default: 'Joystick1'

Output configuration — Joystick output configuration
AllOutputs (default) | FourAxis

Joystick output configuration, specified as FourAxis or AllOutputs. For more information on the
AllOutputs configuration, see Pilot Joystick All.

Programmatic Use
Block Parameter: OutputConfiguration
Type: character vector
Values: FourAxis | AllOutputs
Default: 'FourAxis'

Sample time — Sample time
1/30 (default) | -1 | scalar

Specify the sample time (-1 for inherited), specified as a scalar.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar
Default: '1/30'

Version History
Introduced in R2007a
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See Also
Pilot Joystick | Simulation Pace
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Planetary Ephemeris
Implement position and velocity of astronomical objects
Library: Aerospace Blockset / Environment / Celestial Phenomena

Description
The Planetary Ephemeris block uses Chebyshev coefficients to implement the position and velocity of
the target object relative to the specified center object for a given Julian date. The Target parameter
specifies an astronomical object. The block implements the ephemerides using the Center parameter
for an astronomical object as the reference.

The block uses the Chebyshev coefficients that the NASA Jet Propulsion Laboratory provides.

Tip For TJD, Julian date input for the block:

• Calculate the date using the Julian Date Conversion block or the Aerospace Toolbox juliandate
function.

• Calculate the Julian date using some other means and input it using the Constant block.

This block implements the position and velocity using the International Celestial Reference Frame. If
you require the planetary ephemeris position value relative to Earth in Earth-fixed (ECEF)
coordinates, use the Direction Cosine Matrix ECI to ECEF block.

Ports
Input

TJD — Julian date
scalar | positive | between minimum and maximum Julian dates

Julian date, specified as a positive scalar between minimum and maximum Julian dates.

See the Ephemeris model parameter for the minimum and maximum Julian dates.
Dependencies

This port displays if the Epoch parameter is set to Julian date.
Data Types: double

T0JD — Fixed Julian date
scalar | positive

Fixed Julian date for a specific epoch that is the most recent midnight at or before the interpolation
epoch, specified as a positive scalar. The sum of T0JD and ΔTJD must fall between the minimum and
maximum Julian date.
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See the Ephemeris model parameter for the minimum and maximum Julian dates.

Dependencies

This port displays if the Epoch parameter is set to T0 and elapsed Julian time.
Data Types: double

ΔTJD — Elapsed Julian time
scalar | positive

Elapsed Julian time between the fixed Julian date and the ephemeris time, specified as a positive
scalar. The sum of T0JD and ΔTJD must fall between the minimum and maximum Julian date.

See the Ephemeris model parameter for the minimum and maximum Julian dates.

Dependencies

This port displays if the Epoch parameter is set to T0 and elapsed Julian time.
Data Types: double

Output

XICRF1 — Barycenter position
vector

Barycenter position (XICRF1) of the Target object relative to the barycenter of the Center object,
output as a vector, in km or astronomical units (AU).

Tip This block outputs the barycenter position in International Celestial Reference Frame (ICRF)
coordinates. To convert these coordinates to Earth-centered Earth-fixed (ECEF), use the Direction
Cosine Matrix ECI to ECEF block.

Data Types: double

VICRF — Velocity
vector

Velocity (VICRF) of the barycenter of the Target object relative to the barycenter of the Center object,
specified as a vector, in km/s or astronomical units (AU)/day.
Data Types: double

Parameters
Units — Output units

km,km/s (default) | AU,AU/day

Output units, specified as km,km/s or AU,AU/day.

Units Position Velocity
km,km/s km km/s
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Units Position Velocity
Au,AU/day astronomical units (AU) AU/day

Programmatic Use
Block Parameter: kmflag
Type: character vector
Values: km,km/s | AU,AU/day
Default: 'km,km/s'

Epoch — Epoch

Julian date (default) | T0 and elapsed Julian time

Epoch, specified as:

• Julian date

Julian date to implement the position and velocity of the Target object.. When this option is
selected, the block has one input port, TJD.

• T0 and elapsed Julian time

Julian date, specified by two block inputs:

• Fixed Julian date representing a starting epoch.
• Elapsed Julian time between the fixed Julian date (T0JD) and the desired model simulation time.

The sum of T0JD and ΔTJD must fall between the minimum and maximum Julian date.

Programmatic Use
Block Parameter: epochflag
Type: character vector
Values: Julian date | T0 and elapsed Julian time
Default: 'Julian date'

Ephemeris model — Ephemeris model

DE405 (default) | DE421 | DE423 | DE430 | DE432t

Select one of the following ephemerides models defined by the Jet Propulsion Laboratory.

Ephemeris Model Description
DE405 Released in 1998. This ephemeris takes into account the Julian date range

2305424.50 (December 9, 1599) to 2525008.50 (February 20, 2201).

This block implements these ephemerides with respect to the International
Celestial Reference Frame version 1.0, adopted in 1998.

DE421 Released in 2008. This ephemeris takes into account the Julian date range
2414992.5 (December 4, 1899) to 2469808.5 (January 2, 2050).

This block implements these ephemerides with respect to the International
Celestial Reference Frame version 1.0, adopted in 1998.
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Ephemeris Model Description
DE423 Released in 2010. This ephemeris takes into account the Julian date range

2378480.5 (December 16, 1799) to 2524624.5 (February 1, 2200).

This block implements these ephemerides with respect to the International
Celestial Reference Frame version 2.0, adopted in 2010.

DE430 Released in 2013. This ephemeris takes into account the Julian date range
2287184.5 (December 21, 1549) to 2688976.5 (January 25, 2650).

This block implements these ephemerides with respect to the International
Celestial Reference Frame version 2.0, adopted in 2010.

DE432t Released in April 2014. This ephemeris takes into account the Julian date
range 2287184.5, (December 21, 1549 ) to 2688976.5, (January 25, 2650).

This block implements these ephemerides with respect to the International
Celestial Reference Frame version 2.0, adopted in 2010.

Note This block requires that you download ephemeris data using the Add-On Explorer. To start the
Add-On Explorer, in the MATLAB Command Window, type aeroDataPackage. on the MATLAB
desktop toolstrip, click the Add-Ons button.

Programmatic Use
Block Parameter: de
Type: character vector
Values: DE405 | DE421 | DE423 | DE430
Default: 'DE405'

Center — Center body

Sun (default) | Mercury | Venus | Earth | Moon | Mars | Jupiter | Saturn | Uranus | Neptune |
Pluto | Solar system barycenter | Earth-Moon barycenter

Center body (astronomical object) or reference body, specified as a point of reference for the Target
barycenter position and velocity measurement.

Programmatic Use
Block Parameter: nCenter
Type: character vector
Values: Sun | Mercury | Venus | Earth | Moon | Mars | Jupiter | Saturn | Uranus | Neptune |
Pluto | Solar system barycenter | Earth-Moon barycenter
Default: 'Sun'

Target — Target body

Sun (default) | Mercury | Venus | Earth | Moon | Mars | Jupiter | Saturn | Uranus | Neptune |
Pluto | Solar system barycenter | Earth-Moon barycenter

Target body (astronomical object) or reference body, specified as a point of reference for the
barycenter position and velocity measurement.
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Programmatic Use
Block Parameter: nTarget
Type: character vector
Values: Sun | Mercury | Venus | Earth | Moon | Mars | Jupiter | Saturn | Uranus | Neptune |
Pluto | Solar system barycenter | Earth-Moon barycenter
Default: 'Moon'

Action for out-of-range input — Out-of-range block behavior

None (default) | Warning | Error

Out-of-range block behavior, specified as follows.

Action Description
None No action.
Warning Warning in the MATLAB Command Window, model simulation

continues.
Error (default) MATLAB returns an exception, model simulation stops.

Programmatic Use
Block Parameter: errorflag
Type: character vector
Values: 'None' | 'Warning' | 'Error'
Default: 'Error'

Calculate velocity — Calculate rate of target barycenter

on (default) | off

Select this check box to calculate the velocity of the Target barycenter relative to the Center
barycenter.

Programmatic Use
Block Parameter: velflag
Type: character vector
Values: 'off' | 'on' |
Default: 'on'

Version History
Introduced in R2013a

References
[1] Folkner, W. M., J. G. Williams, D. H. Boggs. "The Planetary and Lunar Ephemeris DE 421." IPN

Progress Report 42-178, 2009.

[2] Ma, C. et al. "The International Celestial Reference Frame as Realized by Very Long Baseline
Interferometry." Astronomical Journal, Vol. 116, 516–546, 1998.

[3] Vallado, D. A. Fundamentals of Astrodynamics and Applications, New York: McGraw-Hill, 1997.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
aeroDataPackage | juliandate | Constant | Direction Cosine Matrix ECI to ECEF | Earth Nutation
| Julian Date Conversion | Moon Libration
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Precision Pilot Model
Represent precision pilot model
Library: Aerospace Blockset / Pilot Models

Description
The Precision Pilot Model block represents the pilot model described in Mathematical Models of
Human Pilot Behavior [1]. This pilot model is a single input, single output (SISO) model that
represents some aspects of human behavior when controlling aircraft. When modeling human pilot
models, use this block for more accuracy than that provided by the Tustin Pilot Model and Crossover
Pilot Model blocks.

This block has non-linear behavior. If you want to linearize the block (for example, with one of the
linmod functions), you might need to change the Pade approximation order. The Precision Pilot
Model block implementation incorporates the Transport Delay block with the Pade order (for
linearization) parameter set to 2 by default. To change this value, use the set_param function, for
example:

set_param(gcb,'pade','3')

This block is an extension of the Crossover Pilot Model block. It implements the equation described in
“Algorithms” on page 5-617.

Ports
Input

x com — Signal command
scalar

Signal command that the pilot model controls, specified as a scalar.
Data Types: double

x — Signal controlled by pilot
scalar

Signal that the pilot model controls, specified as a scalar.
Data Types: double

Output

u — Aircraft command
scalar

Aircraft command, returned as a scalar.
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Data Types: double

Parameters
Type of control — Aircraft dynamics control

Proportional (default) | Rate or velocity | Acceleration | Second order

Aircraft dynamics control. The equalizer form changes according to these values. For more
information, see [2]. To help you decide, this table lists the options and associated dynamics.

Option (Controlled Element
Transfer Function)

Transfer Function of
Controlled Element (Yc)

Transfer Function of Pilot
(Yp)

Proportional Kc Lag-lead, TI >> TL

Rate or velocity Kc
s

1

Acceleration Kc
s2

Lead-lag, TL >> TI

Second order Kcωn2

s2 + 2ζωns + ωn
2

Lead-lag if ωm << 2/τ.

Lag-lead if ωm >> 2/τ.

This table defines the variables used in the list of control options.

Variable Description
K c Aircraft gain.
T I Lag constant.
T L Lead constant.
ζ Damping ratio for the aircraft.
ω n Natural frequency of the aircraft.

Programmatic Use
Block Parameter: sw_popup
Type: character vector
Values: 'Proportion' | 'Rate or velocity' | 'Acceleration' | 'Second order'
Default: 'Proportion'

Pilot gain — Pilot gain

1 (default) | scalar

Pilot gain, specified as a double scalar.

Programmatic Use
Block Parameter: Kp
Type: character vector
Values: double scalar
Default: '1'
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Pilot time delay(s) — Pilot time delay

0.1 (default) | scalar

Total pilot time delay, specified as a double scalar, in seconds. This value typically ranges from 0.1 s
to 0.2 s.

Programmatic Use
Block Parameter: time_delay
Type: character vector
Values: double scalar
Default: '0.1'

Equalizer lead constant — Equalizer lead constant

1 (default) | scalar

Equalizer lead constant, specified as a double scalar.

Dependencies

To enable this parameter, set Type of control to Proportional, Acceleration, or Second
order.

Programmatic Use
Block Parameter: TL
Type: character vector
Values: double scalar
Default: '1'

Equalizer lag constant — Equalizer lag constant

5 (default) | scalar

Equalizer lag constant, specified as a double scalar.

Dependencies

To enable this parameter, set Type of control to Proportional, Acceleration, or Second
order.

Programmatic Use
Block Parameter: TI
Type: character vector
Values: double scalar
Default: '5'

Lag constant for neuromuscular system — Lag constant

0.1 (default) | scalar

Neuromuscular system lag constant, specified as a double scalar.

Programmatic Use
Block Parameter: TN1
Type: character vector
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Values: double scalar
Default: 0.1

Undamped natural frequency neuromuscular system (rad/s) — Undamped natural
frequency

20 (default) | scalar

Undamped natural frequency of the neuromuscular system, specified as a double scalar, in rad/s.
Programmatic Use
Block Parameter: nat_freq
Type: character vector
Values: double scalar
Default: 20

Damping neuromuscular system — Damping neuromuscular system

0.7 (default) | scalar

Damping neuromuscular system, specified as a double scalar.
Programmatic Use
Block Parameter: damp
Type: character vector
Values: double scalar
Default: 0.7

Controlled element undamped natural frequency (rad/s) — Controlled element
undamped natural frequency

15 (default) | scalar

Controlled element undamped natural frequency, specified as a double scalar, in rad/s.
Dependencies

To enable this parameter, set Type of control to Second order.
Programmatic Use
Block Parameter: omega_m
Type: character vector
Values: double scalar
Default: 15

Algorithms
When calculating the model, this block also takes into account the neuromuscular dynamics of the
pilot. This block implements the following equation:

Yp = Kpe−τs TLs + 1
TIs + 1 ) 1

TN1s + 1 s2
ωN2 +

2ζN
ωN

s + 1
,

where:

 Precision Pilot Model

5-617



Variable Description
K p Pilot gain.
τ Pilot delay time.
T L Time lead constant for the equalizer term.
T I Time lag constant.
T N1 Time constant for the neuromuscular system.
ω N Undamped frequency for the neuromuscular system.
ζ N Damping ratio for the neuromuscular system.

A sample value for the natural frequency and the damping ratio of a human is 20 rad/s and 0.7,
respectively. The term containing the lead-lag term is the equalizer form. This form changes
depending on the characteristics of the controlled system. A consistent behavior of the model can
occur at different frequency ranges other than the crossover frequency.

Version History
Introduced in R2012b

References
[1] McRuer, D. T., Krendel, E., Mathematical Models of Human Pilot Behavior . Advisory Group on

Aerospace Research and Development AGARDograph 188, Jan. 1974.

[2] McRuer, D. T., Graham, D., Krendel, E., and Reisener, W., Human Pilot Dynamics in Compensatory
Systems . Air Force Flight Dynamics Lab. AFFDL-65-15. 1965.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Crossover Pilot Model | Tustin Pilot Model | Transport Delay | linmod
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Pressure Altitude
Calculate pressure altitude based on ambient pressure
Library: Aerospace Blockset / Environment / Atmosphere

Description
The Pressure Altitude block computes the pressure altitude based on ambient pressure. Pressure
altitude is the altitude in the 1976 Committee on the Extension of the Standard Atmosphere (COESA)
United States with specified ambient pressure.

Pressure altitude is also known as the mean sea level (MSL) altitude.

The Pressure Altitude block icon port label change based on the input and output units selected from
the Units list.

Limitations
• Below the pressure of 0.3961 Pa (approximately 0.00006 psi) and above the pressure of 101325 Pa

(approximately 14.7 psi), altitude values are extrapolated logarithmically.
• Air is assumed to be dry and an ideal gas.

Ports
Input

Port_1 — Static pressure
scalar | array

Static pressure, specified as a scalar or array.
Data Types: double

Output

Port_1 — Pressure altitude
scalar | array

Pressure altitude, returned as a scalar or vector.
Data Types: double

Parameters
Units — Input units

Metric (MKS) (default) | English
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Input units, specified as:

Units Pstatic Alt_p
Metric (MKS) Pascal Meters
English Pound force per square inch Feet

Programmatic Use
Block Parameter: units
Type: character vector
Values: 'Metric (MKS)' | 'English'
Default: 'Metric (MKS)'

Action for out-of-range input — Out-of-range block behavior

Warning (default) | None | Error

Out-of-range block behavior, specified as follows.

Action Description
None No action.
Warning Warning in the MATLAB Command Window, model simulation

continues.
Error (default) MATLAB returns an exception, model simulation stops.

Programmatic Use
Block Parameter: action
Type: character vector
Values: 'None' | 'Warning' | 'Error'
Default: 'Warning'

Version History
Introduced before R2006a

References
[1] U.S. Standard Atmosphere, 1976, U.S. Government Printing Office, Washington, D.C.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
COESA Atmosphere Model

Topics
Ideal Airspeed Correction
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Pressure Conversion
Convert from pressure units to desired pressure units
Library: Aerospace Blockset / Utilities / Unit Conversions

Description
The Pressure Conversion block computes the conversion factor from specified input pressure units to
specified output pressure units and applies the conversion factor to the input signal.

The Pressure Conversion block port labels change based on the input and output units selected from
the Initial unit and the Final unit lists.

Ports
Input

Port_1 — Pressure
scalar | array

Pressure, specified as a scalar or array, in initial pressure units.

Dependencies

The input port label depends on the Initial unit setting.
Data Types: double

Output

Port_1 — Pressure
scalar | array

Pressure, returned as a scalar or array, in final pressure units.

Dependencies

The output port label depends on the Final unit setting.
Data Types: double

Parameters
Initial unit — Input units

psi (default) | Pa | psf | atm

Input units, specified as:
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psi Pound mass per square inch
Pa Pascals
psf Pound mass per square foot
atm Atmospheres

Dependencies

The input port label depends on the Initial unit setting.

Programmatic Use
Block Parameter: IU
Type: character vector
Values: 'psi' | 'Pa' | 'psf' | 'atm'
Default: 'psi'

Final unit — Output units

Pa (default) | psi | psf | atm

Output units, specified as:

psi Pound mass per square inch
Pa Pascals
psf Pound mass per square foot
atm Atmospheres

Dependencies

The output port label depends on the Final unit setting.

Programmatic Use
Block Parameter: OU
Type: character vector
Values: 'psi' | 'Pa' | 'psf' | 'atm'
Default: 'Pa'

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Acceleration Conversion | Angle Conversion | Angular Acceleration Conversion | Angular Velocity
Conversion | Density Conversion | Force Conversion | Length Conversion | Mass Conversion |
Temperature Conversion | Velocity Conversion

5 Blocks

5-622



Quaternion Conjugate
Calculate conjugate of quaternion
Library: Aerospace Blockset / Utilities / Math Operations

Description
The Quaternion Conjugate block calculates the conjugate for a given quaternion. Aerospace Blockset
uses quaternions that are defined using the scalar-first convention. For more information on
quaternion forms, see “Algorithms” on page 5-623

Ports
Input

q — Input quaternion
quaternion | vector of quaternions

Quaternions in the form of [q0, r0, ... , q1, r1, ... , q2, r2, ... , q3, r3, ...], specified as a quaternion or
vector.
Data Types: double | bus

Output

q' — Quaternion conjugate
quaternion conjugate | vector of quaternion conjugates

Quaternion conjugates in the form of [q0′, r0′, ... , q1′, r1′, ... , q2′, r2′, ... , q3′, r3′, ...], returned as a
quaternion or vector.
Data Types: double | bus

Algorithms
The quaternion has the form of

q = q0 + iq1 + jq2 + kq3 .

The quaternion conjugate has the form of

q′ = q0− iq1− jq2− kq3 .

Version History
Introduced before R2006a
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References
[1] Stevens, Brian L., Frank L. Lewis. Aircraft Control and Simulation, Second Edition. Hoboken, NJ:

Wiley–Interscience.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Quaternion Division | Quaternion Inverse | Quaternion Modulus | Quaternion Multiplication |
Quaternion Norm | Quaternion Rotation | Quaternion Normalize
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Quaternion Division
Divide quaternion by another quaternion
Library: Aerospace Blockset / Utilities / Math Operations

Description
The Quaternion Division block divides a given quaternion by another. Aerospace Blockset uses
quaternions that are defined using the scalar-first convention. The output is the resulting quaternion
from the division or vector of resulting quaternions from division. For the quaternion forms used, see
“Algorithms” on page 5-625.

Ports
Input

q — Dividend quaternion
quaternion | vector of quaternions

Dividend quaternions in the form of [q0, p0, ..., q1, p1, ... , q2, p2, ... , q3, p3, ...], specified as a
quaternion or vector of quaternions.
Data Types: double

r — Divisor quaternion
quaternion | vector of quaternions

Divisor quaternions in the form of [s0, r0, ..., s1, r1, ... , s2, r2, ... , s3, r3, ...], specified as a quaternion or
vector of quaternions.
Data Types: double

Output

q/r — Output quaternion
quaternion | vector

Output quaternion or vector of resulting quaternions from division.
Data Types: double

Algorithms
The quaternions have the form of

q = q0 + iq1 + jq2 + kq3

and
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r = r0 + ir1 + jr2 + kr3 .

The resulting quaternion from the division has the form of

t = q
r = t0 + it1 + jt2 + kt3,

where

t0 =
(r0q0 + r1q1 + r2q2 + r3q3)

r0
2 + r1

2 + r2
2 + r3

2

t1 =
(r0q1− r1q0− r2q3 + r3q2)

r0
2 + r1

2 + r2
2 + r3

2

t2 =
(r0q2 + r1q3− r2q0− r3q1)

r0
2 + r1

2 + r2
2 + r3

2

t3 =
(r0q3− r1q2 + r2q1− r3q0)

r0
2 + r1

2 + r2
2 + r3

2

Version History
Introduced before R2006a

References
[1] Stevens, Brian L., Frank L. Lewis. Aircraft Control and Simulation, Second Edition. Hoboken, NJ:

Wiley–Interscience.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Quaternion Conjugate | Quaternion Inverse | Quaternion Modulus | Quaternion Multiplication |
Quaternion Norm | Quaternion Normalize | Quaternion Rotation
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Quaternion Interpolation
Quaternion interpolation between two quaternions
Library: Aerospace Blockset / Utilities / Math Operations

Description
The Quaternion Interpolation block calculates the quaternion interpolation between two normalized
quaternions by an interval fraction. Aerospace Blockset uses quaternions that are defined using the
scalar-first convention. Select the interpolation method from SLERP, LERP, or NLERP. For equations
used for the interpolation methods, see “Algorithms” on page 5-629.

The two normalized quaternions are the two extremes between which the block calculates the
quaternion.

Ports
Input

q0 — First normalized quaternion
4-by-1 vector | 1-by-4 vector

First normalized quaternion for which to calculate the interpolation. This quaternion must be a
normalized quaternion
Data Types: double

q1 — Second normalized quaternion
4-by-1 vector | 1-by-4 vector

Second normalized quaternion for which to calculate the interpolation, specified as a 4-by-1 vector or
1-by-4 vector. This quaternion must be a normalized quaternion.
Data Types: double

f — Interval fraction
scalar

Interval fraction by which to calculate the quaternion interpolation . This value varies between 0 and
1. It represents the intermediate rotation of the quaternion to be calculated. This fraction affects the
interpolation method rotational velocities.

Dependencies

The interval fraction affects the rotational velocities of the interpolation methods for the Methods
parameter. For more information on interval fractions, see [1].
Data Types: double
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Output

qf — Natural logarithm
vector

Natural logarithm of quaternion, returned as a vector.
Data Types: double

Parameters
Methods — Quaternion interpolation method

SLERP (default) | LERP | NLERP

Quaternion interpolation method to calculate the quaternion interpolation, specified as:

• SLERP

Quaternion slerp. Spherical linear quaternion interpolation method.
• LERP

Quaternion lerp. Linear quaternion interpolation method.
• NLERP

Normalized quaternion linear interpolation method.

Dependencies

These methods have different rotational velocities, depending on the interval fraction from input port
f. For more information on interval fractions, see [1].

Programmatic Use
Block Parameter: method
Type: character vector
Values: 'SLERP' | 'LERP' | 'NLERP'
Default: 'SLERP'

Action for out-of-range input — Out-of-range block behavior

Error (default) | None | Warning

Out-of-range block behavior, specified as follows.

Action Description
None No action.
Warning Warning in the MATLAB Command Window, model simulation

continues.
Error (default) MATLAB returns an exception, model simulation stops.

Programmatic Use
Block Parameter: action
Type: character vector
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Values: 'None' | 'Warning' | 'Error'
Default: 'Error'

Algorithms

Slerp(p, q, h) = p(p*q)h with h ∈ [0, 1] .

LERP(p, q, h) = p(1− h) + qh with h ∈ [0, 1] .

With r = LERP(p, q, h),NLERP(p, q, h) = r
r .

Version History
Introduced in R2016a

References
[1] Dam, Erik B., Martin Koch, Martin Lillholm. "Quaternions, Interpolation, and Animation."

University of Copenhagen, København, Denmark, 1998.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Quaternion Normalize
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Quaternion Inverse
Calculate inverse of quaternion
Library: Aerospace Blockset / Utilities / Math Operations

Description
The Quaternion Inverse block calculates the inverse for a given quaternion. Aerospace Blockset uses
quaternions that are defined using the scalar-first convention. For the equations used for the
quaternion and quaternion inverse, “Algorithms” on page 5-630.

Ports
Input

q — Quaternion
quaternion | vector of quaternions

Quaternions in the form of [ q 0 , r 0 , ..., q 1 , r 1 , ... , q 2 , r 2 , ... , q 3 , r 3 , ...], specified as a
quaternion or vector of quaternions.
Data Types: double

Output

Inv(q) — Quaternion inverse
quaternion inverse | vector of quaternion inverses

Quaternion inverse or vector of quaternion inverses.
Data Types: double

Algorithms
The quaternion has the form of

q = q0 + iq1 + jq2 + kq3 .

The quaternion inverse has the form of

q−1 =
q0− iq1− jq2− kq3

q0
2 + q1

2 + q2
2 + q3

2 .

Version History
Introduced before R2006a
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References
[1] Stevens, Brian L., Frank L. Lewis. Aircraft Control and Simulation, Second Edition. Hoboken, NJ:

Wiley–Interscience.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Quaternion Rotation | Quaternion Normalize | Quaternion Norm | Quaternion Multiplication |
Quaternion Modulus | Quaternion Division | Quaternion Conjugate

 Quaternion Inverse
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Quaternion Modulus
Calculate modulus of quaternion
Library: Aerospace Blockset / Utilities / Math Operations

Description
The Quaternion Modulus block calculates the magnitude for a given quaternion. Aerospace Blockset
uses quaternions that are defined using the scalar-first convention. For the equations used for the
quaternion and quaternion modulus, see “Algorithms” on page 5-632.

Ports
Input

q — Quaternion
quaternion | vector of quaternions

Quaternions in the form of [ q 0 , r 0 , ..., q 1 , r 1 , ... , q 2 , r 2 , ... , q 3 , r 3 , ...], specified as a
quaternion or vector of quaternions.
Data Types: double

Output

|q| — Quaternion modulus
quaternion modulus | vector of quaternion moduli

Quaternion modulus or vector of quaternion moduli in the form of [| q |, | r |, ...].
Data Types: double

Algorithms
The quaternion has the form of

q = q0 + iq1 + jq2 + kq3 .

The quaternion modulus has the form of

q = q0
2 + q1

2 + q2
2 + q3

2

Version History
Introduced before R2006a

5 Blocks

5-632



References
[1] Stevens, Brian L., Frank L. Lewis. Aircraft Control and Simulation, Second Edition. Hoboken, NJ:

Wiley–Interscience.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Quaternion Conjugate | Quaternion Rotation | Quaternion Normalize | Quaternion Norm | Quaternion
Multiplication | Quaternion Inverse | Quaternion Division
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Quaternion Multiplication
Calculate product of two quaternions
Library: Aerospace Blockset / Utilities / Math Operations

Description
The Quaternion Multiplication block calculates the product for two given quaternions. Aerospace
Blockset uses quaternions that are defined using the scalar-first convention. For more information on
the quaternion forms, see “Algorithms” on page 5-634.

Ports
Input

q — First quaternion
quaternion | vector of quaternions

First quaternion, specified as a vector or vector of quaternions. A vector of quaternions has this form,
where q and p are quaternions:

[ q 0 , p 0 , ..., q 1 , p 1 , ... , q 2 , p 2 , ... , q 3 , p 3 , ...]

Data Types: double

r — Second quaternion
quaternion | vector of quaternions

Second quaternion, specified as a vector or vector of quaternions. A vector of quaternions has this
form, where s and r are quaternions:

[ s 0 , r 0 , ..., s 1 , r 1 , ... , s 2 , r 2 , ... , s 3 , r 3 , ...]

Data Types: double

Output

q*r — Product
vector | vector of quaternion products

Product of two quaternions, output as a vector or vector of quaternion products.
Data Types: double

Algorithms
This block uses quaternions of the form of

q = q0 + iq1 + jq2 + kq3
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and

r = r0 + ir1 + jr2 + kr3 .

The quaternion product has the form of

t = q × r = t0 + it1 + jt2 + kt3,

where

t0 = (r0q0− r1q1− r2q2− r3q3)
t1 = (r0q1 + r1q0− r2q3 + r3q2)
t2 = (r0q2 + r1q3 + r2q0− r3q1)
t3 = (r0q3− r1q2 + r2q1 + r3q0)

Version History
Introduced before R2006a

References
[1] Stevens, Brian L., Frank L. Lewis. Aircraft Control and Simulation, Second Edition. Hoboken, NJ:

Wiley–Interscience.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Quaternion Conjugate | Quaternion Division | Quaternion Inverse | Quaternion Modulus | Quaternion
Norm | Quaternion Normalize | Quaternion Rotation

Topics
“Explore the NASA HL-20 Model” on page 1-5

 Quaternion Multiplication
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Quaternion Norm
Calculate norm of quaternion
Library: Aerospace Blockset / Utilities / Math Operations

Description
The Quaternion Norm block calculates the norm for a given quaternion. Aerospace Blockset uses
quaternions that are defined using the scalar-first convention. For the equations used for the
quaternion and quaternion norm, see “Algorithms” on page 5-636.

Ports
Input

q — Quaternion norm
quaternion norm | vector of quaternion norms

Quaternions in the form of [ q 0 , r 0 , ..., q 1 , r 1 , ... , q 2 , r 2 , ... , q 3 , r 3 , ...], specified as a
quaternion norm or vector of quaternion norms.
Data Types: double

Output

norm(q) — Quaternion norm
quaternion norm | vector of quaternion norms

Quaternion norm or vector of quaternion norms in the form of [ norm (q), norm (r), ...].
Data Types: double

Algorithms
The quaternion has the form of

q = q0 + iq1 + jq2 + kq3 .

The quaternion norm has the form of

norm(q) = q0
2 + q1

2 + q2
2 + q3

2

Version History
Introduced before R2006a
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References
[1] Stevens, Brian L., Frank L. Lewis. Aircraft Control and Simulation, Second Edition. Hoboken, NJ:

Wiley–Interscience.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Quaternion Conjugate | Quaternion Division | Quaternion Inverse | Quaternion Modulus | Quaternion
Multiplication | Quaternion Normalize | Quaternion Rotation

 Quaternion Norm
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Quaternion Normalize
Normalize quaternion
Library: Aerospace Blockset / Utilities / Math Operations

Description
The Quaternion Normalize block calculates a normalized quaternion for a given quaternion.
Aerospace Blockset uses quaternions that are defined using the scalar-first convention. For the
equations used for the quaternion and normalized quaternion, see “Algorithms” on page 5-638.

Ports
Input

q — Quaternion
quaternion | vector of quaternions

Quaternions in the form of [ q 0 , r 0 , ..., q 1 , r 1 , ... , q 2 , r 2 , ... , q 3 , r 3 , ...], specified as a
quaternion or vector of quaternions.
Data Types: double

Output

normal(q) — Normalized quaternion
normalized quaternion | vector of normalized quaternions

Normalized quaternion or vector of normalized quaternions.
Data Types: double

Algorithms
The quaternion has the form of

q = q0 + iq1 + jq2 + kq3 .

The normalized quaternion has the form of

normal(q) =
q0 + iq1 + jq2 + kq3

q0
2 + q1

2 + q2
2 + q3

2 .

Version History
Introduced before R2006a
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References
[1] Stevens, Brian L., Frank L. Lewis. Aircraft Control and Simulation, Second Edition. Hoboken, NJ:

Wiley–Interscience.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Quaternion Conjugate | Quaternion Division | Quaternion Inverse | Quaternion Modulus | Quaternion
Multiplication | Quaternion Norm | Quaternion Rotation

 Quaternion Normalize
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Quaternion Rotation
Rotate vector by quaternion
Library: Aerospace Blockset / Utilities / Math Operations

Description
The Quaternion Rotation block calculates the resulting vector following the passive rotation of initial
vector vec by quaternion q and returns a final vector, the rotated vector or vector of rotated vectors.
Aerospace Blockset uses quaternions that are defined using the scalar-first convention. This block
normalizes all quaternion inputs. For the equations used for the quaternion, initial vector, and final
vector, see “Algorithms” on page 5-640.

Ports
Input

q — Quaternion
quaternion | vector

Quaternions in the form of [q0, r0, ..., q1, r1, ... , q2, r2, ... , q3, r3, ...], specified as a quaternion or
vector of quaternions.
Data Types: double

vec — Initial vector
vector | vector of vectors

Initial vector or vector of vectors in the form of [v1, u1, ... , v2, u2, ... , v3, u3, ...].
Data Types: double

Output

vec_rot — Final quaternion
rotated quaternion | vector of rotated quaternions

Final vector or vector of rotated vectors.
Data Types: double

Algorithms
The normalized quaternion has the form of

q = q0 + iq1 + jq2 + kq3 .

The vector has the form of
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v = iv1 + jv2 + kv3 .

The Aerospace Blockset defines a passive quaternion rotation of the form:

v′ = q−1⊗ 0
v ⊗ q,

where Ⓧ is the operator of a quaternion multiplication.

The final vector has the form of

v′ =
v1′
v2′
v3′

=

(1− 2q2
2− 2q3

2) 2(q1q2 + q0q3) 2(q1q3− q0q2)

2(q1q2− q0q3) (1− 2q1
2− 2q3

2) 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3− q0q1) (1− 2q1
2− 2q2

2)

v1
v2
v3

Version History
Introduced before R2006a

References
[1] Stevens, Brian L., Frank L. Lewis. Aircraft Control and Simulation, Second Edition. Hoboken, NJ:

Wiley–Interscience.

[2] Diebel, James. "Representing Attitude: Euler Angles, Unit Quaternions, and Rotation Vectors."
Stanford University, Stanford, California, 2006.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Quaternion Conjugate | Quaternion Division | Quaternion Inverse | Quaternion Multiplication |
Quaternion Norm | Quaternion Normalize

Topics
“Passive Transformations” on page 2-8

 Quaternion Rotation
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Quaternions to Direction Cosine Matrix
Convert quaternion vector to direction cosine matrix
Library: Aerospace Blockset / Utilities / Axes Transformations

Description
The Quaternions to Direction Cosine Matrix block transforms a four-element unit quaternion vector
(q0, q1, q2, q3) into a 3-by-3 direction cosine matrix (DCM). The outputted DCM performs the
coordinate transformation of a vector in inertial axes to a vector in body axes. Aerospace Blockset
uses quaternions that are defined using the scalar-first convention. This block normalizes all
quaternion inputs. For more information, see “Algorithms” on page 5-642.

Ports
Input

q — Quaternion
4-by-1 vector

Quaternion, specified as a 4-by-1 vector.
Data Types: double

Output

DCMbe — Direction cosine matrix
3-by-3 matrix

Direction cosine matrix, returned as a 3-by-3 matrix.
Data Types: double

Algorithms
Using quaternion algebra, if a point P is subject to the rotation described by a quaternion q, it
changes to P′ given by the following relationship:

P′ = qPqc

q = q0 + iq1 + jq2 + kq3

qc = q0− iq1− jq2− kq3
P = 0 + ix + jy + kz

Expanding P′ and collecting terms in x, y, and z gives the following for P′ in terms of P in the vector
quaternion format:
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P′ =

0
x′
y′
z′

=

0
(q0

2 + q1
2− q2

2− q3
2)x + 2(q1q2− q0q3)y + 2(q1q3 + q0q2)z

2(q0q3 + q1q2)x + (q0
2− q1

2 + q2
2− q3

2)y + 2(q2q3− q0q1)z

2(q1q3− q0q2)x + 2(q0q1 + q2q3)y + (q0
2− q1

2− q2
2 + q3

2)z

Since individual terms in P′ are linear combinations of terms in x, y, and z, a matrix relationship to
rotate the vector (x, y, z) to (x′, y′, z′) can be extracted from the preceding. This matrix rotates a
vector in inertial axes, and hence is transposed to generate the DCM that performs the coordinate
transformation of a vector in inertial axes into body axes.

DCM =

(q0
2 + q1

2− q2
2− q3

2) 2(q1q2 + q0q3) 2(q1q3− q0q2)

2(q1q2− q0q3) (q0
2− q1

2 + q2
2− q3

2) 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3− q0q1) (q0
2− q1

2− q2
2 + q3

2)

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Direction Cosine Matrix to Rotation Angles | Direction Cosine Matrix to Quaternions | Rotation Angles
to Direction Cosine Matrix | Rotation Angles to Quaternions

 Quaternions to Direction Cosine Matrix
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Quaternions to Rodrigues
Convert quaternion to Euler-Rodrigues vector
Library: Aerospace Blockset / Utilities / Axes Transformations

Description
The Quaternions to Rodrigues block converts the 4-by-1 quaternion to the three-element Euler-
Rodrigues vector. Aerospace Blockset uses quaternions that are defined using the scalar-first
convention. This block normalizes all quaternion inputs. The rotation used in this function is a passive
transformation between two coordinate systems. For more information on Euler-Rodrigues vectors,
see “Algorithms” on page 5-644.

Ports
Input

Quaternion — Quaternion
4-by-1 matrix

Quaternion from which to determine Euler-Rodrigues vector. Quaternion scalar is the first element.
Data Types: double

Output

rod — Euler-Rodrigues vector
three-element vector

Euler-Rodrigues vector determined from the quaternion.
Data Types: double

Algorithms
• An Euler-Rodrigues vector b  represents a rotation by integrating a direction cosine of a rotation

axis with the tangent of half the rotation angle as follows:

b = bx by bz

where:

bx = tan 1
2θ sx,

by = tan 1
2θ sy,

bz = tan 1
2θ sz
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are the Rodrigues parameters. Vector s  represents a unit vector around which the rotation is
performed. Due to the tangent, the rotation vector is indeterminate when the rotation angle
equals ±pi radians or ±180 deg. Values can be negative or positive.

Version History
Introduced in R2017a

References
[1] Dai, J.S. "Euler-Rodrigues formula variations, quaternion conjugation and intrinsic connections."

Mechanism and Machine Theory, 92, 144-152. Elsevier, 2015.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Direction Cosine Matrix to Rodrigues | Rodrigues to Direction Cosine Matrix | Rodrigues to
Quaternions | Rodrigues to Rotation Angles | Rotation Angles to Rodrigues

 Quaternions to Rodrigues
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Quaternions to Rotation Angles
Determine rotation vector from quaternion
Library: Aerospace Blockset / Utilities / Axes Transformations

Description
The Quaternions to Rotation Angles block converts the four-element quaternion vector (q0, q1, q2, q3),
into the rotation described by the three rotation angles (R1, R2, R3). The block generates the
conversion by comparing elements in the direction cosine matrix (DCM) as a function of the rotation
angles. The rotation used in this block is a passive transformation between two coordinate systems.
The elements in the DCM are functions of a unit quaternion vector. Aerospace Blockset uses
quaternions that are defined using the scalar-first convention. This block normalizes all quaternion
inputs. For more information on the direction cosine matrix, see “Algorithms” on page 5-647.

Limitations
• For the ZYX, ZXY, YXZ, YZX, XYZ, and XZY rotations, the block generates an R2 angle that lies

between ±pi/2 radians, and R1 and R3 angles that lie between ±pi radians.
• For the 'ZYZ', 'ZXZ', 'YXY', 'YZY', 'XYX', and 'XZX' rotations, the block generates an R2 angle that

lies between 0 and pi radians, and R1 and R3 angles that lie between ±pi radians. However, in the
latter case, when R2 is 0, R3 is set to 0 radians.

Ports
Input

q — Quaternion
4-by-1 vector

Quaternion, specified as a 4-by-1 vector.
Data Types: double

Output

[R1,R2,R3] — Rotation angles
3-by-1 vector

Rotation angles, returned 3-by-1 vector, in radians.
Data Types: double

Parameters
Rotation order — Rotation order
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ZYX (default) | ZYZ | ZXY | ZXZ | YXZ | YXY | YZX | YZY | XYZ | XYX | XZY | XZX

Output rotation order for the three rotation angles.

Programmatic Use
Block Parameter: rotationOrder
Type: character vector
Values: ZYX | ZYZ |ZXY | ZXZ | YXZ | YXY | YZX | YZY | XYZ | XYX | XZY | XZX
Default: 'ZYX'

Algorithms
The elements in the DCM are functions of a unit quaternion vector. For example, for the rotation
order z-y-x, the DCM is defined as:

DCM =
cosθcosψ cosθsinψ −sinθ
(sinϕsinθcosψ − cosϕsinψ) (sinϕsinθsinψ + cosϕcosψ) sinϕcosθ
(cosϕsinθcosψ + sinϕsinψ) (cosϕsinθsinψ − sinϕcosψ) cosϕcosθ

The DCM defined by a unit quaternion vector is:

DCM =

(q0
2 + q1

2− q2
2− q3

2) 2(q1q2 + q0q3) 2(q1q3− q0q2)

2(q1q2− q0q3) (q0
2− q1

2 + q2
2− q3

2) 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3− q0q1) (q0
2− q1

2− q2
2 + q3

2)

From the preceding equation, you can derive the following relationships between DCM elements and
individual rotation angles for a ZYX rotation order:

ϕ = atan(DCM(2, 3), DCM(3, 3))
= atan(2(q2q3 + q0q1), (q0

2− q1
2− q2

2 + q3
2))

θ = asin(− DCM(1, 3))
= asin(− 2(q1q3− q0q2))

ψ = atan(DCM(1, 2), DCM(1, 1))
= atan(2(q1q2 + q0q3), (q0

2 + q1
2− q2

2− q3
2))

where Ψ is R1, Θ is R2, and Φ is R3.

Version History
Introduced in R2007b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.
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See Also
Direction Cosine Matrix to Rotation Angles | Direction Cosine Matrix to Quaternions | Quaternions to
Direction Cosine Matrix | Rotation Angles to Direction Cosine Matrix | Rotation Angles to Quaternions
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Radius at Geocentric Latitude
Estimate radius of ellipsoid planet at geocentric latitude
Library: Aerospace Blockset / Flight Parameters

Description
The Radius at Geocentric Latitude block estimates the radius (rs) of an ellipsoid planet at a particular
geocentric latitude (λs).

The following equation estimates the ellipsoid radius (rs) using flattening (f ), geocentric latitude (λs),
and equatorial radius (R):

rs = R2

1 + 1/(1− f )2− 1 sin2λs
.

Ports
Input

λs — Geocentric latitude
scalar | vector

Geocentric latitude, specified as a scalar or vector, in degrees.
Data Types: double

Output

rs — Radius
scalar | vector

 Radius at Geocentric Latitude
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Radius of planet at geocentric latitude, returned as a scalar or vector, in the same units as flattening.
Data Types: double

Parameters
Units — Output units

Metric (MKS) (default) | English

Output units, specified as:

Units Equatorial Radius Radius at Geocentric Latitude
Metric (MKS) Meters Meters
English Feet Feet

Dependencies

To enable this parameter, set Planet model to Earth (WGS84).
Programmatic Use
Block Parameter: units
Type: character vector
Values: 'Metric (MKS)' | 'English'
Default: 'Metric (MKS)'

Planet model — Planet model

Earth (WGS84) (default) | Custom

Planet model to use, Custom or Earth (WGS84).
Programmatic Use
Block Parameter: ptype
Type: character vector
Values: 'Earth (WGS84)' | 'Custom'
Default: 'Earth (WGS84)'

Flattening — Flattening of planet

1/298.257223563 (default) | scalar

Flattening of the planet, specified as a double scalar.
Dependencies

To enable this parameter, set Planet model to Custom.
Programmatic Use
Block Parameter: F
Type: character vector
Values: double scalar
Default: 1/298.257223563

Equatorial radius of planet — Radius of planet at equator
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6378137 (default) | scalar

Radius of the planet at its equator, in the same units as the desired units for ECEF position.

Dependencies

To enable this parameter, set Planet model to Custom.

Programmatic Use
Block Parameter: R
Type: character vector
Values: double scalar
Default: 6378137

Version History
Introduced before R2006a

References
[1] Stevens, Brian L., Frank L. Lewis. Aircraft Control and Simulation, New York, John Wiley & Sons,

1992.

[2] Zipfel, Peter H., Modeling and Simulation of Aerospace Vehicle Dynamics. Second Edition. Reston,
VA: AIAA Education Series, 2000.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
ECEF Position to LLA | Direction Cosine Matrix ECEF to NED | Direction Cosine Matrix ECEF to NED
to Latitude and Longitude | Geocentric to Geodetic Latitude | Geodetic to Geocentric Latitude | LLA
to ECEF Position

 Radius at Geocentric Latitude
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Receive net_ctrl Packet from FlightGear
Receive net_ctrl packet from FlightGear
Library: Aerospace Blockset / Animation / Flight Simulator Interfaces

Description
The Receive net_ctrl Packet from FlightGear block receives a network control and environment data
packet, net_ctrl, from the simulation of a Simulink model in the FlightGear simulator, or from a
FlightGear session. This data packet is compatible with a particular version of FlightGear flight
simulator. This block supports all signals supported by the FlightGear net_ctrl data packet. The
block arranges the signals into multiple groups. The block inserts zeros for packet values that are
part of inactive signal groups.

The Aerospace Blockset product supports FlightGear versions starting from v2.6. If you are using a
FlightGear version older than 2.6, the model displays a notification from the Simulink Upgrade
Advisor. Consider using the Upgrade Advisor to upgrade your FlightGear version. For more
information, see “Supported FlightGear Versions” on page 2-19.

If you run a model that contains this block in Rapid Accelerator mode, the block produces zeros (0s)
and it does not produce deployable code. In Accelerator mode, the block works as expected.

For details on signals and signal groups, see “Output” on page 5-652.

Ports
Output

net_ctrl — Controls information from FlightGear
744-by-1 vector

Controls information from FlightGear, returned as a 744-by-1 vector.
Data Types: uint8

Rx bytes — Received FlightGear packet size
0 | 744

Received FlightGear packet size, specified as a scalar.

• 0, if no data is received
• Size of the packet (744) in bytes.

Dependencies

This port is enabled by the Enable received flag port check box.
Data Types: double
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Parameters
Origin IP address — Origin IP address

127.0.0.1 (default) | scalar

Enter a valid IP address as a dot-decimal string. This IP address must be the address of the computer
from which FlightGear is run, for example, 10.10.10.3.

You can also use a MATLAB expression that returns a valid IP address as a character vector. If
FlightGear is run on the local computer, leave the default value of 127.0.0.1 (localhost).

To determine the source IP address, you can use one of several techniques, such as:

• Use 127.0.0.1 for the local computer (localhost).
• Ping another computer from a Windows cmd.exe (or Linux shell) prompt:

C:\> ping andyspc

Pinging andyspc [144.213.175.92] with 32 bytes of data:

Reply from 144.213.175.92: bytes=32 time=30ms TTL=253
Reply from 144.213.175.92: bytes=32 time=20ms TTL=253
Reply from 144.213.175.92: bytes=32 time=20ms TTL=253
Reply from 144.213.175.92: bytes=32 time=20ms TTL=253

Ping statistics for 144.213.175.92:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 20ms, Maximum =  30ms, Average =  22ms

• On a Windows machine, type ipconfig and use the returned IP address:
H:\>ipconfig

Windows IP Configuration

Ethernet adapter Local Area Connection:

        Connection-specific DNS Suffix  . :
        IP Address. . . . . . . . . . . . : 192.168.42.178
        Subnet Mask . . . . . . . . . . . : 255.255.255.0
        Default Gateway . . . . . . . . . : 192.168.42.254

Programmatic Use
Block Parameter: ReceiveAddress
Type: character vector
Values: scalar
Default: '127.0.0.1'

Origin port — Origin port

5505 (default)

UDP port that the block accepts data from. The sender sends data to the port specified in this
parameter. This value must match the Origin port parameter of the Generate Run Script block. It
must be a unique port number that no other application on the computer uses. The site, https://
en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers, lists commonly known UDP
port numbers. To identify UDP port numbers already in use on your computer, type:

 Receive net_ctrl Packet from FlightGear
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netstat -a -p UDP

Programmatic Use
Block Parameter: ReceivePort
Type: character vector
Values: scalar
Default: '5505'

Sample time — Sample time

1/30 (default) | scalar

Specify the sample time (-1 for inherited).

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar
Default: '1/30'

Enable received flag port — Enable received flag output port

off (default) | on

Enable a received flag output port. Use this check box to determine if a FlightGear network packet
has been received.

Dependencies

Selecting this check box enables the Rx bytes port.

Programmatic Use
Block Parameter: packetFlag
Type: character vector
Values:'off' | 'on'
Default: 'off'

Version History
Introduced in R2012a

See Also
FlightGear Preconfigured 6DoF Animation | Generate Run Script | Pack net_fdm Packet for
FlightGear | Send net_fdm Packet to FlightGear | Unpack net_ctrl Packet from FlightGear

Topics
“Flight Simulator Interface” on page 2-19
“Work with the Flight Simulator Interface” on page 2-23

External Websites
https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers

5 Blocks

5-654

https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers


Relative Ratio
Calculate relative atmospheric ratios
Library: Aerospace Blockset / Flight Parameters

Description
The Relative Ratio block computes the relative atmospheric ratios, including the relative temperature
ratio (θ), θ, relative pressure ratio (δ), and relative density ratio (σ).

θ represents the ratio of the air stream temperature at a chosen reference station relative to sea level
standard atmospheric conditions:

θ = T
T0

.

δ represents the ratio of the air stream pressure at a chosen reference station relative to sea level
standard atmospheric conditions:

δ = P
P0

.

σ represents the ratio of the air stream density at a chosen reference station relative to sea level
standard atmospheric conditions:

σ = ρ
ρ0

.

The Relative Ratio block icon displays the input units selected from the Units parameter.

Limitations
For cases in which total temperature, total pressure, or total density ratio is desired (Mach number is
nonzero), the total temperature, total pressure, and total densities are calculated assuming perfect
gas (with constant molecular weight, constant pressure specific heat, and constant specific heat ratio)
and dry air.

Ports
Input

Mach — Mach number
scalar

Mach number, specified as a scalar.
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Data Types: double

γ — Ratio
scalar

Ratio between the specific heat at constant pressure (Cp) and the specific heat at constant volume
(Cv), specified as a scalar. For example, (γ = Cp/Cv).
Data Types: double

To — Static temperature
scalar

Static temperature, specified as a scalar.
Data Types: double

Po — Static pressure
scalar

Static pressure, specified as a scalar.
Data Types: double

ρo — Static density
scalar

Static density, specified as a scalar.
Data Types: double

Output

θ — Relative temperature ratio
scalar

Relative temperature ratio (θ), returned as a scalar.

Dependencies

To enable this port, select Theta.
Data Types: double

sqrt(θ) — Square root of relative temperature ratio
scalar

Square root of the relative temperature ratio ( θ), returned as a scalar.

Dependencies

To enable this port, select Square root of theta.
Data Types: double

δ — Relative pressure ratio
scalar

Relative pressure ratio, (δ), returned as a scalar.
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Dependencies

To enable this port, select Delta.
Data Types: double

σ — Relative density ratio
scalar

Relative density ratio, (σ), returned as a scalar.

Dependencies

To enable this port, select Sigma.
Data Types: double

Parameters
Units — Units

Metric (MKS) (default) | English

Input units, specified as:

Units Tstatic Pstatic rho_static
Metric (MKS) Kelvin Pascal Kilograms per cubic

meter
English Degrees Rankine Pound force per square

inch
Slug per cubic foot

Programmatic Use
Block Parameter: units
Type: character vector
Values: 'Metric (MKS)' | 'English'
Default: 'Metric (MKS)'

Theta — Relative temperature ratio

on (default) | off

When selected, the block calculates the relative temperature ratio (θ) and static temperature is a
required input.

Programmatic Use
Block Parameter: theta
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Square root of theta — Square root of relative temperature ratio

on (default) | off
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When selected, the block calculates the square root of relative temperature ratio ( θ) and static
temperature is a required input.

Dependencies

Selecting this check box enables the sqrt(θ) output port.

Programmatic Use
Block Parameter: sq_theta
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Delta — Relative pressure ratio

on (default) | off

When selected, the block calculates the relative pressure ratio (δ) and static pressure is a required
input.

Programmatic Use
Block Parameter: delta
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Sigma — Relative density ratio

on (default) | off

When selected, the block the relative density ratio (σ) and static density is a required input.

Programmatic Use
Block Parameter: sigma
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Version History
Introduced before R2006a

References
[1] Aeronautical Vestpocket Handbook, United Technologies Pratt & Whitney, August, 1986.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
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Rotation Angles to Direction Cosine Matrix
Convert rotation angles to direction cosine matrix
Library: Aerospace Blockset / Utilities / Axes Transformations

Description
The Rotation Angles to Direction Cosine Matrix block determines the direction cosine matrix (DCM)
from a given set of rotation angles, R1, R2, and R3, of the first, second, and third rotation angles,
respectively. For example, the default rotation angle order ZYX represents a sequence where R1 is z-
axis rotation (yaw), R2 is y-axis rotation (pitch), and R3 is x-axis rotation (roll). Use the Rotation
Order parameter to change the sequence.

Ports
Input

[R1,R2,R3] — Rotation angles
3-by-1 vector

Rotation angles, specified as a 3-by-1 vector, in radians.
Data Types: double

Output

DCMbe — Direction cosine matrix
3-by-3 matrix

Direction cosine matrix that performs coordinate transformations based on rotation angles, returned
as a 3-by-3 matrix.
Data Types: double

Parameters
Rotation Order — Rotation order

ZYX (default) | ZYZ | ZXY | ZXZ | YXZ | YXY | YZX | YZY | XYZ | XYX | XZY | XZX

Input rotation order for the three rotation angles.

Programmatic Use
Block Parameter: rotationOrder
Type: character vector
Values: 'ZYX' | 'ZYZ' |'ZXY' | 'ZXZ' | 'YXZ' | 'YXY' | 'YZX' | 'YZY' | 'XYZ' | 'XYX' | 'XZY' |
'XZX'
Default: 'ZYX'
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Version History
Introduced in R2007b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Direction Cosine Matrix to Quaternions | Direction Cosine Matrix to Rotation Angles | Quaternions to
Direction Cosine Matrix
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Rotation Angles to Rodrigues
Convert rotation angles to Euler-Rodrigues vector
Library: Aerospace Blockset / Utilities / Axes Transformations

Description
The Rotation Angles to Rodrigues block converts the rotation described by the three rotation angles
R1,R2,R3 into the three-element Euler-Rodrigues vector. The rotation used in this block is a passive
transformation between two coordinate systems. For more information on Euler-Rodrigues vectors,
see “Algorithms” on page 5-662.

Ports
Input

R1,R2,R3 — Rotation angles
three-element vector

Rotation angles, in radians, from which to determine the Euler-Rodrigues vector. Values must be
double.

Output

rod — Euler-Rodrigues vector
three-element vector

Euler-Rodrigues vector determined from rotation angles.
Data Types: double

Parameters
Rotation order — Rotation order
ZYX (default) | ZYX | ZYZ | ZXY | ZXZ | YXZ | YXY | YZX | YZY | XYZ | XYX | XZY | XZX

Rotation order for three wind rotation angles.

The default limitations for the 'ZYX', 'ZXY', 'YXZ', 'YZX', 'XYZ', and 'XZY' sequences generate
an R2 angle that lies between ±pi/2 radians (± 90 degrees), and R1 and R3 angles that lie between
±pi radians (±180 degrees).

The default limitations for the 'ZYZ', 'ZXZ', 'YXY', 'YZY', 'XYX', and 'XZX' sequences generate
an R2 angle that lies between 0 and pi radians (180 degrees), and R1 and R3 angles that lie between
±pi (±180 degrees).

Rodrigues transformation is not defined for rotation angles equal to ±pi radians (±180 deg).
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Programmatic Use
Block Parameter: rotationOrder
Type: character vector
Values: 'ZYX' | 'ZYZ' |'ZXY' | 'ZXZ' | 'YXZ' | 'YXY' | 'YZX' | 'YZY' | 'XYZ' | 'XYX' | 'XZY' |
'XZX'
Default: 'ZYX'

Algorithms

An Euler-Rodrigues vector b  represents a rotation by integrating a direction cosine of a rotation axis
with the tangent of half the rotation angle as follows:

b = bx by bz

where:

bx = tan 1
2θ sx,

by = tan 1
2θ sy,

bz = tan 1
2θ sz

are the Rodrigues parameters. Vector s  represents a unit vector around which the rotation is
performed. Due to the tangent, the rotation vector is indeterminate when the rotation angle equals
±pi radians or ±180 deg. Values can be negative or positive.

Version History
Introduced in R2017a

References
[1] Dai, J.S. "Euler-Rodrigues formula variations, quaternion conjugation and intrinsic connections."

Mechanism and Machine Theory, 92, 144-152. Elsevier, 2015.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Direction Cosine Matrix to Rodrigues | Rodrigues to Direction Cosine Matrix | Rodrigues to
Quaternions | Rodrigues to Rotation Angles | Quaternions to Rodrigues
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Rotation Angles to Quaternions
Calculate quaternion from rotation angles
Library: Aerospace Blockset / Utilities / Axes Transformations

Description
The Rotation Angles to Quaternions block converts the rotation described by the three rotation angles
(R1, R2, R3) into the four-element quaternion vector (q0, q1, q2, q3), where quaternion is defined using
the scalar-first convention. Aerospace Blockset uses quaternions that are defined using the scalar-
first convention. The rotation used in this block is a passive transformation between two coordinate
systems. For more information on quaternions, see “Algorithms” on page 5-664.

Limitations
• The limitations for the ZYX, ZXY, YXZ, YZX, XYZ, and XZY implementations generate an R2 angle

that is between ±90 degrees, and R1 and R3 angles that are between ±180 degrees.
• The limitations for the ZYZ, ZXZ, YXY, YZY, XYX, and XZX implementations generate an R2 angle

that is between 0 and 180 degrees, and R1 and R3 angles that are between ±180 degrees.

Ports
Input

[R1,R2,R3] — Rotation angles
3-by-1 vector

Rotation angles, specified as a 3-by-1 vector, in radians.
Data Types: double

Output

q — Quaternion
4-by-1 vector

Quaternion, specified as a 4-by-1 vector.
Data Types: double

Parameters
Rotation order — Rotation order

ZYX (default) | ZYZ | ZXY | ZXZ | YXZ | YXY | YZX | YZY | XYZ | XYX | XZY | XZX

Specifies the output rotation order for three wind rotation angles.
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Programmatic Use
Block Parameter: rotationOrder
Type: character vector
Values: 'ZYX' | 'ZYZ' |'ZXY' | 'ZXZ' | 'YXZ' | 'YXY' | 'YZX' | 'YZY' | 'XYZ' | 'XYX' | 'XZY' |
'XZX'
Default: 'ZYX'

Algorithms
A quaternion vector represents a rotation about a unit vector μx, μy, μz  through the angle θ. A unit
quaternion itself has unit magnitude, and can be written in the following vector format:

q =

q0
q1
q2
q3

=

cos(θ/2)
sin(θ/2)μx

sin(θ/2)μy

sin(θ/2)μz

An alternative representation of a quaternion is as a complex number,

q = q0 + iq1 + jq2 + kq3

where, for the purposes of multiplication:

i2 = j2 = k2 = − 1
i j = − ji = k
jk = − k j = i
ki = − ik = j

The benefit of representing the quaternion in this way is the ease with which the quaternion product
can represent the resulting transformation after two or more rotations.

Version History
Introduced in R2007b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Direction Cosine Matrix to Quaternions | Quaternions to Direction Cosine Matrix | Quaternions to
Rotation Angles | Rotation Angles to Direction Cosine Matrix
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Revolutions Per Minute (RPM) Indicator
Display measurements for engine revolutions per minute (RPM) in percentage of RPM
Library: Aerospace Blockset / Flight Instruments

Description
The RPM Indicator block displays measurements for engine revolutions per minute in percentage of
RPM.

The range of values for RPM goes from 0 to 110 %. Minor ticks represent increments of 5 % RPM and
major ticks represent increments of 10 % RPM.

Tip To facilitate understanding and debugging your model, you can modify instrument block
connections in your model during normal and accelerator mode simulations.

Parameters
Connection — Connect to signal
signal name

Connect to signal for display, selected from list of signal names.

To view the data from a signal, select a signal in the model. The signal appears in the Connection
table. Select the option button next to the signal you want to display. Click Apply to connect the
signal.

The table has a row for the signal connected to the block. If there are no signals selected in the
model, or the block is not connected to any signals, the table is empty.

Scale Colors — Ranges of color bands
0 (default) | double | scalar

Ranges of color bands on the outside of the scale, specified as a finite double, or scalar value. Specify
the minimum and maximum color range to display on the gauge.

To add a new color, click +. To remove a color, click -.

Programmatic Use
Block Parameter: ScaleColors
Type: n-by-1 struct array
Values: struct array with elements Min, Max, and Color
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Label — Block label location

Top (default) | Bottom | Hide

Block label, displayed at the top or bottom of the block, or hidden.

• Top

Show label at the top of the block.
• Bottom

Show label at the bottom of the block.
• Hide

Do not show the label or instructional text when the block is not connected.

Programmatic Use
Block Parameter: LabelPosition
Type: character vector
Values: 'Top' | 'Bottom' | 'Hide'
Default: 'Top'

Version History
Introduced in R2016a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block is ignored for code generation.

See Also
Airspeed Indicator | Altimeter | Artificial Horizon | Climb Rate Indicator | Exhaust Gas Temperature
(EGT) Indicator | Heading Indicator | Turn Coordinator

Topics
“Display Measurements with Cockpit Instruments” on page 2-50
“Programmatically Interact with Gauge Band Colors” on page 2-52
“Flight Instrument Gauges” on page 2-49

5 Blocks

5-666



Self-Conditioned [A,B,C,D]
Implement state-space controller in self-conditioned form
Library: Aerospace Blockset / GNC / Control

Description
The Self-Conditioned [A,B,C,D] block can be used to implement the state-space controller defined by

ẋ = Ax + Be
u = Cx + De

in the self-conditioned form

ż = (A− HC)z + (B− HD)e + Humeas
udem = Cz + De

The input umeas is a vector of the achieved actuator positions, and the output udem is the vector of
controller actuator demands. In the case that the actuators are not limited, then umeas = udem and
substituting the output equation into the state equation returns the nominal controller. In the case
that they are not equal, the dynamics of the controller are set by the poles of A-HC.

Hence H must be chosen to make the poles sufficiently fast to track umeas but at the same time not so
fast that noise on e is propagated to udem. The matrix H is designed by a callback to the Control
System Toolbox command place to place the poles at defined locations.

Limitations
This block requires the Control System Toolbox license.

Ports
Input

e — Control error
vector

Control error, specified as a vector.
Data Types: double

u_meas — Achieved actuator positions
vector

Achieved actuator positions, specified as a vector.
Data Types: double
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Output

u_dem — Actuator demands
vector

Actuator demands, specified as a vector.
Data Types: double

Parameters
A-matrix — A-matrix of the state-space implementation

[-1 -0.2;0 -3] (default) | array

A-matrix of the state-space implementation. The A-matrix should have three dimensions, the last one
corresponding to the scheduling variable v. For example, if the A-matrix corresponding to the first
entry of v is the identity matrix, then A(:,:,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: Ak
Type: character vector
Values: vector
Default: '[-1 -0.2;0 -3]'

B-matrix — B-matrix of the state-space implementation

[1;1] (default) | array

B-matrix of the state-space implementation, specified as a array. The B-matrix should have three
dimensions, the last one corresponding to the scheduling variable v. For example, if the B-matrix
corresponding to the first entry of v is the identity matrix, then B(:,:,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: Bk
Type: character vector
Values: vector
Default: '[1;1]'

C-matrix — C-matrix of the state-space implementation

[1 0] (default) | array

C-matrix of the state-space implementation, specified as a array. The C-matrix should have three
dimensions, the last one corresponding to the scheduling variable v. For example, if the C-matrix
corresponding to the first entry of v is the identity matrix, then C(:,:,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: Ck
Type: character vector
Values: vector
Default: '[1 0]'

D-matrix — D-matrix of the state-space implementation
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0.02 (default) | array | scalar

D-matrix of the state-space implementation. The D-matrix should have three dimensions, the last one
corresponding to the scheduling variable v. For example, if the D-matrix corresponding to the first
entry of v is the identity matrix, then D(:,:,1) = [1 0;0 1];.

Programmatic Use
Block Parameter: Dk
Type: character vector
Values: vector
Default: '0.02'

Initial state, x_initial — Initial states

0 (default) | vector

Initial states for the controller, that is, initial values for the state vector, z. It should have length equal
to the size of the first dimension of A.

Programmatic Use
Block Parameter: x_initial
Type: character vector
Values: vector
Default: '0'

Poles of A-H*C — Desired poles

[-5 -2] (default) | vector

Desired poles of A-H*C, specified as a vector. Hence the number of pole locations defined should be
equal to the dimension of the A-matrix.

Programmatic Use
Block Parameter: vec_w
Type: character vector
Values: vector
Default: '[-5 -2]'

More About
State-Space Controller

State-space controller implemented in both self-conditioned and standard state-space forms.

This Simulink model shows a state-space controller implemented in both self-conditioned and
standard state-space forms. The actuator authority limits of ±0.5 units are modeled by the Saturation
block.
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Notice that the A-matrix has a zero in the 1,1 element, indicating integral action.

The top trace shows the conventional state-space implementation. The output of the controller winds
up well past the actuator upper authority limit of +0.5. The lower trace shows that the self-
conditioned form results in an actuator demand that tracks the upper authority limit, which means
that when the sign of the control error, e, is reversed, the actuator demand responds immediately.

Version History
Introduced before R2006a

References
[1] Kautsky, Nichols, and Van Dooren, "Robust Pole Assignment in Linear State Feedback,"

International Journal of Control, Vol. 41, Number 5, 1985, pp. 1129-1155.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.
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See Also
1D Self-Conditioned [A(v),B(v),C(v),D(v)] | 2D Self-Conditioned [A(v),B(v),C(v),D(v)] | 3D Self-
Conditioned [A(v),B(v),C(v),D(v)] | Saturation | Nonlinear Second-Order Actuator | Linear Second-
Order Actuator
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Send net_fdm Packet to FlightGear
Transmit net_fdm packet to destination IP address and port for FlightGear session
Library: Aerospace Blockset / Animation / Flight Simulator Interfaces

Description
The Send net_fdm Packet to FlightGear block transmits the net_fdm packet to FlightGear on the
current computer, or a remote computer on the network. The packet is constructed using the Pack
net_fdm Packet for FlightGear block. The destination port should be an unused port that you can use
when you launch FlightGear with the FlightGear command line flag:

--fdm=network,localhost,5501,5502,5503

This block does not produce deployable code.

Ports
Input

net_fdm — FlightGear net_fdm data packet
scalar

FlightGear net_fdm data packet, specified as a scalar.
Data Types: uint8

Parameters
Destination IP address — Destination IP address for remote computer

127.0.0.1 (default) | scalar

Destination IP address, specified as a scalar.

You can use one of several techniques to determine the destination IP address, such as:

• Use 127.0.0.1 for the local computer
• Ping another computer from a Windows cmd.exe (or UNIX shell) prompt:

C:\> ping andyspc

Pinging andyspc [144.213.175.92] with 32 bytes of data:

Reply from 144.213.175.92: bytes=32 time=30ms TTL=253
Reply from 144.213.175.92: bytes=32 time=20ms TTL=253
Reply from 144.213.175.92: bytes=32 time=20ms TTL=253
Reply from 144.213.175.92: bytes=32 time=20ms TTL=253
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Ping statistics for 144.213.175.92:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 20ms, Maximum =  30ms, Average =  22ms

• On a Windows machine, type ipconfig and use the returned IP Address:
H:\>ipconfig

Windows IP Configuration

Ethernet adapter Local Area Connection:

        Connection-specific DNS Suffix  . :
        IP Address. . . . . . . . . . . . : 192.168.42.178
        Subnet Mask . . . . . . . . . . . : 255.255.255.0
        Default Gateway . . . . . . . . . : 192.168.42.254

Programmatic Use
Block Parameter: DestinationIpAddress
Type: character vector
Values: scalar
Default: 127.0.0.1

Destination port — Destination port for remote computer

5502 (default) | scalar

Destination port, specified as a scalar

Programmatic Use
Block Parameter: DestinationPort
Type: character vector
Values: scalar
Default: 5502

Sample time — Sample time

1/30 (default) | scalar

Sample time (-1 for inherited), specified as a scalar.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar
Default: 1/30

Version History
Introduced before R2006a

See Also
FlightGear Preconfigured 6DoF Animation | Generate Run Script | Pack net_fdm Packet for
FlightGear | Receive net_ctrl Packet from FlightGear | Unpack net_ctrl Packet from FlightGear
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Simple Variable Mass 3DOF (Body Axes)
Implement three-degrees-of-freedom equations of motion of simple variable mass with respect to
body axes
Library: Aerospace Blockset / Equations of Motion / 3DOF

Description
The Simple Variable Mass 3DOF (Body Axes) block implements three-degrees-of-freedom equations of
motion of simple variable mass with respect to body axes. It considers the rotation in the vertical
plane of a body-fixed coordinate frame about a flat Earth reference frame. For more information
about the rotation and equations of motion, see “Algorithms” on page 5-683.

Ports
Input

Fx — Applied force along x-axis
scalar

Applied force along the body x-axis, specified as a scalar, in the units selected in Units.
Data Types: double

Fz — Applied force along z-axis
scalar

Applied force along the body z-axis, specified as a scalar.
Data Types: double

M — Applied pitching moment
scalar

Applied pitching moment, specified as a scalar.
Data Types: double

dm/dt — Rate of change of mass
scalar

Rate of change of mass (positive if accreted, negative if ablated), specified as a scalar.
Data Types: double

g — Gravity
scalar

5 Blocks

5-674



Gravity, specified as a scalar.
Dependencies

To enable this port, set Gravity source to External.
Data Types: double

Vre — Relative velocity
two-element vector

Relative velocity at which mass is accreted to or ablated from the body in body-fixed axes, specified
as a two-element vector.
Dependencies

To enable this port, select Include mass flow relative velocity.
Data Types: double

Output

θ — Pitch altitude
scalar

Pitch attitude, within ±pi, returned as a scalar, in radians.
Data Types: double

q — Pitch angular rate
scalar

Pitch angular rate, returned as a scalar, in radians per second.
Data Types: double

dq/dt — Pitch angular acceleration
scalar

Pitch angular acceleration, returned as a scalar, in radians per second squared.
Data Types: double

XeZe — Location of body
two-element vector

Location of the body in the flat Earth reference frame, (Xe, Ze), returned as a two-element vector.
Data Types: double

U w — Velocity of body
two-element vector

Velocity of the body resolved into the body-fixed coordinate frame, (u, w), returned as a two-element
vector.
Data Types: double

AxbAzb — Acceleration of body
two-element vector
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Acceleration of the body with respect to the body-fixed coordinate frame, (Ax, Az), returned as a two-
element vector.
Data Types: double

Fuel — Fuel tank status
scalar

Fuel tank status, returned as:

• 1 — Tank is full.
• 0 — Tank is neither full nor empty.
• -1 — Tank is empty.

Dependencies

To enable this port, set Mass type to Simple Variable.
Data Types: double

AxeAze — Acceleration of body
two-element vector

Accelerations of the body with respect to the inertial (flat Earth) coordinate frame, returned as a two-
element vector. You typically connect this signal to the accelerometer.

Dependencies

To enable this port, select the Include inertial acceleration check box.
Data Types: double

Parameters
Main

Units — Input and output units

Metric (MKS) (default) | English (Velocity in ft/s) | English (Velocity in kts)

Input and output units, specified as Metric (MKS), English (Velocity in ft/s), or English
(Velocity in kts).

Units Forces Moment Acceleration Velocity Position Mass Inertia
Metric
(MKS)

Newton Newton-
meter

Meters per second
squared

Meters per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in ft/s)

Pound Foot-pound Feet per second
squared

Feet per
second

Feet Slug Slug foot
squared

English
(Velocity
in kts)

Pound Foot-pound Feet per second
squared

Knots Feet Slug Slug foot
squared

5 Blocks

5-676



Programmatic Use
Block Parameter: units
Type: character vector
Values: Metric (MKS) | English (Velocity in ft/s) | English (Velocity in kts)
Default: Metric (MKS)

Axes — Body or wind axes

Body (default) | Wind

Body or wind axes, specified as Wind or Body

Programmatic Use
Block Parameter: axes
Type: character vector
Values: Wind | Body
Default: Body

Mass type — Mass type

Simple Variable (default) | Fixed | Custom Variable

Mass type, specified according to the following table.

Mass Type Description Default For
Fixed Mass is constant throughout the

simulation.
• 3DOF (Body Axes)
• 3DOF (Wind Axes)

Simple Variable Mass and inertia vary linearly as
a function of mass rate.

• Simple Variable Mass 3DOF
(Body Axes)

• Simple Variable Mass 3DOF
(Wind Axes)

Custom Variable Mass and inertia variations are
customizable.

• Custom Variable Mass 3DOF
(Body Axes)

• Custom Variable Mass 3DOF
(Wind Axes)

The Simple Variable selection conforms to the equations of motion described in “Algorithms” on
page 5-683.

Programmatic Use
Block Parameter: mtype
Type: character vector
Values: Fixed | Simple Variable | Custom Variable
Default: 'Simple Variable'

Initial velocity — Initial velocity of body

100 (default) | scalar

Initial velocity of the body, (V0), specified as a scalar.
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Programmatic Use
Block Parameter: v_ini
Type: character vector
Values: '100' | scalar
Default: '100'

Initial body attitude — Initial pitch altitude

0 (default) | scalar

Initial pitch attitude of the body, (θ0), specified as a scalar.
Programmatic Use
Block Parameter: theta_ini
Type: character vector
Values: '0' | scalar
Default: '0'

Initial body rotation rate — Initial pitch rotation rate

0 (default) | scalar

Initial pitch rotation rate, (q0), specified as a scalar.
Programmatic Use
Block Parameter: q_ini
Type: character vector
Values: '0' | scalar
Default: '0'

Initial incidence — Initial angle

0 (default) | scalar

Initial angle between the velocity vector and the body, (α0), specified as a scalar.
Programmatic Use
Block Parameter: alpha_ini
Type: character vector
Values: '0' | scalar
Default: '0'

Initial position (x,z) — Initial location

[0 0] (default) | two-element vector

Initial location of the body in the flat Earth reference frame, specified as a two-element vector.
Programmatic Use
Block Parameter: pos_ini
Type: character vector
Values: '[0 0]' | two-element vector
Default: '[0 0]'

Initial mass — Initial mass
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1.0 (default) | scalar

Initial mass of the rigid body, specified as a scalar.

Programmatic Use
Block Parameter: mass
Type: character vector
Values: '1.0' | scalar
Default: '1.0'

Empty mass — Mass of body when fuel tank is empty

0.5 (default) | scalar

Mass of body when fuel tank is empty, specified as a scalar.

Programmatic Use
Block Parameter: mass_e
Type: character vector
Values: '0.5' | scalar
Default: '0.5'

Full mass — Mass of body when fuel tank is full

3.0 (default) | scalar

Mass of body when fuel tank is full, specified as a scalar.

Programmatic Use
Block Parameter: mass_f
Type: character vector
Values: '3.0' | scalar
Default: '3.0'

Empty inertia — Body inertia when fuel tank is full

0.5 (default) | scalar

Body inertia when the fuel tank is full, specified as a double scalar.

Programmatic Use
Block Parameter: Iyy_e
Type: character vector
Values: '0.5' | scalar
Default: '0.5'

Full inertia — Full inertia

3.0 (default) | scalar

Full inertia of the body, specified as a scalar.

Programmatic Use
Block Parameter: Iyy_f
Type: character vector
Values: '3.0' | scalar
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Default: '3.0'

Gravity Source — Gravity source

Internal (default) | External

Gravity source, specified as:

External Variable gravity input to block
Internal Constant gravity specified in mask

Programmatic Use
Block Parameter: g_in
Type: character vector
Values: 'Internal' | 'External'
Default: 'Internal'

Acceleration due to gravity — Gravity source

9.81 (default) | scalar

Acceleration due to gravity, specified as a double scalar and used if internal gravity source is
selected. If gravity is to be neglected in the simulation, this value can be set to 0.

Dependencies

• To enable this parameter, set Gravity Source to Internal.

Programmatic Use
Block Parameter: g
Type: character vector
Values: '9.81' | scalar
Default: '9.81'

Include mass flow relative velocity — Mass flow relative velocity port

off (default) | on

Select this check box to add a mass flow relative velocity port. This is the relative velocity at which
the mass is accreted or ablated.

Programmatic Use
Block Parameter: vre_flag
Type: character vector
Values: off | on
Default: 'off'

Limit mass flow when mass is empty or full — Limit mass flow

on (default) | off

Select this check box to limit the input mass flow rate when one of these is true:

• Fuel tank is full and input mass flow rate is positive.
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• Fuel tank is empty and input mass flow rate is negative.

When the input mass flow rate might cause the mass to exceed its limits, the block uses a zero mass
flow rate value in the equations of motion. For more information, see Algorithms.

If you do not want to limit the input mass flow rate, clear this check box.
Dependencies

To enable this parameter, set Mass type to Simple Variable.
Programmatic Use
Block Parameter: mdot_flag
Type: character vector
Values: 'off' | 'on'
Default: 'on'
Data Types: double

Include inertial acceleration — Include inertial acceleration port

off (default) | on

Select this check box to add an inertial acceleration in flat Earth frame output port. You typically
connect this signal to the accelerometer.
Dependencies

To enable the AxeAze port, select this parameter.
Programmatic Use
Block Parameter: abi_flag
Type: character vector
Values: 'off' | 'on'
Default: 'off'

State Attributes

Assign a unique name to each state. You can use state names instead of block paths during
linearization.

• The number of names must match the number of states, as shown for each item, or be empty. Set
all or none of the block states.

• To assign names to single-variable states, enter unique names between quotes, for example, 'q'
or "q".

• To assign names to two-variable states, enter a comma-separated list surrounded by braces, for
example, {'Xe','Ze'}.

• If a state parameter is empty (' '), no name is assigned.
• To assign state names with a variable in the MATLAB workspace, enter the variable without

quotes. A variable can be a character vector, cell array of character vectors, or string.

Velocity: e.g., {'u, 'w'} — Velocity state name

'' (default) | comma-separated list surrounded by braces

Velocity state names, specified as a comma-separated list surrounded by braces.
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Programmatic Use
Block Parameter: vel_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Pitch attitude: e.g., 'theta' — Pitch attitude state name

'' (default)

Pitch attitude state name, specified as a character vector or string.

Programmatic Use
Block Parameter: theta_statename
Type: character vector | string
Values: ''
Default: ''

Position: e.g., {'Xe', 'Ze'} — Position state name

'' (default) | comma-separated list surrounded by braces

Position state names, specified as a comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: pos_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Pitch angular rate e.g., 'q' — Pitch angular rate state name

'' (default)

Pitch angular rate state name, specified as a character vector or string.

Programmatic Use
Block Parameter: q_statename
Type: character vector | string
Values: '' | scalar
Default: ''

Mass: e.g., 'mass' — Mass state name

'' (default) | scalar

Mass state name, specified as a character vector or string.

Programmatic Use
Block Parameter: mass_statename
Type: character vector | string
Values: '' | scalar
Default: ''
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Algorithms
It considers the rotation in the vertical plane of a body-fixed coordinate frame about a flat Earth
reference frame.

The equations of motion are

Axb = u̇ = Axe− qw
Azb = ẇ = Aze + qu

Axe =
Fx− ṁure

m − gsinθ

Aze =
Fz− ṁwre

m + gcosθ

Ẋe = ucosθ + wsinθ

Że = − usinθ + wcosθ

q̇ =
My − İ yyq

Iyy

θ̇ = q

İ yy =
Iyy_ full− Iyy_empty

mfull−mempty
ṁ

Iyy = Iyy_empty + Iyy_ full− Iyy_empty
m−mempty

mfull−mempty

where the applied forces are assumed to act at the center of gravity of the body. Input variables are
Fx, Fz, My, ṁ. ure, wre, and g are optional input variables. Mass m is limited to between mempty and
mfull. Whenever mass is saturated at empty or full, for consistency, limit ṁ within the equations of
motion.
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Version History
Introduced in R2006a

Simple Variable Mass 3DOF (Body Axes) Block Changes

The 3DOF equations of motion have been updated. Existing models created prior to R2021b that
contain 3DOF equations of motion blocks continue to run. If you replace a pre-R2021b version of a
3DOF equation of motion block with an R2021b or later version, your updated model might have a
higher tendency for algebraic loops. For an example of how to remove algebraic loops using unit
delays, see “Remove Algebraic Loops”. For further information about algebraic loops, see “Identify
Algebraic Loops in Your Model”.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
3DOF (Body Axes) | 3DOF (Wind Axes) | 4th Order Point Mass (Longitudinal) | Custom Variable Mass
3DOF (Body Axes) | Custom Variable Mass 3DOF (Wind Axes) | Simple Variable Mass 3DOF (Wind
Axes)

5 Blocks

5-684



Simple Variable Mass 3DOF (Wind Axes)
Implement three-degrees-of-freedom equations of motion of simple variable mass with respect to
wind axes
Library: Aerospace Blockset / Equations of Motion / 3DOF

Description
The Simple Variable Mass 3DOF (Wind Axes) block implements three-degrees-of-freedom equations of
motion of simple variable mass with respect to wind axes. The block considers the rotation in the
vertical plane of a wind-fixed coordinate frame about a flat Earth reference frame. For more
information about the rotation and equations of motion, see “Algorithms” on page 5-694.

Ports
Input

Fx — Applied force along wind x-axis
scalar

Applied force along the wind x-axis, specified as a scalar, in the units selected in Units.
Data Types: double

Fz — Applied force along wind z-axis
scalar

Applied force along the wind z-axis, specified as a scalar.
Data Types: double

M — Applied pitching moment
scalar

Applied pitching moment, specified as a scalar.
Data Types: double

dm/dt — Rate of change of mass
scalar

Rate of change of mass (positive if accreted, negative if ablated), specified as a scalar.
Data Types: double

g — Gravity
scalar

 Simple Variable Mass 3DOF (Wind Axes)

5-685



Gravity, specified as a scalar.
Dependencies

To enable this port, set Gravity source to External.
Data Types: double

Vre — Relative velocity
two-element vector

Relative velocity at which mass is accreted to or ablated from the body in body-fixed axes, specified
as a two-element vector.
Dependencies

To enable this port, select Include mass flow relative velocity.
Data Types: double

Output

γ — Flight path angle
scalar

Flight path angle, within ±pi, returned as a scalar, in radians.
Data Types: double

q — Pitch angular rate
scalar

Pitch angular rate, returned as a scalar, in radians per second.
Data Types: double

dq/dt — Pitch angular acceleration
scalar

Pitch angular acceleration, returned as a scalar, in radians per second squared.
Data Types: double

XeZe — Location of body
two-element vector

Location of the body in the flat Earth reference frame, (Xe, Ze), returned as a two-element vector.
Data Types: double

Vw — Velocity in wind-fixed frame
two-element vector

Velocity of the body resolved into the wind-fixed coordinate frame, (V, 0), returned as a two-element
vector.
Data Types: double

AxbAzb — Acceleration of body
two-element vector
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Acceleration of the body with respect to the body-fixed coordinate frame, (Ax, Az), returned as a two-
element vector.
Data Types: double

α — Angle of attack
scalar

Angle of attack, returned as a scalar, in radians.
Data Types: double

Fuel — Fuel tank status
scalar

Fuel tank status, returned as:

• 1 — Tank is full.
• 0 — Tank is neither full nor empty.
• -1 — Tank is empty.

Dependencies

To enable this port, set Mass type to Simple Variable.
Data Types: double

AxeAze — Acceleration of body
two-element vector

Accelerations of the body with respect to the inertial (flat Earth) coordinate frame, returned as a two-
element vector. You typically connect this signal to the accelerometer.

Dependencies

To enable this port, select the Include inertial acceleration check box.
Data Types: double

Parameters
Main

Units — Input and output units

Metric (MKS) (default) | English (Velocity in ft/s) | English (Velocity in kts)

Input and output units, specified as Metric (MKS), English (Velocity in ft/s), or English
(Velocity in kts).

Units Forces Moment Acceleration Velocity Position Mass Inertia
Metric
(MKS)

Newton Newton-
meter

Meters per second
squared

Meters per
second

Meters Kilogram Kilogram
meter
squared

 Simple Variable Mass 3DOF (Wind Axes)

5-687



Units Forces Moment Acceleration Velocity Position Mass Inertia
English
(Velocity
in ft/s)

Pound Foot-pound Feet per second
squared

Feet per
second

Feet Slug Slug foot
squared

English
(Velocity
in kts)

Pound Foot-pound Feet per second
squared

Knots Feet Slug Slug foot
squared

Programmatic Use
Block Parameter: units
Type: character vector
Values: Metric (MKS) | English (Velocity in ft/s) | English (Velocity in kts)
Default: Metric (MKS)

Axes — Body or wind axes

Wind (default) | Body

Body or wind axes, specified as Wind or Body

Programmatic Use
Block Parameter: axes
Type: character vector
Values: Wind | Body
Default: Wind

Mass type — Mass type

Simple Variable (default) | Fixed | Custom Variable

Mass type, specified according to the following table.

Mass Type Description Default For
Fixed Mass is constant throughout the

simulation.
• 3DOF (Body Axes)
• 3DOF (Wind Axes)

Simple Variable Mass and inertia vary linearly as
a function of mass rate.

• Simple Variable Mass 3DOF
(Body Axes)

• Simple Variable Mass 3DOF
(Wind Axes)

Custom Variable Mass and inertia variations are
customizable.

• Custom Variable Mass 3DOF
(Body Axes)

• Custom Variable Mass 3DOF
(Wind Axes)

The Simple Variable selection conforms to the equations of motion described in “Algorithms” on
page 5-694.

Programmatic Use
Block Parameter: mtype
Type: character vector
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Values: Fixed | Simple Variable | Custom Variable
Default: 'Simple Variable'

Initial airspeed — Initial speed

100 (default) | scalar

Initial speed of the body, (V0), specified as a scalar.

Programmatic Use
Block Parameter: V_ini
Type: character vector
Values: '100' | scalar
Default: '100'

Initial flight path angle — Initial flight path angle

0 (default) | scalar

Initial flight path angle of the body, (γ0), specified as a scalar.

Programmatic Use
Block Parameter: gamma_ini
Type: character vector
Values: '0' | scalar
Default: '0'

Initial body rotation rate — Initial pitch rotation rate

0 (default) | scalar

Initial pitch rotation rate, (q0), specified as a scalar.

Programmatic Use
Block Parameter: q_ini
Type: character vector
Values: '0' | scalar
Default: '0'

Initial incidence — Initial angle

0 (default) | scalar

Initial angle between the velocity vector and the body, (α0), specified as a scalar.

Programmatic Use
Block Parameter: alpha_ini
Type: character vector
Values: '0' | scalar
Default: '0'

Initial position (x,z) — Initial location

[0 0] (default) | two-element vector

Initial location of the body in the flat Earth reference frame, specified as a two-element vector.
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Programmatic Use
Block Parameter: pos_ini
Type: character vector
Values: '[0 0]' | two-element vector
Default: '[0 0]'

Initial mass — Initial mass

1.0 (default) | scalar

Initial mass of the rigid body, specified as a scalar.

Programmatic Use
Block Parameter: mass
Type: character vector
Values: '1.0' | scalar
Default: '1.0'

Empty mass — Mass of body when fuel tank is empty

0.5 (default) | scalar

Mass of body when fuel tank is empty, specified as a scalar.

Programmatic Use
Block Parameter: mass_e
Type: character vector
Values: '0.5' | scalar
Default: '0.5'

Full mass — Mass of body when fuel tank is full

3.0 (default) | scalar

Mass of body when fuel tank is full, specified as a scalar.

Programmatic Use
Block Parameter: mass_f
Type: character vector
Values: '3.0' | scalar
Default: '3.0'

Empty inertia body axes — Inertia of body when fuel tank is empty

0.5 (default) | scalar

Inertia of body when fuel tank is empty, specified as a scalar.

Dependencies

To enable this parameter, set Mass type to Simple Variable.

Programmatic Use
Block Parameter: Iyy_e
Type: character vector
Values: '1.0' | scalar
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Default: '1.0'

Full inertia body axes — Body inertia when fuel tank is full

3.0 (default) | scalar

Body inertia when the fuel tank is full, specified as a scalar.
Dependencies

To enable this parameter, set Mass type to Simple Variable.
Programmatic Use
Block Parameter: Iyy_f
Type: character vector
Values: '3.0' | scalar
Default: '3.0'

Gravity Source — Gravity source

Internal (default) | External

Gravity source, specified as:

External Variable gravity input to block
Internal Constant gravity specified in mask

Programmatic Use
Block Parameter: g_in
Type: character vector
Values: 'Internal' | 'External'
Default: 'Internal'

Acceleration due to gravity — Gravity source

9.81 (default) | scalar

Acceleration due to gravity, specified as a double scalar and used if internal gravity source is
selected. If gravity is to be neglected in the simulation, this value can be set to 0.
Dependencies

• To enable this parameter, set Gravity Source to Internal.

Programmatic Use
Block Parameter: g
Type: character vector
Values: '9.81' | scalar
Default: '9.81'

Include mass flow relative velocity — Mass flow relative velocity port

off (default) | on

Select this check box to add a mass flow relative velocity port. This is the relative velocity at which
the mass is accreted or ablated.
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Programmatic Use
Block Parameter: vre_flag
Type: character vector
Values: off | on
Default: 'off'

Limit mass flow when mass is empty or full — Limit mass flow

on (default) | off

Select this check box to limit the input mass flow rate when one of these is true:

• Fuel tank is full and input mass flow rate is positive.
• Fuel tank is empty and input mass flow rate is negative.

When the input mass flow rate might cause the mass to exceed its limits, the block uses a zero mass
flow rate value in the equations of motion. For more information, see “Algorithms” on page 5-694.

If you do not want to limit the input mass flow rate, clear this check box.

Dependencies

To enable this parameter, set Mass type to Simple Variable.

Programmatic Use
Block Parameter: mdot_flag
Type: character vector
Values: 'off' | 'on'
Default: 'on'
Data Types: double

Include inertial acceleration — Include inertial acceleration port

off (default) | on

Select this check box to add an inertial acceleration in flat Earth frame output port. You typically
connect this signal to the accelerometer.

Dependencies

To enable the AxeAze port, select this parameter.

Programmatic Use
Block Parameter: abi_flag
Type: character vector
Values: 'off' | 'on'
Default: 'off'

State Attributes

Assign a unique name to each state. You can use state names instead of block paths during
linearization.

• The number of names must match the number of states, as shown for each item, or be empty. Set
all or none of the block states.
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• To assign names to single-variable states, enter unique names between quotes, for example, 'q'
or "q".

• To assign names to two-variable states, enter a comma-separated list surrounded by braces, for
example, {'Xe','Ze'}.

• If a state parameter is empty (' '), no name is assigned.
• To assign state names with a variable in the MATLAB workspace, enter the variable without

quotes. A variable can be a character vector, cell array of character vectors, or string.

Velocity: e.g., 'V' — Velocity state name

'' (default) | character vector

Velocity state name, specified as a character vector or string.

Programmatic Use
Block Parameter: V_statename
Type: character vector | string
Values: '' | scalar
Default: ''

Position: e.g., {'Xe', 'Ze'} — Position state name

'' (default) | comma-separated list surrounded by braces

Position state names, specified as a comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: pos_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Body rotation rate: e.g., 'q' — Body rotation state name

'' (default) | scalar

Body rotation rate state names, specified as a character vector or string.

Programmatic Use
Block Parameter: q_statename
Type: character vector | string
Values: '' | scalar
Default: ''

Flight path angle: e.g., 'gamma' — Flight path angle state name

'' (default)

Flight path angle state name, specified as a character vector or string.

Programmatic Use
Block Parameter: gamma_statename
Type: character vector | string
Values: '' | scalar
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Default: ''

Incidence angle e.g., 'alpha' — Incidence angle state name

'' (default) | scalar

Incidence angle state name, specified as a character vector or string.

Programmatic Use
Block Parameter: alpha_statename
Type: character vector | string
Values: '' | scalar
Default: ''

Mass: e.g., 'mass' — Mass state name

'' (default) | scalar

Mass state name, specified as a character vector or string.

Programmatic Use
Block Parameter: mass_statename
Type: character vector | string
Values: '' | scalar
Default: ''

Algorithms
The block considers the rotation in the vertical plane of a wind-fixed coordinate frame about a flat
Earth reference frame.

The equations of motion are
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Axb = Axe− qVsinα
Azb = Aze + qVcosα

Axe =
Fx
m − gsinγ cosα−

Fz
m + gcosγ sinα

Aze =
Fx
m − gsinγ sinα +

Fz
m + gcosγ cosα

V̇ =
Fx + ṁure

m − gsinγ

Ẋe = Vcosγ

Że = − Vsinγ

q̇ =
My − İ yyq

Iyy

γ̇ = q− α̇

α̇ =
Fz + ṁwre

mV + g
V cosγ + q

İ yy =
Iyy_ full− Iyy_empty

mfull−mempty
ṁ

Iyy = Iyy_empty + Iyy_ full− Iyy_empty
m−mempty

mfull−mempty

where the applied forces are assumed to act at the center of gravity of the body. Input variables are
wind-axes forces Fx and Fz, body moment My, and ṁ. ure, wre, and g are optional input variables. Mass
m is limited between mempty and mfull. Whenever mass is saturated at empty or full, for consistency,
limit ṁ within the equations of motion.

Version History
Introduced in R2006a

Simple Variable Mass 3DOF (Wind Axes) Block Changes
Behavior changed in R2021b

The 3DOF equations of motion have been updated. Existing models created prior to R2021b that
contain 3DOF equations of motion blocks continue to run. If you replace a pre-R2021b version of a
3DOF equation of motion block with an R2021b or later version, your updated model might have a
higher tendency for algebraic loops. For an example of how to remove algebraic loops using unit
delays, see “Remove Algebraic Loops”. For further information about algebraic loops, see “Identify
Algebraic Loops in Your Model”.

References
[1] Stevens, Brian, and Frank Lewis. Aircraft Control and Simulation. Hoboken, NJ: John Wiley &

Sons, 1992.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
3DOF (Body Axes) | 3DOF (Wind Axes) | Custom Variable Mass 3DOF (Body Axes) | Custom Variable
Mass 3DOF (Wind Axes) | Simple Variable Mass 3DOF (Body Axes)
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Simple Variable Mass 6DOF (Euler Angles)
Implement Euler angle representation of six-degrees-of-freedom equations of motion of simple
variable mass
Library: Aerospace Blockset / Equations of Motion / 6DOF

Description
The Simple Variable Mass 6DOF (Euler Angles) block considers the rotation of a body-fixed
coordinate frame (Xb, Yb, Zb) about a flat Earth reference frame (Xe, Ye, Ze).

For a description of the coordinate system and the translational dynamics, see the description for the
Simple Variable Mass 6DOF (Euler Angles) block. For more information on the body-fixed coordinate
frame, see “Algorithms” on page 5-705.

Limitations
The block assumes that the applied forces are acting at the center of gravity of the body.

Ports
Input

Fxyz — Applied forces
three-element vector

Applied forces, specified as a three-element vector.
Data Types: double

Mxyz(N-m) — Applied moments
three-element vector

Applied moments, specified as a three-element vector.
Data Types: double

dm/dt (kg/s) — Rate of change of mass
scalar

One or more rates of change of mass (positive if accreted, negative if ablated), specified as a scalar.
Data Types: double
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Vre — Relative velocity
three-element vector

One or more relative velocities, specified as a three-element vector, at which the mass is accreted to
or ablated from the body in body-fixed axes.

Dependencies

To enable this port, select Include mass flow relative velocity.
Data Types: double

Output

Ve — Velocity in flat Earth reference frame
three-element vector

Velocity in the flat Earth reference frame, returned as a three-element vector.
Data Types: double

Xe — Position in flat Earth reference frame
three-element vector

Position in the flat Earth reference frame, returned as a three-element vector.
Data Types: double

φ θ ψ (rad) — Euler rotation angles
three-element vector

Euler rotation angles [roll, pitch, yaw], returned as three-element vector, in radians.
Data Types: double

DCMbe — Coordinate transformation
3-by-3 matrix

Coordinate transformation from flat Earth axes to body-fixed axes, returned as a 3-by-3 matrix.
Data Types: double

Vb — Velocity in body-fixed frame
three-element vector

Velocity in body-fixed frame, returned as a three-element vector.
Data Types: double

ωb (rad/s) — Angular rates in body-fixed axes
three-element vector

Angular rates in body-fixed axes, returned as a three-element vector, in radians per second.
Data Types: double

dωb/dt — Angular accelerations
three-element vector
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Angular accelerations in body-fixed axes, returned as a three-element vector, in radians per second
squared.
Data Types: double

Abb — Accelerations in body-fixed axes
three-element vector

Accelerations in body-fixed axes with respect to body frame, returned as a three-element vector.
Data Types: double

Fuel — Fuel tank status
scalar

Fuel tank status, returned as:

• 1 — Tank is full.
• 0 — Tank is neither full nor empty.
• -1 — Tank is empty.

Data Types: double

Abe — Accelerations with respect to inertial frame
three-element vector

Accelerations in body-fixed axes with respect to inertial frame (flat Earth), returned as a three-
element vector. You typically connect this signal to the accelerometer.

Dependencies

This port appears only when the Include inertial acceleration check box is selected.
Data Types: double

Parameters
Main

Units — Input and output units

Metric (MKS) (default) | English (Velocity in ft/s) | English (Velocity in kts)

Input and output units, specified as Metric (MKS), English (Velocity in ft/s), or English
(Velocity in kts).

Units Forces Moment Acceleration Velocity Position Mass Inertia
Metric
(MKS)

Newton Newton-
meter

Meters per second
squared

Meters per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in ft/s)

Pound Foot-pound Feet per second
squared

Feet per
second

Feet Slug Slug foot
squared
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Units Forces Moment Acceleration Velocity Position Mass Inertia
English
(Velocity
in kts)

Pound Foot-pound Feet per second
squared

Knots Feet Slug Slug foot
squared

Programmatic Use
Block Parameter: units
Type: character vector
Values: Metric (MKS) | English (Velocity in ft/s) | English (Velocity in kts)
Default: Metric (MKS)

Mass Type — Mass type
Simple Variable (default) | Fixed | Custom Variable

Mass type, specified according to the following table.

Mass Type Description Default For
Fixed Mass is constant throughout the

simulation.
• 6DOF (Euler Angles)
• 6DOF (Quaternion)
• 6DOF Wind (Wind Angles)
• 6DOF Wind (Quaternion)
• 6DOF ECEF (Quaternion)

Simple Variable Mass and inertia vary linearly as
a function of mass rate.

• Simple Variable Mass 6DOF
(Euler Angles)

• Simple Variable Mass 6DOF
(Quaternion)

• Simple Variable Mass 6DOF
Wind (Wind Angles)

• Simple Variable Mass 6DOF
Wind (Quaternion)

• Simple Variable Mass 6DOF
ECEF (Quaternion)

Custom Variable Mass and inertia variations are
customizable.

• Custom Variable Mass 6DOF
(Euler Angles)

• Custom Variable Mass 6DOF
(Quaternion)

• Custom Variable Mass 6DOF
Wind (Wind Angles)

• Custom Variable Mass 6DOF
Wind (Quaternion)

• Custom Variable Mass 6DOF
ECEF (Quaternion)

The Simple Variable selection conforms to the equations of motion in “Algorithms” on page 5-
705.
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Programmatic Use
Block Parameter: mtype
Type: character vector
Values: Fixed | Simple Variable | Custom Variable
Default: Simple Variable

Representation — Equations of motion representation

Euler Angles (default) | Quaternion

Equations of motion representation, specified according to the following table.

Representation Description
Euler Angles Use Euler angles within equations of motion.
Quaternion Use quaternions within equations of motion.

The Euler Angles selection conforms to the equations of motion in “Algorithms” on page 5-705.

Programmatic Use
Block Parameter: rep
Type: character vector
Values: Euler Angles | Quaternion
Default: 'Euler Angles'

Initial position in inertial axes [Xe,Ye,Ze] — Position in inertial axes

[0 0 0] (default) | three-element vector

Initial location of the body in the flat Earth reference frame, specified as a three-element vector.

Programmatic Use
Block Parameter: xme_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Initial velocity in body axes [U,v,w] — Velocity in body axes

[0 0 0] (default) | three-element vector

Initial velocity in body axes, specified as a three-element vector, in the body-fixed coordinate frame.

Programmatic Use
Block Parameter: Vm_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Initial Euler orientation [roll, pitch, yaw] — Initial Euler orientation

[0 0 0] (default) | three-element vector

Initial Euler orientation angles [roll, pitch, yaw], specified as a three-element vector, in radians. Euler
rotation angles are those between the body and north-east-down (NED) coordinate systems.
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Programmatic Use
Block Parameter: eul_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Initial body rotation rates [p,q,r] — Initial body rotation

[0 0 0] (default) | three-element vector

Initial body-fixed angular rates with respect to the NED frame, specified as a three-element vector, in
radians per second.

Programmatic Use
Block Parameter: pm_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Initial mass — Initial mass

1.0 (default) | scalar

Initial mass of the rigid body, specified as a double scalar.

Programmatic Use
Block Parameter: mass_0
Type: character vector
Values: '1.0' | double scalar
Default: '1.0'

Empty mass — Empty mass

0.5 (default) | scalar

Empty mass of the body, specified as a double scalar.

Programmatic Use
Block Parameter: mass_e
Type: character vector
Values: double scalar
Default: '0.5'

Full mass — Full mass of body

2.0 (default) | scalar

Full mass of the body, specified as a double scalar.

Programmatic Use
Block Parameter: mass_f
Type: character vector
Values: double scalar
Default: '2.0'
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Empty inertia matrix — Empty inertia matrix

eye(3) (default) | 3-by-3 matrix

Inertia tensor matrix for the empty inertia of the body, specified as 3-by-3 matrix.
Programmatic Use
Block Parameter: inertia_e
Type: character vector
Values: 'eye(3)' | 3-by-3 matrix
Default: 'eye(3)'

Full inertia matrix — Full inertia of body

2*eye(3) (default) | 3-by-3 matrix

Inertia tensor matrix for the full inertia of the body, specified as 3-by-3 matrix.
Programmatic Use
Block Parameter: inertia_f
Type: character vector
Values: '2*eye(3)' | 3-by-3 matrix
Default: '2*eye(3)'

Include mass flow relative velocity — Mass flow relative velocity port

off (default) | on

Select this check box to add a mass flow relative velocity port. This is the relative velocity at which
the mass is accreted or ablated.
Programmatic Use
Block Parameter: vre_flag
Type: character vector
Values: off | on
Default: off

Include inertial acceleration — Include inertial acceleration port

off (default) | on

Select this check box to add an inertial acceleration port.
Dependencies

To enable the Abe port, select this parameter.
Programmatic Use
Block Parameter: abi_flag
Type: character vector
Values: 'off' | 'on'
Default: off

State Attributes

Assign a unique name to each state. You can use state names instead of block paths during
linearization.
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• To assign a name to a single state, enter a unique name between quotes, for example,
'velocity'.

• To assign names to multiple states, enter a comma-separated list surrounded by braces, for
example, {'a', 'b', 'c'}. Each name must be unique.

• If a parameter is empty (' '), no name is assigned.
• The state names apply only to the selected block with the name parameter.
• The number of states must divide evenly among the number of state names.
• You can specify fewer names than states, but you cannot specify more names than states.

For example, you can specify two names in a system with four states. The first name applies to the
first two states and the second name to the last two states.

• To assign state names with a variable in the MATLAB workspace, enter the variable without
quotes. A variable can be a character vector, cell array, or structure.

Position: e.g., {'Xe', 'Ye', 'Ze'} — Position state name

'' (default) | comma-separated list surrounded by braces

Position state names, specified as a comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: xme_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Velocity: e.g., {'U', 'v', 'w'} — Velocity state name

'' (default) | comma-separated list surrounded by braces

Velocity state names, specified as comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: Vm_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Euler rotation angles: e.g., {'phi', 'theta', 'psi'} — Euler rotation state name

'' (default) | comma-separated list surrounded by braces

Euler rotation angle state names, specified as a comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: eul_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Body rotation rates: e.g., {'p', 'q', 'r'} — Body rotation state names

'' (default) | comma-separated list surrounded by braces
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Body rotation rate state names, specified comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: pm_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Mass: e.g., 'mass' — Mass state name

'' (default) | character vector

Mass state name, specified as a character vector.

Programmatic Use
Block Parameter: mass_statename
Type: character vector
Values: '' | character vector
Default: ''

Algorithms
The origin of the body-fixed coordinate frame is the center of gravity of the body, and the body is
assumed to be rigid, an assumption that eliminates the need to consider the forces acting between
individual elements of mass. The flat Earth reference frame is considered inertial, an excellent
approximation that allows the forces due to the Earth's motion relative to the fixed stars to be
neglected.

The translational motion of the body-fixed coordinate frame is given below, where the applied forces
[Fx FyFz]T are in the body-fixed frame. Vreb is the relative velocity in the body axes at which the mass
flow (ṁ) is ejected or added to the body in body axes.
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Fb =
Fx
Fy
Fz

= m(V̇b + ω × Vb) + ṁVreb

Abe =
Fb− ṁVre

m

Abb =
u̇b

v̇b

ω̇b

=
Fb− ṁVre

m − ω × Vb

Vb =
ub
vb
wb

, ω =
p
q
r

The rotational dynamics of the body-fixed frame are given below, where the applied moments are [L
M N]T, and the inertia tensor I is with respect to the origin O.

MB =
L
M
N

= Iω̇ + ω × (Iω) + İ ω

I =
Ixx −Ixy −Ixz
−Iyx Iyy −Iyz
−Izx −Izy Izz

The inertia tensor is determined using a table lookup which linearly interpolates between Ifull and
Iempty based on mass (m). While the rate of change of the inertia tensor is estimated by the following
equation.

İ =
Ifull− Iempty

mfull−mempty
ṁ

The relationship between the body-fixed angular velocity vector, [p q r]T, and the rate of change of the
Euler angles, [ϕ̇θ̇ψ̇]T, can be determined by resolving the Euler rates into the body-fixed coordinate
frame.

p
q
r

=
ϕ̇
0
0

+
1 0 0
0 cosϕ sinϕ
0 −sinϕ cosϕ

0
θ̇
0

+
1 0 0
0 cosϕ sinϕ
0 −sinϕ cosϕ

cosθ 0 −sinθ
0 1 0
sinθ 0 cosθ

0
0
ψ̇
≡ J−1

ϕ̇
θ̇
ψ̇

Inverting J then gives the required relationship to determine the Euler rate vector.

ϕ̇
θ̇
ψ̇

= J
p
q
r

=

1 (sinϕtanθ) (cosϕtanθ)
0 cosϕ −sinϕ

0 sinϕ
cosθ

cosϕ
cosθ

p
q
r
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
6DOF (Euler Angles) | 6DOF (Quaternion) | 6DOF ECEF (Quaternion) | 6DOF Wind (Quaternion) |
6DOF Wind (Wind Angles) | Custom Variable Mass 6DOF (Euler Angles) | Custom Variable Mass
6DOF (Quaternion) | Custom Variable Mass 6DOF ECEF (Quaternion) | Custom Variable Mass 6DOF
Wind (Quaternion) | Custom Variable Mass 6DOF Wind (Wind Angles) | Simple Variable Mass 6DOF
ECEF (Quaternion) | Simple Variable Mass 6DOF (Quaternion) | Simple Variable Mass 6DOF Wind
(Quaternion) | Simple Variable Mass 6DOF Wind (Wind Angles)
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Simple Variable Mass 6DOF (Quaternion)
Implement quaternion representation of six-degrees-of-freedom equations of motion of simple
variable mass with respect to body axes
Library: Aerospace Blockset / Equations of Motion / 6DOF

Description
The Simple Variable Mass 6DOF (Quaternion) implements a quaternion representation of six-degrees-
of-freedom equations of motion of simple variable mass with respect to body axes.

For a description of the coordinate system and the translational dynamics, see the description for the
Simple Variable Mass 6DOF (Euler Angles) block. Aerospace Blockset uses quaternions that are
defined using the scalar-first convention. For more information on the integration of the rate of
change of the quaternion vector, see “Algorithms” on page 5-716.

Limitations
The block assumes that the applied forces are acting at the center of gravity of the body.

Ports
Input

Fxyz — Applied forces
three-element vector

Applied forces, specified as a three-element vector.
Data Types: double

Mxyz(N-m) — Applied moments
three-element vector

Applied moments, specified as a three-element vector.
Data Types: double

dm/dt (kg/s) — Rate of change of mass
scalar

One or more rates of change of mass (positive if accreted, negative if ablated), specified as a scalar.
Data Types: double
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Vre — Relative velocity
three-element vector

One or more relative velocities, specified as a three-element vector, at which the mass is accreted to
or ablated from the body in body-fixed axes.

Dependencies

To enable this port, select Include mass flow relative velocity.
Data Types: double

Output

Ve — Velocity in flat Earth reference frame
three-element vector

Velocity in the flat Earth reference frame, returned as a three-element vector.
Data Types: double

Xe — Position in flat Earth reference frame
three-element vector

Position in the flat Earth reference frame, returned as a three-element vector.
Data Types: double

φ θ ψ (rad) — Euler rotation angles
three-element vector

Euler rotation angles [roll, pitch, yaw], returned as three-element vector, in radians.
Data Types: double

DCMbe — Coordinate transformation
3-by-3 matrix

Coordinate transformation from flat Earth axes to body-fixed axes, returned as a 3-by-3 matrix.
Data Types: double

Vb — Velocity in body-fixed frame
three-element vector

Velocity in body-fixed frame, returned as a three-element vector.
Data Types: double

ωb (rad/s) — Angular rates in body-fixed axes
three-element vector

Angular rates in body-fixed axes, returned as a three-element vector, in radians per second.
Data Types: double

dωb/dt — Angular accelerations
three-element vector
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Angular accelerations in body-fixed axes, returned as a three-element vector, in radians per second
squared.
Data Types: double

Abb — Accelerations in body-fixed axes
three-element vector

Accelerations in body-fixed axes with respect to body frame, returned as a three-element vector.
Data Types: double

Fuel — Fuel tank status
scalar

Fuel tank status, returned as:

• 1 — Tank is full.
• 0 — Tank is neither full nor empty.
• -1 — Tank is empty.

Data Types: double

Abe — Accelerations with respect to inertial frame
three-element vector

Accelerations in body-fixed axes with respect to inertial frame (flat Earth), returned as a three-
element vector. You typically connect this signal to the accelerometer.

Dependencies

This port appears only when the Include inertial acceleration check box is selected.
Data Types: double

Parameters
Main

Units — Input and output units

Metric (MKS) (default) | English (Velocity in ft/s) | English (Velocity in kts)

Input and output units, specified as Metric (MKS), English (Velocity in ft/s), or English
(Velocity in kts).

Units Forces Moment Acceleration Velocity Position Mass Inertia
Metric
(MKS)

Newton Newton-
meter

Meters per second
squared

Meters per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in ft/s)

Pound Foot-pound Feet per second
squared

Feet per
second

Feet Slug Slug foot
squared
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Units Forces Moment Acceleration Velocity Position Mass Inertia
English
(Velocity
in kts)

Pound Foot-pound Feet per second
squared

Knots Feet Slug Slug foot
squared

Programmatic Use
Block Parameter: units
Type: character vector
Values: Metric (MKS) | English (Velocity in ft/s) | English (Velocity in kts)
Default: Metric (MKS)

Mass Type — Mass type

Simple Variable (default) | Fixed | Custom Variable

Mass type, specified according to the following table.

Mass Type Description Default For
Fixed Mass is constant throughout the

simulation.
• 6DOF (Euler Angles)
• 6DOF (Quaternion)
• 6DOF Wind (Wind Angles)
• 6DOF Wind (Quaternion)
• 6DOF ECEF (Quaternion)

Simple Variable Mass and inertia vary linearly as
a function of mass rate.

• Simple Variable Mass 6DOF
(Euler Angles)

• Simple Variable Mass 6DOF
(Quaternion)

• Simple Variable Mass 6DOF
Wind (Wind Angles)

• Simple Variable Mass 6DOF
Wind (Quaternion)

• Simple Variable Mass 6DOF
ECEF (Quaternion)

Custom Variable Mass and inertia variations are
customizable.

• Custom Variable Mass 6DOF
(Euler Angles)

• Custom Variable Mass 6DOF
(Quaternion)

• Custom Variable Mass 6DOF
Wind (Wind Angles)

• Custom Variable Mass 6DOF
Wind (Quaternion)

• Custom Variable Mass 6DOF
ECEF (Quaternion)

The Simple Variable selection conforms to the equations of motion in “Algorithms” on page 5-
716.
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Programmatic Use
Block Parameter: mtype
Type: character vector
Values: Fixed | Simple Variable | Custom Variable
Default: Simple Variable

Representation — Equations of motion representation

Quaternion (default) | Euler Angles

Equations of motion representation, specified according to the following table.

Representation Description
Quaternion Use quaternions within equations of motion.
Euler Angles Use Euler angles within equations of motion.

The Quaternion selection conforms to the equations of motion in “Algorithms” on page 5-716.

Programmatic Use
Block Parameter: rep
Type: character vector
Values: Euler Angles | Quaternion
Default: 'Euler Angles'

Initial position in inertial axes [Xe,Ye,Ze] — Position in inertial axes

[0 0 0] (default) | three-element vector

Initial location of the body in the flat Earth reference frame, specified as a three-element vector.

Programmatic Use
Block Parameter: xme_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Initial velocity in body axes [U,v,w] — Velocity in body axes

[0 0 0] (default) | three-element vector

Initial velocity in body axes, specified as a three-element vector, in the body-fixed coordinate frame.

Programmatic Use
Block Parameter: Vm_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Initial Euler orientation [roll, pitch, yaw] — Initial Euler orientation

[0 0 0] (default) | three-element vector

Initial Euler orientation angles [roll, pitch, yaw], specified as a three-element vector, in radians. Euler
rotation angles are those between the body and north-east-down (NED) coordinate systems.
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Programmatic Use
Block Parameter: eul_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Initial body rotation rates [p,q,r] — Initial body rotation

[0 0 0] (default) | three-element vector

Initial body-fixed angular rates with respect to the NED frame, specified as a three-element vector, in
radians per second.

Programmatic Use
Block Parameter: pm_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Initial mass — Initial mass

1.0 (default) | scalar

Initial mass of the rigid body, specified as a double scalar.

Programmatic Use
Block Parameter: mass_0
Type: character vector
Values: '1.0' | double scalar
Default: '1.0'

Empty mass — Empty mass

0.5 (default) | scalar

Empty mass of the body, specified as a double scalar.

Programmatic Use
Block Parameter: mass_e
Type: character vector
Values: double scalar
Default: '0.5'

Full mass — Full mass of body

2.0 (default) | scalar

Full mass of the body, specified as a double scalar.

Programmatic Use
Block Parameter: mass_f
Type: character vector
Values: double scalar
Default: '2.0'
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Empty inertia matrix — Empty inertia matrix

eye(3) (default) | 3-by-3 matrix

Inertia tensor matrix for the empty inertia of the body, specified as 3-by-3 matrix.

Programmatic Use
Block Parameter: inertia_e
Type: character vector
Values: 'eye(3)' | 3-by-3 matrix
Default: 'eye(3)'

Full inertia matrix — Full inertia of body

2*eye(3) (default) | 3-by-3 matrix

Inertia tensor matrix for the full inertia of the body, specified as 3-by-3 matrix.

Programmatic Use
Block Parameter: inertia_f
Type: character vector
Values: '2*eye(3)' | 3-by-3 matrix
Default: '2*eye(3)'

Gain for quaternion normalization — Gain

1.0 (default) | scalar

Gain to maintain the norm of the quaternion vector equal to 1.0, specified as a double scalar.

Programmatic Use
Block Parameter: k_quat
Type: character vector
Values: 1.0 | double scalar
Default: 1.0

Include mass flow relative velocity — Mass flow relative velocity port

off (default) | on

Select this check box to add a mass flow relative velocity port. This is the relative velocity at which
the mass is accreted or ablated.

Programmatic Use
Block Parameter: vre_flag
Type: character vector
Values: off | on
Default: off

Include inertial acceleration — Include inertial acceleration port

off (default) | on

Select this check box to add an inertial acceleration port.
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Dependencies

To enable the Abe port, select this parameter.

Programmatic Use
Block Parameter: abi_flag
Type: character vector
Values: 'off' | 'on'
Default: off

State Attributes

Assign a unique name to each state. You can use state names instead of block paths during
linearization.

• To assign a name to a single state, enter a unique name between quotes, for example,
'velocity'.

• To assign names to multiple states, enter a comma-separated list surrounded by braces, for
example, {'a', 'b', 'c'}. Each name must be unique.

• If a parameter is empty (' '), no name is assigned.
• The state names apply only to the selected block with the name parameter.
• The number of states must divide evenly among the number of state names.
• You can specify fewer names than states, but you cannot specify more names than states.

For example, you can specify two names in a system with four states. The first name applies to the
first two states and the second name to the last two states.

• To assign state names with a variable in the MATLAB workspace, enter the variable without
quotes. A variable can be a character vector, cell array, or structure.

Position: e.g., {'Xe', 'Ye', 'Ze'} — Position state name

'' (default) | comma-separated list surrounded by braces

Position state names, specified as a comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: xme_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Velocity: e.g., {'U', 'v', 'w'} — Velocity state name

'' (default) | comma-separated list surrounded by braces

Velocity state names, specified as comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: Vm_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''
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Quaternion vector: e.g., {'qr', 'qi', 'qj', 'qk'} — Quaternion vector state name

'' (default) | comma-separated list surrounded by braces

Quaternion vector state names, specified as a comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: quat_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Body rotation rates: e.g., {'p', 'q', 'r'} — Body rotation state names

'' (default) | comma-separated list surrounded by braces

Body rotation rate state names, specified comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: pm_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Mass: e.g., 'mass' — Mass state name

'' (default) | character vector

Mass state name, specified as a character vector.

Programmatic Use
Block Parameter: mass_statename
Type: character vector
Values: '' | character vector
Default: ''

Algorithms
The equation of the integration of the rate of change of the quaternion vector follows. The gain K
drives the norm of the quaternion state vector to 1.0 should ε become nonzero. You must choose the
value of this gain with care, because a large value improves the decay rate of the error in the norm,
but also slows the simulation because fast dynamics are introduced. An error in the magnitude in one
element of the quaternion vector is spread equally among all the elements, potentially increasing the
error in the state vector.

q̇0

q̇1

q̇2

q̇3

= 1 2

0 −p −q −r
p 0 r −q
q −r 0 p
r q −p 0

q0
q1
q2
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+ Kε
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q3

ε = 1− q02 + q12 + q32 + q42
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
6DOF (Euler Angles) | 6DOF (Quaternion) | 6DOF ECEF (Quaternion) | 6DOF Wind (Quaternion) |
6DOF Wind (Wind Angles) | Custom Variable Mass 6DOF (Euler Angles) | Custom Variable Mass
6DOF (Quaternion) | Custom Variable Mass 6DOF ECEF (Quaternion) | Custom Variable Mass 6DOF
Wind (Quaternion) | Custom Variable Mass 6DOF Wind (Wind Angles) | Simple Variable Mass 6DOF
(Euler Angles) | Simple Variable Mass 6DOF ECEF (Quaternion) | Simple Variable Mass 6DOF Wind
(Quaternion) | Simple Variable Mass 6DOF Wind (Wind Angles)

Topics
“About Aerospace Coordinate Systems” on page 2-7
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Simple Variable Mass 6DOF ECEF (Quaternion)
Implement quaternion representation of six-degrees-of-freedom equations of motion of simple
variable mass in Earth-centered Earth-fixed (ECEF) coordinates
Library: Aerospace Blockset / Equations of Motion / 6DOF

Description
The Simple Variable Mass 6DOF ECEF (Quaternion) block implements a quaternion representation of
six-degrees-of-freedom equations of motion of simple variable mass in Earth-centered Earth-fixed
(ECEF) coordinates. It considers the rotation of a Earth-centered Earth-fixed (ECEF) coordinate
frame (XECEF, YECEF, ZECEF) about an Earth-centered inertial (ECI) reference frame (XECI, YECI, ZECI).
The origin of the ECEF coordinate frame is the center of the Earth. For more information on the
ECEF coordinate frame, see “Algorithms” on page 5-729.

Aerospace Blockset uses quaternions that are defined using the scalar-first convention.

Limitations
• This implementation assumes that the applied forces are acting at the center of gravity of the

body.
• This implementation generates a geodetic latitude that lies between ±90 degrees, and longitude

that lies between ±180 degrees. Additionally, the MSL altitude is approximate.
• The Earth is assumed to be ellipsoidal. By setting flattening to 0.0, a spherical planet can be

achieved. The Earth's precession, nutation, and polar motion are neglected. The celestial
longitude of Greenwich is Greenwich Mean Sidereal Time (GMST) and provides a rough
approximation to the sidereal time.

• The implementation of the ECEF coordinate system assumes that the origin is at the center of the
planet, the x-axis intersects the Greenwich meridian and the equator, the z-axis is the mean spin
axis of the planet, positive to the north, and the y-axis completes the right-hand system.

• The implementation of the ECI coordinate system assumes that the origin is at the center of the
planet, the x-axis is the continuation of the line from the center of the Earth toward the vernal
equinox, the z-axis points in the direction of the mean equatorial plane's north pole, positive to the
north, and the y-axis completes the right-hand system.

Ports
Input

Fxyz — Applied forces
three-element vector
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Applied forces, specified as a three-element vector.
Data Types: double

Mxyz — Applied moments
three-element vector

Applied moments, specified as a three-element vector.
Data Types: double

dm/dt — Rates of change of mass
three-element vector

One or more rates of change of mass (positive if accreted, negative if ablated), specified as a three-
element vector.
Data Types: double

LG(0) — Initial celestial longitude of Greenwich
scalar

Greenwich meridian initial celestial longitude angle, specified as a scalar.

Dependencies

To enable this port, set Celestial longitude of Greenwich to External.
Data Types: double

Vre — Relative velocities
three-element vector

One or more relative velocities at which the mass is accreted to or ablated from the body in body-
fixed axes, specified as a three-element vector.

Dependencies

To enable this port, select Include mass flow relative velocity.
Data Types: double

Output

Vecef — Velocity of body with respect to ECEF frame,
three-element vector

Velocity of body with respect to ECEF frame, expressed in ECEF frame, returned as a three-element
vector.
Data Types: double

Xecef — Position in ECEF reference frame
three-element vector

Position in ECEF reference frame, returned as a three-element vector.
Data Types: double
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μ l h — Position in geodetic latitude, longitude, and altitude
three-element vector | M-by-3 array

Position in geodetic latitude, longitude, and altitude, in degrees, returned as a three-element vector
or M-by-3 array, in selected units of length, respectively.
Data Types: double

φ θ Ψ (rad) — Body rotation angles
three-element vector

Body rotation angles [roll, pitch, yaw], returned as a three-element vector, in radians. Euler rotation
angles are those between body and NED coordinate systems.
Data Types: double

DCMbi — Coordinate transformation from ECI axes
3-by-3 matrix

Coordinate transformation from ECI axes to body-fixed axes, returned as a 3-by-3 matrix.
Data Types: double

DCMbe — Coordinate transformation from NED axes
3-by-3 matrix

Coordinate transformation from NED axes to body-fixed axes, returned as a 3-by-3 matrix.
Data Types: double

DCMef — Coordinate transformation from ECEF axes
3-by-3 matrix

Coordinate transformation from ECEF axes to NED axes, returned as a 3-by-3 matrix.
Data Types: double

Vb — Velocity of body with respect to ECEF frame
three-element vector

Velocity of body with respect to ECEF frame, returned as a three-element vector.
Data Types: double

ωrel — Relative angular rates of body with respect to NED frame
three-element vector

Relative angular rates of body with respect to NED frame, expressed in body frame and returned as a
three-element vector, in radians per second.
Data Types: double

ωb — Angular rates of body with respect to ECI frame
three-element vector

Angular rates of the body with respect to ECI frame, expressed in body frame and returned as a
three-element vector, in radians per second.
Data Types: double
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dωb/dt — Angular accelerations of the body with respect to ECI frame
three-element vector

Angular accelerations of the body with respect to ECI frame, expressed in body frame and returned
as a three-element vector, in radians per second squared.
Data Types: double

Abb — Accelerations in body-fixed axes
three-element vector

Accelerations of the body with respect to the body-fixed axes with the body-fixed coordinate frame,
returned as a three-element vector.
Data Types: double

Fuel — Fuel tank status
scalar

Fuel tank status, returned as:

• 1 — Tank is full.
• 0 — Tank is neither full nor empty.
• -1 — Tank is empty.

Data Types: double

Ab ecef — Accelerations in body-fixed axes
three-element vector

Accelerations in body-fixed axes with respect to ECEF frame, returned as a three-element vector.

Dependencies

To enable this point, Include inertial acceleration.
Data Types: double

Parameters
Main

Units — Input and output units

Metric (MKS) (default) | English (Velocity in ft/s) | English (Velocity in kts)

Input and output units, specified as Metric (MKS), English (Velocity in ft/s), or English
(Velocity in kts).

Units Forces Moment Acceleration Velocity Position Mass Inertia
Metric
(MKS)

Newton Newton-
meter

Meters per second
squared

Meters per
second

Meters Kilogram Kilogram
meter
squared
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Units Forces Moment Acceleration Velocity Position Mass Inertia
English
(Velocity
in ft/s)

Pound Foot-pound Feet per second
squared

Feet per
second

Feet Slug Slug foot
squared

English
(Velocity
in kts)

Pound Foot-pound Feet per second
squared

Knots Feet Slug Slug foot
squared

Programmatic Use
Block Parameter: units
Type: character vector
Values: Metric (MKS) | English (Velocity in ft/s) | English (Velocity in kts)
Default: Metric (MKS)

Mass Type — Mass type
Simple Variable (default) | Fixed | Custom Variable

Mass type, specified according to the following table.

Mass Type Description Default For
Fixed Mass is constant throughout the

simulation.
• 6DOF (Euler Angles)
• 6DOF (Quaternion)
• 6DOF Wind (Wind Angles)
• 6DOF Wind (Quaternion)
• 6DOF ECEF (Quaternion)

Simple Variable Mass and inertia vary linearly as
a function of mass rate.

• Simple Variable Mass 6DOF
(Euler Angles)

• Simple Variable Mass 6DOF
(Quaternion)

• Simple Variable Mass 6DOF
Wind (Wind Angles)

• Simple Variable Mass 6DOF
Wind (Quaternion)

• Simple Variable Mass 6DOF
ECEF (Quaternion)

Custom Variable Mass and inertia variations are
customizable.

• Custom Variable Mass 6DOF
(Euler Angles)

• Custom Variable Mass 6DOF
(Quaternion)

• Custom Variable Mass 6DOF
Wind (Wind Angles)

• Custom Variable Mass 6DOF
Wind (Quaternion)

• Custom Variable Mass 6DOF
ECEF (Quaternion)
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The Simple Variable selection conforms to the equations of motion in “Algorithms” on page 5-
729.
Programmatic Use
Block Parameter: mtype
Type: character vector
Values: Fixed | Simple Variable | Custom Variable
Default: Simple Variable

Initial position in geodetic latitude, longitude and altitude [mu,l,h] — Initial
location of the aircraft

[0 0 0] (default) | three-element vector

Initial location of the aircraft in the geodetic reference frame, specified as a three-element vector.
Latitude and longitude values can be any value. However, latitude values of +90 and -90 may return
unexpected values because of singularity at the poles.
Programmatic Use
Block Parameter: xg_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Initial velocity in body axes [U,v,w] — Velocity in body axes

[0 0 0] (default) | three-element vector

Initial velocity of the body with respect to the ECEF frame, expressed in the body frame, specified as
a three-element vector.
Programmatic Use
Block Parameter: Vm_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Initial Euler orientation [roll, pitch, yaw] — Initial Euler orientation

[0 0 0] (default) | three-element vector

Initial Euler orientation angles [roll, pitch, yaw], specified as a three-element vector, in radians. Euler
rotation angles are those between the body and north-east-down (NED) coordinate systems.
Programmatic Use
Block Parameter: eul_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Initial body rotation rates [p,q,r] — Initial body rotation

[0 0 0] (default) | three-element vector

Initial body-fixed angular rates with respect to the NED frame, specified as a three-element vector, in
radians per second.
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Programmatic Use
Block Parameter: pm_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Initial mass — Initial mass

1.0 (default) | scalar

Initial mass of the rigid body, specified as a double scalar.
Programmatic Use
Block Parameter: mass_0
Type: character vector
Values: '1.0' | double scalar
Default: '1.0'

Empty mass — Empty mass

0.5 (default) | scalar

Empty mass of the body, specified as a double scalar.
Programmatic Use
Block Parameter: mass_e
Type: character vector
Values: double scalar
Default: '0.5'

Full mass — Full mass of body

2.0 (default) | scalar

Full mass of the body, specified as a double scalar.
Programmatic Use
Block Parameter: mass_f
Type: character vector
Values: double scalar
Default: '2.0'

Empty inertia matrix — Empty inertia matrix

eye(3) (default) | 3-by-3 matrix

Inertia tensor matrix for the empty inertia of the body, specified as 3-by-3 matrix.
Programmatic Use
Block Parameter: inertia_e
Type: character vector
Values: 'eye(3)' | 3-by-3 matrix
Default: 'eye(3)'

Full inertia matrix — Full inertia of body
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2*eye(3) (default) | 3-by-3 matrix

Inertia tensor matrix for the full inertia of the body, specified as 3-by-3 matrix.

Programmatic Use
Block Parameter: inertia_f
Type: character vector
Values: '2*eye(3)' | 3-by-3 matrix
Default: '2*eye(3)'

Include mass flow relative velocity — Mass flow relative velocity port

off (default) | on

Select this check box to add a mass flow relative velocity port. This is the relative velocity at which
the mass is accreted or ablated.

Programmatic Use
Block Parameter: vre_flag
Type: character vector
Values: off | on
Default: off

Include inertial acceleration — Include inertial acceleration port

off (default) | on

Select this check box to add an inertial acceleration port.

Dependencies

To enable the Abe port, select this parameter.

Programmatic Use
Block Parameter: abi_flag
Type: character vector
Values: 'off' | 'on'
Default: off

Planet

Planet model — Planet model

Earth (WGS84) (default) | Custom

Planet model to use, Custom or Earth (WGS84).

Programmatic Use
Block Parameter: ptype
Type: character vector
Values: 'Earth (WGS84)' | 'Custom'
Default: 'Earth (WGS84)'

Equatorial radius — Radius of planet at equator

6378137 (default) | scalar
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Radius of the planet at its equator, specified as a double scalar, in the same units as the desired units
for the ECEF position.

Dependencies

To enable this parameter, set Planet model to Custom.

Programmatic Use
Block Parameter: R
Type: character vector
Values: double scalar
Default: '6378137'

Flattening — Flattening of planet

1/298.257223563 (default) | scalar

Flattening of the planet, specified as a double scalar.

Dependencies

To enable this parameter, set Planet model to Custom.

Programmatic Use
Block Parameter: F
Type: character vector
Values: double scalar
Default: '1/298.257223563'

Rotational rate — Rotational rate

7292115e-11 (default) | scalar

Rotational rate of the planet, specified as a scalar, in rad/s.

Dependencies

To enable this parameter, set Planet model to Custom.

Programmatic Use
Block Parameter: w_E
Type: character vector
Values: double scalar
Default: '7292115e-11'

Celestial longitude of Greenwich source — Source of Greenwich meridian initial
celestial longitude

Internal (default) | External

Source of Greenwich meridian initial celestial longitude, specified as:

Internal Use celestial longitude value from Celestial
longitude of Greenwich.

External Use external input for celestial longitude value.
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Dependencies

Setting this parameter to External enables the LG(0) port.

Programmatic Use
Block Parameter: angle_in
Type: character vector
Values: 'Internal' | 'External'
Default: 'Internal'

Celestial longitude of Greenwich [deg] — Initial angle

0 (default) | scalar

Initial angle between Greenwich meridian and the x-axis of the ECI frame, specified as a double
scalar.

Dependencies

To enable this parameter, set Celestial longitude of Greenwich source to Internal.

Programmatic Use
Block Parameter: LG0
Type: character vector
Values: double scalar
Default: '0'

State Attributes

Assign a unique name to each state. You can use state names instead of block paths during
linearization.

• To assign a name to a single state, enter a unique name between quotes, for example,
'velocity'.

• To assign names to multiple states, enter a comma-separated list surrounded by braces, for
example, {'a', 'b', 'c'}. Each name must be unique.

• If a parameter is empty (' '), no name is assigned.
• The state names apply only to the selected block with the name parameter.
• The number of states must divide evenly among the number of state names.
• You can specify fewer names than states, but you cannot specify more names than states.

For example, you can specify two names in a system with four states. The first name applies to the
first two states and the second name to the last two states.

• To assign state names with a variable in the MATLAB workspace, enter the variable without
quotes. A variable can be a character vector, cell array, or structure.

Quaternion vector: e.g., {'qr', 'qi', 'qj', 'qk'} — Quaternion vector state name

'' (default) | comma-separated list surrounded by braces

Quaternion vector state names, specified as a comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: quat_statename
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Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Body rotation rates: e.g., {'p', 'q', 'r'} — Body rotation state names

'' (default) | comma-separated list surrounded by braces

Body rotation rate state names, specified comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: pm_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Velocity: e.g., {'U', 'v', 'w'} — Velocity state name

'' (default) | comma-separated list surrounded by braces

Velocity state names, specified as comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: Vm_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

ECEF position: e.g., {'Xecef', 'Yecef', 'Zecef'} — ECEF position state name

'' (default) | comma-separated list surrounded by braces

ECEF position state names, specified as a comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: posECEF_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Inertial position: e.g., {'Xeci', 'Yeci', 'Zeci'} — Inertial position state names

'' (default) | comma-separated list surrounded by braces

Inertial position state names, specified as a comma-separated list surrounded by braces.

Default value is ''.

Programmatic Use
Block Parameter: posECI_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Celestial longitude of Greenwich: e.g., 'LG' — Celestial longitude state name
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'' (default) | character vector

Celestial longitude of Greenwich state name, specified as a character vector.

Programmatic Use
Block Parameter: LG_statename
Type: character vector
Values: '' | scalar
Default: ''

Mass: e.g., 'mass' — Mass state name

'' (default) | character vector

Mass state name, specified as a character vector.

Programmatic Use
Block Parameter: mass_statename
Type: character vector
Values: '' | character vector
Default: ''

Algorithms
The origin of the ECEF coordinate frame is the center of the Earth. The body of interest is assumed to
be rigid, an assumption that eliminates the need to consider the forces acting between individual
elements of mass. The representation of the rotation of ECEF frame from ECI frame is simplified to
consider only the constant rotation of the ellipsoid Earth (ωe) including an initial celestial longitude
(LG(0)). This excellent approximation allows the forces due to the Earth's complex motion relative to
the “fixed stars” to be neglected.
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The translational motion of the ECEF coordinate frame is given below, where the applied forces [Fx Fy
Fz]T are in the body frame. Vreb is the relative velocity in the wind axes at which the mass flow (ṁ) is
ejected or added to the body axes.

Fb =
Fx
Fy
Fz

= m V̇b + ωb × Vb + DCMbfωe × Vb + DCMbf ωe × ωe × Xf

+ṁ Vreb + DCMbf ωe × Xf

Abb =
u̇b

v̇b

ẇb

=
Fb− ṁ Vreb + DCMbf we × Xf

m

− ωb × Vb + DCMωe × Vb + DCMbf ωe ωe × Xf

Abecef =
Fb− ṁ Vreb + DCMbf ωe × Xf

m

where the change of position in ECEF ẋ f (ẋi) is calculated by

ẋ f = DCMfbVb

and the velocity of the body with respect to ECEF frame, expressed in body frame (Vb), angular rates
of the body with respect to ECI frame, expressed in body frame (ωb). Earth rotation rate (ωe), and
relative angular rates of the body with respect to north-east-down (NED) frame, expressed in body
frame (ωrel) are defined as

Vb =
u
v
w

 ωrel =
p
q
r

 ωe =
0
0
ωe

ωb = ωrel + DCMbfωe + DCMbeωned

ωned =
l̇ cosμ
−μ̇

− l̇ sinμ
=

VE/ N + h
−VN/ M + h

VEtanμ/ N + h

The rotational dynamics of the body defined in body-fixed frame are given below, where the applied
moments are [L M N]T, and the inertia tensor I is with respect to the origin O.

Mb =
L
M
N

= I ω̇b + ωb × (I ωb) + İ ωb

I =
Ixx −Ixy −Ixz
−Iyx Iyy −Iyz
−Izx −Izy Izz
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The inertia tensor is determined using a table lookup which linearly interpolates between Ifull and
Iempty based on mass (m). The rate of change of the inertia tensor is estimated by the following
equation.

İ =
Ifull− Iempty

mfull−mempty
ṁ

The integration of the rate of change of the quaternion vector is given below.

q̇0

q̇1

q̇2

q̇3

= − 1 2

0 ωb 1 ωb 2 ωb 3
−ωb 1 0 −ωb 3 ωb 2
−ωb 2 ωb 3 0 −ωb 1
−ωb 3 −ωb 2 ωb 1 0

q0
q1
q2
q3

Version History
Introduced in R2006a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
6DOF (Euler Angles) | 6DOF (Quaternion) | 6DOF ECEF (Quaternion) | 6DOF Wind (Quaternion) |
6DOF Wind (Wind Angles) | Custom Variable Mass 6DOF (Euler Angles) | Custom Variable Mass
6DOF (Quaternion) | Custom Variable Mass 6DOF ECEF (Quaternion) | Custom Variable Mass 6DOF
Wind (Quaternion) | Custom Variable Mass 6DOF Wind (Wind Angles) | Simple Variable Mass 6DOF
Wind (Quaternion) | Simple Variable Mass 6DOF (Euler Angles) | Simple Variable Mass 6DOF
(Quaternion) | Simple Variable Mass 6DOF Wind (Wind Angles)
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Simple Variable Mass 6DOF Wind (Quaternion)
Implement quaternion representation of six-degrees-of-freedom equations of motion of simple
variable mass with respect to wind axes
Library: Aerospace Blockset / Equations of Motion / 6DOF

Description
The Simple Variable Mass 6DOF Wind (Quaternion) block implements a quaternion representation of
six-degrees-of-freedom equations of motion of simple variable mass with respect to wind axes. It
considers the rotation of a wind-fixed coordinate frame (Xw, Yw, Zw) about an flat Earth reference
frame (Xe, Ye, Ze).

Aerospace Blockset uses quaternions that are defined using the scalar-first convention. For more
information on the wind-fixed coordinate frame, see “Algorithms” on page 5-741.

Limitations
The block assumes that the applied forces are acting at the center of gravity of the body.

Ports
Input

Fxyz(N) — Applied forces
three-element vector

Applied forces, specified as a three-element vector.
Data Types: double

Mxyz(N-m) — Applied moments
three-element vector

Applied moments, specified as a three-element vector.
Data Types: double

dm/dt (kg/s) — Rate of change of mass
scalar

One or more rates of change of mass (positive if accreted, negative if ablated), specified as a scalar.
Data Types: double
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Vre — Relative velocity
three-element vector

One or more relative velocities, specified as a three-element vector, at which the mass is accreted to
or ablated from the body in body-fixed axes.

Dependencies

To enable this port, select Include mass flow relative velocity.
Data Types: double

Output

Ve — Velocity in flat Earth reference frame
three-element vector

Velocity in the flat Earth reference frame, returned as a three-element vector.
Data Types: double

Xe — Position in flat Earth reference frame
three-element vector

Position in the flat Earth reference frame, returned as a three-element vector.
Data Types: double

μ γ x (rad) — Wind rotation angles
three-element vector

Wind rotation angles [bank, flight path, heading], returned as three-element vector, in radians.
Data Types: double

DCMwe — Coordinate transformation
3-by-3 matrix

Coordinate transformation from flat Earth axes to wind-fixed axes, returned as a 3-by-3 matrix.
Data Types: double

Vw — Velocity in wind-fixed frame
three-element vector

Velocity in wind-fixed frame, returned as a three-element vector.
Data Types: double

α β (rad) — Angle of attack and sideslip angle
two-element vector

Angle of attack and sideslip angle, returned as a two-element vector, in radians.
Data Types: double

dα/dt dβ/dt — Rate of change of angle of attack and rate of change of sideslip angle
two-element vector
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Rate of change of angle of attack and rate of change of sideslip angle, returned as a two-element
vector, in radians per second.
Data Types: double

ωb (rad/s) — Angular rates in body-fixed axes
three-element vector

Angular rates in body-fixed axes, returned as a three-element vector.
Data Types: double

dωb/dt — Angular accelerations in body-fixed axes
three-element vector

Angular accelerations in body-fixed axes, returned as a three-element vector, in radians per second
squared.
Data Types: double

Abb — Accelerations in body-fixed axes
three-element vector

Accelerations in body-fixed axes with respect to body frame, returned as a three-element vector.
Data Types: double

Fuel — Fuel tank status
scalar

Fuel tank status, returned as:

• 1 — Tank is full.
• 0 — Tank is neither full nor empty.
• -1 — Tank is empty.

Data Types: double

Abe — Accelerations with respect to inertial frame
three-element vector

Accelerations in body-fixed axes with respect to inertial frame (flat Earth), returned as a three-
element vector. You typically connect this signal to the accelerometer.
Dependencies

This port appears only when the Include inertial acceleration check box is selected.
Data Types: double

Parameters
Main

Units — Input and output units

Metric (MKS) (default) | English (Velocity in ft/s) | English (Velocity in kts)
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Input and output units, specified as Metric (MKS), English (Velocity in ft/s), or English
(Velocity in kts).

Units Forces Moment Acceleration Velocity Position Mass Inertia
Metric
(MKS)

Newton Newton-
meter

Meters per second
squared

Meters per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in ft/s)

Pound Foot-pound Feet per second
squared

Feet per
second

Feet Slug Slug foot
squared

English
(Velocity
in kts)

Pound Foot-pound Feet per second
squared

Knots Feet Slug Slug foot
squared

Programmatic Use
Block Parameter: units
Type: character vector
Values: Metric (MKS) | English (Velocity in ft/s) | English (Velocity in kts)
Default: Metric (MKS)

Mass Type — Mass type

Simple Variable (default) | Fixed | Custom Variable

Mass type, specified according to the following table.

Mass Type Description Default For
Fixed Mass is constant throughout the

simulation.
• 6DOF (Euler Angles)
• 6DOF (Quaternion)
• 6DOF Wind (Wind Angles)
• 6DOF Wind (Quaternion)
• 6DOF ECEF (Quaternion)

Simple Variable Mass and inertia vary linearly as
a function of mass rate.

• Simple Variable Mass 6DOF
(Euler Angles)

• Simple Variable Mass 6DOF
(Quaternion)

• Simple Variable Mass 6DOF
Wind (Wind Angles)

• Simple Variable Mass 6DOF
Wind (Quaternion)

• Simple Variable Mass 6DOF
ECEF (Quaternion)

 Simple Variable Mass 6DOF Wind (Quaternion)

5-735



Mass Type Description Default For
Custom Variable Mass and inertia variations are

customizable.
• Custom Variable Mass 6DOF

(Euler Angles)
• Custom Variable Mass 6DOF

(Quaternion)
• Custom Variable Mass 6DOF

Wind (Wind Angles)
• Custom Variable Mass 6DOF

Wind (Quaternion)
• Custom Variable Mass 6DOF

ECEF (Quaternion)

The Simple Variable selection conforms to the equations of motion in “Algorithms” on page 5-
741.

Programmatic Use
Block Parameter: mtype
Type: character vector
Values: Fixed | Simple Variable | Custom Variable
Default: Simple Variable

Representation — Equations of motion representation

Quaternion (default) | Wind Angles

Equations of motion representation, specified according to the following table.

Representation Description
Quaternion Use quaternions within equations of motion.
Wind Angles Use wind angles within equations of motion.

The Quaternion selection conforms to the equations of motion in “Algorithms” on page 5-741.

Programmatic Use
Block Parameter: rep
Type: character vector
Values: Wind Angles | Quaternion
Default: 'Quaternion'

Initial position in inertial axes [Xe,Ye,Ze] — Position in inertial axes

[0 0 0] (default) | three-element vector

Initial location of the body in the flat Earth reference frame, specified as a three-element vector.

Programmatic Use
Block Parameter: xme_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'
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Initial airspeed, angle of attack, and sideslip angle [V,alpha,beta] — Initial
airspeed, angle of attack, and sideslip angle

[0 0 0] (default) | three-element vector

Initial airspeed, angle of attack, and sideslip angle, specified as a three-element vector.
Programmatic Use
Block Parameter: Vm_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Initial wind orientation [bank angle,flight path angle,heading angle] — Initial
wind orientation

[0 0 0] (default) | three-element vector

Initial wind angles [bank, flight path, and heading], specified as a three-element vector in radians.
Programmatic Use
Block Parameter: wind_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Initial body rotation rates [p,q,r] — Initial body rotation

[0 0 0] (default) | three-element vector

Initial body-fixed angular rates with respect to the NED frame, specified as a three-element vector, in
radians per second.
Programmatic Use
Block Parameter: pm_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Initial mass — Initial mass

1.0 (default) | scalar

Initial mass of the rigid body, specified as a double scalar.
Programmatic Use
Block Parameter: mass_0
Type: character vector
Values: '1.0' | double scalar
Default: '1.0'

Empty mass — Empty mass

0.5 (default) | scalar

Empty mass of the body, specified as a double scalar.
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Programmatic Use
Block Parameter: mass_e
Type: character vector
Values: double scalar
Default: '0.5'

Full mass — Full mass of body

2.0 (default) | scalar

Full mass of the body, specified as a double scalar.

Programmatic Use
Block Parameter: mass_f
Type: character vector
Values: double scalar
Default: '2.0'

Empty inertia matrix in body axis — Inertia tensor matrix for empty inertia

eye(3) (default) | 3-by-3 matrix

Inertia tensor matrix for the empty inertia of the body, specified as 3-by-3 matrix, in body-fixed axes.

Programmatic Use
Block Parameter: inertia_e
Type: character vector
Values: 'eye(3)' | 3-by-3 matrix
Default: 'eye(3)'

Full inertia matrix in body axis — Inertia tensor matrix for full inertia

2*eye(3) (default) | 3-by-3 matrix

Inertia tensor matrix for the full inertia of the body, specified as a 3-by-3 matrix, in body-fixed axes.

Programmatic Use
Block Parameter: inertia_f
Type: character vector
Values: '2*eye(3)' | 3-by-3 matrix
Default: '2*eye(3)'

Include mass flow relative velocity — Mass flow relative velocity port

off (default) | on

Select this check box to add a mass flow relative velocity port. This is the relative velocity at which
the mass is accreted or ablated.

Programmatic Use
Block Parameter: vre_flag
Type: character vector
Values: off | on
Default: off
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Include inertial acceleration — Include inertial acceleration port

off (default) | on

Select this check box to add an inertial acceleration port.

Dependencies

To enable the Abe port, select this parameter.

Programmatic Use
Block Parameter: abi_flag
Type: character vector
Values: 'off' | 'on'
Default: off

State Attributes

Assign a unique name to each state. You can use state names instead of block paths during
linearization.

• To assign a name to a single state, enter a unique name between quotes, for example,
'velocity'.

• To assign names to multiple states, enter a comma-separated list surrounded by braces, for
example, {'a', 'b', 'c'}. Each name must be unique.

• If a parameter is empty (' '), no name is assigned.
• The state names apply only to the selected block with the name parameter.
• The number of states must divide evenly among the number of state names.
• You can specify fewer names than states, but you cannot specify more names than states.

For example, you can specify two names in a system with four states. The first name applies to the
first two states and the second name to the last two states.

• To assign state names with a variable in the MATLAB workspace, enter the variable without
quotes. A variable can be a character vector, cell array, or structure.

Position: e.g., {'Xe', 'Ye', 'Ze'} — Position state name

'' (default) | comma-separated list surrounded by braces

Position state names, specified as a comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: xme_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Velocity: e.g., 'V' — Velocity state name

'' (default) | character vector

Velocity state names, specified as a character vector.
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Programmatic Use
Block Parameter: Vm_statename
Type: character vector
Values: '' | character vector
Default: ''

Incidence angle e.g., 'alpha' — Incidence angle state name

'' (default) | character vector

Incidence angle state name, specified as a character vector.
Programmatic Use
Block Parameter: alpha_statename
Type: character vector
Values: ''
Default: ''

Sideslip angle e.g., 'beta' — Sideslip angle state name

'' (default) | character vector

Sideslip angle state name, specified as a character vector.
Programmatic Use
Block Parameter: beta_statename
Type: character vector
Values: ''
Default: ''

Quaternion vector: e.g., {'qr', 'qi', 'qj', 'qk'} — Quaternion vector state name

'' (default) | comma-separated list surrounded by braces

Quaternion vector state names, specified as a comma-separated list surrounded by braces.
Programmatic Use
Block Parameter: quat_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Body rotation rates: e.g., {'p', 'q', 'r'} — Body rotation state names

'' (default) | comma-separated list surrounded by braces

Body rotation rate state names, specified comma-separated list surrounded by braces.
Programmatic Use
Block Parameter: pm_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Mass: e.g., 'mass' — Mass state name
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'' (default) | character vector

Mass state name, specified as a character vector.

Programmatic Use
Block Parameter: mass_statename
Type: character vector
Values: '' | character vector
Default: ''

Algorithms
The origin of the wind-fixed coordinate frame is the center of gravity of the body, and the body is
assumed to be rigid, an assumption that eliminates the need to consider the forces acting between
individual elements of mass. The flat Earth reference frame is considered inertial, an excellent
approximation that allows the forces due to the Earth's motion relative to the “fixed stars” to be
neglected.

The translational motion of the wind-fixed coordinate frame is given below, where the applied forces
[Fx Fy Fz]T are in the wind-fixed frame. Vrew is the relative velocity in the wind axes at which the mass
flow (ṁ) is ejected or added to the body.

Fw =
Fx
Fy
Fz

= m(V̇w + ωw × Vw) + ṁVrew

Vw =
V
0
0

, ωw =
pw
qw
rw

= DMCwb

pb− β̇sinα
qb− α̇

rb + β̇cosα

, wb

pb
qb
rb

The rotational dynamics of the body-fixed frame are given below, where the applied moments are [L
M N]T, and the inertia tensor I is with respect to the origin O. Inertia tensor I is much easier to define
in body-fixed frame.
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Mb =
L
M
N

= Iω̇b + ωb × (Iωb) + İ ωb

I =
Ixx −Ixy −Ixz
−Iyx Iyy −Iyz
−Izx −Izy Izz

The inertia tensor is determined using a table lookup which linearly interpolates between Ifull and
Iempty based on mass (m). While the rate of change of the inertia tensor is estimated by the following
equation.

İ =
Ifull− Iempty

mfull−mempty
ṁ

The integration of the rate of change of the quaternion vector is given below.

q̇0

q̇1

q̇2

q̇3

= − 1/2

0 p q r
−p 0 −r q
−q r 0 −p
−r −q p 0

q0
q1
q2
q3

Version History
Introduced in R2006a

References
[1] Stevens, Brian, and Frank Lewis. Aircraft Control and Simulation, 2nd ed. Hoboken, NJ: John

Wiley & Sons, 2003.

[2] Zipfel, Peter H., Modeling and Simulation of Aerospace Vehicle Dynamics. 2nd ed. Reston, VA:
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
6DOF (Euler Angles) | 6DOF (Quaternion) | 6DOF ECEF (Quaternion) | 6DOF Wind (Quaternion) |
6DOF Wind (Wind Angles) | Custom Variable Mass 6DOF (Euler Angles) | Custom Variable Mass
6DOF (Quaternion) | Custom Variable Mass 6DOF ECEF (Quaternion) | Custom Variable Mass 6DOF
Wind (Quaternion) | Custom Variable Mass 6DOF Wind (Wind Angles) | Simple Variable Mass 6DOF
ECEF (Quaternion) | Simple Variable Mass 6DOF (Euler Angles) | Simple Variable Mass 6DOF
(Quaternion) | Simple Variable Mass 6DOF Wind (Wind Angles)
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Simple Variable Mass 6DOF Wind (Wind Angles)
Implement wind angle representation of six-degrees-of-freedom equations of motion of simple
variable mass
Library: Aerospace Blockset / Equations of Motion / 6DOF

Description
The Simple Variable Mass 6DOF Wind (Wind Angles) block implements a wind angle representation of
six-degrees-of-freedom equations of motion of simple variable mass. For more information of the
relationship between the wind angles, see Algorithms. For a description of the coordinate system
employed and the translational dynamics, see the block description for the Simple Variable Mass
6DOF (Quaternion) block.

Limitations
The block assumes that the applied forces are acting at the center of gravity of the body.

Ports
Input

Fxyz(N) — Applied forces
three-element vector

Applied forces, specified as a three-element vector.
Data Types: double

Mxyz(N-m) — Applied moments
three-element vector

Applied moments, specified as a three-element vector.
Data Types: double

dm/dt (kg/s) — Rate of change of mass
scalar

One or more rates of change of mass (positive if accreted, negative if ablated), specified as a scalar.
Data Types: double

Vre — Relative velocity
three-element vector
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One or more relative velocities, specified as a three-element vector, at which the mass is accreted to
or ablated from the body in body-fixed axes.
Dependencies

To enable this port, select Include mass flow relative velocity.
Data Types: double

Output

Ve — Velocity in flat Earth reference frame
three-element vector

Velocity in the flat Earth reference frame, returned as a three-element vector.
Data Types: double

Xe — Position in flat Earth reference frame
three-element vector

Position in the flat Earth reference frame, returned as a three-element vector.
Data Types: double

μ γ x (rad) — Wind rotation angles
three-element vector

Wind rotation angles [bank, flight path, heading], returned as three-element vector, in radians.
Data Types: double

DCMwe — Coordinate transformation
3-by-3 matrix

Coordinate transformation from flat Earth axes to wind-fixed axes, returned as a 3-by-3 matrix.
Data Types: double

Vw — Velocity in wind-fixed frame
three-element vector

Velocity in wind-fixed frame, returned as a three-element vector.
Data Types: double

α β (rad) — Angle of attack and sideslip angle
two-element vector

Angle of attack and sideslip angle, returned as a two-element vector, in radians.
Data Types: double

dα/dt dβ/dt — Rate of change of angle of attack and rate of change of sideslip angle
two-element vector

Rate of change of angle of attack and rate of change of sideslip angle, returned as a two-element
vector, in radians per second.
Data Types: double
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ωb (rad/s) — Angular rates in body-fixed axes
three-element vector

Angular rates in body-fixed axes, returned as a three-element vector.
Data Types: double

dωb/dt — Angular accelerations in body-fixed axes
three-element vector

Angular accelerations in body-fixed axes, returned as a three-element vector, in radians per second
squared.
Data Types: double

Abb — Accelerations in body-fixed axes
three-element vector

Accelerations in body-fixed axes with respect to body frame, returned as a three-element vector.
Data Types: double

Fuel — Fuel tank status
scalar

Fuel tank status, returned as:

• 1 — Tank is full.
• 0 — Tank is neither full nor empty.
• -1 — Tank is empty.

Data Types: double

Abe — Accelerations with respect to inertial frame
three-element vector

Accelerations in body-fixed axes with respect to inertial frame (flat Earth), returned as a three-
element vector. You typically connect this signal to the accelerometer.

Dependencies

This port appears only when the Include inertial acceleration check box is selected.
Data Types: double

Parameters
Main

Units — Input and output units

Metric (MKS) (default) | English (Velocity in ft/s) | English (Velocity in kts)

Input and output units, specified as Metric (MKS), English (Velocity in ft/s), or English
(Velocity in kts).
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Units Forces Moment Acceleration Velocity Position Mass Inertia
Metric
(MKS)

Newton Newton-
meter

Meters per second
squared

Meters per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in ft/s)

Pound Foot-pound Feet per second
squared

Feet per
second

Feet Slug Slug foot
squared

English
(Velocity
in kts)

Pound Foot-pound Feet per second
squared

Knots Feet Slug Slug foot
squared

Programmatic Use
Block Parameter: units
Type: character vector
Values: Metric (MKS) | English (Velocity in ft/s) | English (Velocity in kts)
Default: Metric (MKS)

Mass Type — Mass type

Simple Variable (default) | Fixed | Custom Variable

Mass type, specified according to the following table.

Mass Type Description Default For
Fixed Mass is constant throughout the

simulation.
• 6DOF (Euler Angles)
• 6DOF (Quaternion)
• 6DOF Wind (Wind Angles)
• 6DOF Wind (Quaternion)
• 6DOF ECEF (Quaternion)

Simple Variable Mass and inertia vary linearly as
a function of mass rate.

• Simple Variable Mass 6DOF
(Euler Angles)

• Simple Variable Mass 6DOF
(Quaternion)

• Simple Variable Mass 6DOF
Wind (Wind Angles)

• Simple Variable Mass 6DOF
Wind (Quaternion)

• Simple Variable Mass 6DOF
ECEF (Quaternion)
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Mass Type Description Default For
Custom Variable Mass and inertia variations are

customizable.
• Custom Variable Mass 6DOF

(Euler Angles)
• Custom Variable Mass 6DOF

(Quaternion)
• Custom Variable Mass 6DOF

Wind (Wind Angles)
• Custom Variable Mass 6DOF

Wind (Quaternion)
• Custom Variable Mass 6DOF

ECEF (Quaternion)

The Simple Variable selection conforms to the equations of motion in “Algorithms” on page 5-
752.

Programmatic Use
Block Parameter: mtype
Type: character vector
Values: Fixed | Simple Variable | Custom Variable
Default: Simple Variable

Representation — Equations of motion representation

Wind Angles (default) | Quaternion

Equations of motion representation, specified according to the following table.

Representation Description
Wind Angles Use Wind angles within equations of motion.
Quaternion Use quaternions within equations of motion.

The Wind Angles selection conforms to the equations of motion in “Algorithms” on page 5-752.

Programmatic Use
Block Parameter: rep
Type: character vector
Values: Wind Angles | Quaternion
Default: 'Wind Angles'

Initial position in inertial axes [Xe,Ye,Ze] — Position in inertial axes

[0 0 0] (default) | three-element vector

Initial location of the body in the flat Earth reference frame, specified as a three-element vector.

Programmatic Use
Block Parameter: xme_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'
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Initial airspeed, angle of attack, and sideslip angle [V,alpha,beta] — Initial
airspeed, angle of attack, and sideslip angle

[0 0 0] (default) | three-element vector

Initial airspeed, angle of attack, and sideslip angle, specified as a three-element vector.
Programmatic Use
Block Parameter: Vm_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Initial wind orientation [bank angle,flight path angle,heading angle] — Initial
wind orientation

[0 0 0] (default) | three-element vector

Initial wind angles [bank, flight path, and heading], specified as a three-element vector in radians.
Programmatic Use
Block Parameter: wind_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Initial body rotation rates [p,q,r] — Initial body rotation

[0 0 0] (default) | three-element vector

Initial body-fixed angular rates with respect to the NED frame, specified as a three-element vector, in
radians per second.
Programmatic Use
Block Parameter: pm_0
Type: character vector
Values: '[0 0 0]' | three-element vector
Default: '[0 0 0]'

Initial mass — Initial mass

1.0 (default) | scalar

Initial mass of the rigid body, specified as a double scalar.
Programmatic Use
Block Parameter: mass_0
Type: character vector
Values: '1.0' | double scalar
Default: '1.0'

Empty mass — Empty mass

0.5 (default) | scalar

Empty mass of the body, specified as a double scalar.
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Programmatic Use
Block Parameter: mass_e
Type: character vector
Values: double scalar
Default: '0.5'

Full mass — Full mass of body

2.0 (default) | scalar

Full mass of the body, specified as a double scalar.

Programmatic Use
Block Parameter: mass_f
Type: character vector
Values: double scalar
Default: '2.0'

Empty inertia matrix in body axis — Inertia tensor matrix for empty inertia

eye(3) (default) | 3-by-3 matrix

Inertia tensor matrix for the empty inertia of the body, specified as 3-by-3 matrix, in body-fixed axes.

Programmatic Use
Block Parameter: inertia_e
Type: character vector
Values: 'eye(3)' | 3-by-3 matrix
Default: 'eye(3)'

Full inertia matrix in body axis — Inertia tensor matrix for full inertia

2*eye(3) (default) | 3-by-3 matrix

Inertia tensor matrix for the full inertia of the body, specified as a 3-by-3 matrix, in body-fixed axes.

Programmatic Use
Block Parameter: inertia_f
Type: character vector
Values: '2*eye(3)' | 3-by-3 matrix
Default: '2*eye(3)'

Include mass flow relative velocity — Mass flow relative velocity port

off (default) | on

Select this check box to add a mass flow relative velocity port. This is the relative velocity at which
the mass is accreted or ablated.

Programmatic Use
Block Parameter: vre_flag
Type: character vector
Values: off | on
Default: off
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Include inertial acceleration — Include inertial acceleration port

off (default) | on

Select this check box to add an inertial acceleration port.

Dependencies

To enable the Abe port, select this parameter.

Programmatic Use
Block Parameter: abi_flag
Type: character vector
Values: 'off' | 'on'
Default: off

State Attributes

Assign a unique name to each state. You can use state names instead of block paths during
linearization.

• To assign a name to a single state, enter a unique name between quotes, for example,
'velocity'.

• To assign names to multiple states, enter a comma-separated list surrounded by braces, for
example, {'a', 'b', 'c'}. Each name must be unique.

• If a parameter is empty (' '), no name is assigned.
• The state names apply only to the selected block with the name parameter.
• The number of states must divide evenly among the number of state names.
• You can specify fewer names than states, but you cannot specify more names than states.

For example, you can specify two names in a system with four states. The first name applies to the
first two states and the second name to the last two states.

• To assign state names with a variable in the MATLAB workspace, enter the variable without
quotes. A variable can be a character vector, cell array, or structure.

Position: e.g., {'Xe', 'Ye', 'Ze'} — Position state name

'' (default) | comma-separated list surrounded by braces

Position state names, specified as a comma-separated list surrounded by braces.

Programmatic Use
Block Parameter: xme_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Velocity: e.g., 'V' — Velocity state name

'' (default) | character vector

Velocity state names, specified as a character vector.
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Programmatic Use
Block Parameter: Vm_statename
Type: character vector
Values: '' | character vector
Default: ''

Incidence angle e.g., 'alpha' — Incidence angle state name

'' (default) | character vector

Incidence angle state name, specified as a character vector.
Programmatic Use
Block Parameter: alpha_statename
Type: character vector
Values: ''
Default: ''

Sideslip angle e.g., 'beta' — Sideslip angle state name

'' (default) | character vector

Sideslip angle state name, specified as a character vector.
Programmatic Use
Block Parameter: beta_statename
Type: character vector
Values: ''
Default: ''

Wind orientation e.g., {'mu', 'gamma', 'chi'} — Wind orientation state names

'' (default) | comma-separated list surrounded by braces

Wind orientation state names, specified as a comma-separated list surrounded by braces.
Programmatic Use
Block Parameter: wind_statename
Type: character vector
Values: ''
Default: ''

Body rotation rates: e.g., {'p', 'q', 'r'} — Body rotation state names

'' (default) | comma-separated list surrounded by braces

Body rotation rate state names, specified comma-separated list surrounded by braces.
Programmatic Use
Block Parameter: pm_statename
Type: character vector
Values: '' | comma-separated list surrounded by braces
Default: ''

Mass: e.g., 'mass' — Mass state name
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'' (default) | character vector

Mass state name, specified as a character vector.

Programmatic Use
Block Parameter: mass_statename
Type: character vector
Values: '' | character vector
Default: ''

Algorithms
The relationship between the wind angles, [μγχ]T, can be determined by resolving the wind rates into
the wind-fixed coordinate frame.

pw
qw
rw

=
μ̇
0
0

+
1 0 0
0 cosμ sinμ
0 −sinμ cosμ

0
γ̇
0

+
1 0 0
0 cosμ sinμ
0 −sinμ cosμ

cosγ 0 −sinγ
0 1 0
sinγ 0 cosγ

0
0
χ̇
≡ J−1

μ̇
γ̇
χ̇

Inverting J then gives the required relationship to determine the wind rate vector.

μ̇
γ̇
χ̇

= J
pw
qw
rw

=

1 (sinμtanγ) (cosμtanγ)
0 cosμ −sinμ

0 sinμ
cosγ

cosμ
cosγ

pw
qw
rw

The body-fixed angular rates are related to the wind-fixed angular rate by the following equation.

pw
qw
rw

= DMCwb

pb− β̇sinα
qb− α̇

rb + β̇cosα

Using this relationship in the wind rate vector equations, gives the relationship between the wind
rate vector and the body-fixed angular rates.

μ̇
γ̇
χ̇

= J
pw
qw
rw

=

1 (sinμtanγ) (cosμtanγ)
0 cosμ −sinμ

0 sinμ
cosγ

cosμ
cosγ

DMCwb

pb− β̇sinα
qb− α̇

rb + β̇cosα

Version History
Introduced in R2006a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
6DOF (Euler Angles) | 6DOF (Quaternion) | 6DOF ECEF (Quaternion) | 6DOF Wind (Quaternion) |
6DOF Wind (Wind Angles) | Custom Variable Mass 6DOF (Euler Angles) | Custom Variable Mass
6DOF (Quaternion) | Custom Variable Mass 6DOF ECEF (Quaternion) | Custom Variable Mass 6DOF
Wind (Quaternion) | Custom Variable Mass 6DOF Wind (Wind Angles) | Simple Variable Mass 6DOF
ECEF (Quaternion) | Simple Variable Mass 6DOF (Euler Angles) | Simple Variable Mass 6DOF
(Quaternion) | Simple Variable Mass 6DOF Wind (Quaternion)
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Simulation 3D Actor Transform Get
Get actor translation, rotation, scale
Library: Vehicle Dynamics Blockset / Vehicle Scenarios / Sim3D /

Sim3D Core
Aerospace Blockset / Animation / Simulation 3D
Simulink 3D Animation / Simulation 3D

Description
The Simulation 3D Actor Transform Get block provides the actor translation, rotation, and scale for
the Simulink simulation environment.

The block uses a vehicle-fixed coordinate system that is initially aligned with the inertial world
coordinate system.

Axis Description
X Forward direction of the vehicle

Roll — Right-handed rotation about X-axis
Y Extends to the right of the vehicle, initially parallel to the ground plane

Pitch — Right-handed rotation about Y-axis
Z Extends upwards

Yaw — Left-handed rotation about Z-axis

Actors are scene objects that support 3D translation, rotation, and scale. Parts are actor components.
Components do not exist by themselves; they are associated with an actor.
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Tip Verify that the Simulation 3D Scene Configuration block executes before the Simulation 3D Actor
Transform Get block. That way, the Unreal Engine 3D visualization environment prepares the data
before the Simulation 3D Actor Transform Get block receives it. To check the block execution order,
right-click the blocks and select Properties. On the General tab, confirm these Priority settings:

• Simulation 3D Scene Configuration — 0
• Simulation 3D Actor Transform Get — 1

For more information about execution order, see “Control and Display Execution Order”.

Ports
Output

Translation — Actor translation
array

Actor translation, in m. Array dimensions are number of parts per actor-by-3.

• Translation(1,1), Translation(1,2), and Translation(1,3) — Vehicle displacement
along world X-, Y, and Z- axes, respectively.

• Translation(...,1), Translation(...,2), and Translation(...,3) — Actor
displacement relative to vehicle, in vehicle-fixed coordinate system initially aligned with world X-,
Y, and Z- axes, respectively.

For example, consider a vehicle actor with a vehicle body and four wheels. The Translation signal:

• Dimensions are [5x3].
• Contains translation information according to the axle and wheel locations, relative to vehicle.

Translation =

Xv Yv Zv
XFL YFL ZFL
XFR YFR ZFR
XRL YRL ZRL
XRR YRR ZRR

Translation Array Element
Vehicle, Xv Translation(1,1)
Vehicle, Yv Translation(1,2)
Vehicle, Zv Translation(1,3)
Front left wheel, XFL Translation(2,1)
Front left wheel, YFL Translation(2,2)
Front left wheel, ZFL Translation(2,3)
Front right wheel, XFR Translation(3,1)
Front right wheel, YFR Translation(3,2)
Front right wheel, ZFR Translation(3,3)
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Translation Array Element
Rear left wheel, XRL Translation(4,1)
Rear left wheel, YRL Translation(4,2)
Rear left wheel, ZRL Translation(4,3)
Rear right wheel, XRR Translation(5,1)
Rear right wheel, YRR Translation(5,2)
Rear right wheel, ZRR Translation(5,3)

Rotation — Actor rotation
array

Actor rotation across a [-pi/2, pi/2] range, in rad. Array dimensions are number of parts per actor-
by-3.

• Rotation(1,1), Rotation(1,2), and Rotation(1,3) — Vehicle rotation about vehicle-fixed
pitch, roll, and yaw Y-, Z-, and X- axes, respectively.

• Rotation(...,1), Rotation(...,2), and Rotation(...,3) — Actor rotation about vehicle-
fixed pitch, roll, and yaw Y-, Z-, and X- axes, respectively.

For example, consider a vehicle actor with a vehicle body and four wheels. The Rotation signal:

• Dimensions are [5x3].
• Contains rotation information according to the axle and wheel locations.

Rotation =

Pitchv Rollv Yawv
PitchFL RollFL YawFL
PitchFR RollFR YawFR
PitchRL RollRL YawRL
PitchRR RollRR YawRR

Rotation Array Element
Vehicle, Pitchv Rotation(1,1)
Vehicle, Rollv Rotation(1,2)
Vehicle, Yawv Rotation(1,3)
Front left wheel, PitchFL Rotation(2,1)
Front left wheel, RollFL Rotation(2,2)
Front left wheel, YawFL Rotation(2,3)
Front right wheel, PitchFR Rotation(3,1)
Front right wheel, RollFR Rotation(3,2)
Front right wheel, YawFR Rotation(3,3)
Rear left wheel, PitchRL Rotation(4,1)
Rear left wheel, RollRL Rotation(4,2)
Rear left wheel, YawRL Rotation(4,3)
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Rotation Array Element
Rear right wheel, PitchRR Rotation(5,1)
Rear right wheel, RollRR Rotation(5,2)
Rear right wheel, YawRR Rotation(5,3)

Scale — Actor scale
array

Actor scale. Array dimensions are number of number of parts per actor-by-3.

• Scale(1,1), Scale(1,2), and Scale(1,3) — Vehicle scale along world X-, Y-, and Z- axes,
respectively.

• Scale(...,1), Scale(...,2), and Scale(...,3) — Actor scale along world X-, Y-, and Z-
axes, respectively.

For example, consider a vehicle actor with a vehicle body and four wheels. The Scale signal:

• Dimensions are [5x3].
• Contains scale information according to the axle and wheel locations.

Scale =

XVscale YVscale ZVscale
XFLscale YFLscale ZFLscale
XFRscale YFRscale ZFRscale
XRLscale YRLscale ZRLscale
XRRscale YRRscale ZRRscale

Scale Array Element
Vehicle, Xvscale

Scale(1,1)
Vehicle, Yvscale

Scale(1,2)
Vehicle, Zvscale

Scale(1,3)
Front left wheel, XFLscale

Scale(2,1)
Front left wheel, YFLscale

Scale(2,2)
Front left wheel, ZFLscale

Scale(2,3)
Front right wheel, XFRscale

Scale(3,1)
Front right wheel, YFRscale

Scale(3,2)
Front right wheel, ZFRscale

Scale(3,3)
Rear left wheel, XRLscale

Scale(4,1)
Rear left wheel, YRLscale

Scale(4,2)
Rear left wheel, ZRLscale

Scale(4,3)
Rear right wheel, XRRscale

Scale(5,1)
Rear right wheel, YRRscale

Scale(5,2)
Rear right wheel, ZRRscale

Scale(5,3)
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Parameters
Tag for actor in 3D scene, ActorTag — Name
SimulinkActor1 (default) | character vector

Actor name.

Actors are scene objects that support 3D translation, rotation, and scale. Parts are actor components.
Components do not exist by themselves; they are associated with an actor.

The block does not support multiple instances of the same actor tag. To refer to the same scene actor
when you use the 3D block pairs (e.g. Simulation 3D Actor Transform Get and Simulation 3D Actor
Transform Set), specify the same Tag for actor in 3D scene, ActorTag parameter.

Number of parts per actor to get, NumberOfParts — Name
1 (default) | scalar

Number of parts per actor. Actors are scene objects that support 3D translation, rotation, and scale.
Parts are actor components. Components do not exist by themselves; they are associated with an
actor. Typically, a vehicle actor with a body and four wheels has 5 parts.

The block does not support multiple instances of the same actor tag. To refer to the same scene actor
when you use the 3D block pairs (e.g. Simulation 3D Actor Transform Get and Simulation 3D Actor
Transform Set), specify the same Tag for actor in 3D scene, ActorTag parameter.

Sample time — Sample time
-1 (default) | scalar

Sample time, Ts. The graphics frame rate is the inverse of the sample time.

Version History
Introduced in R2021b

See Also
Simulation 3D Actor Transform Set | Simulation 3D Camera Get | Simulation 3D Scene Configuration
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Simulation 3D Actor Transform Set
Set actor translation, rotation, scale
Library: Vehicle Dynamics Blockset / Vehicle Scenarios / Sim3D /

Sim3D Core
Aerospace Blockset / Animation / Simulation 3D
Simulink 3D Animation / Simulation 3D

Description
The Simulation 3D Actor Transform Set block sets the actor translation, rotation, and scale in the 3D
visualization environment.

The block uses a vehicle-fixed coordinate system that is initially aligned with the inertial world
coordinate system.

Axis Description
X Forward direction of the vehicle

Roll — Right-handed rotation about X-axis
Y Extends to the right of the vehicle, initially parallel to the ground plane

Pitch — Right-handed rotation about Y-axis
Z Extends upwards

Yaw — Left-handed rotation about Z-axis

Actors are scene objects that support 3D translation, rotation, and scale. Parts are actor components.
Components do not exist by themselves; they are associated with an actor.
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Tip Verify that the Simulation 3D Actor Transform Set block executes before the Simulation 3D
Scene Configuration block. That way, Simulation 3D Actor Transform Set prepares the signal data
before the Unreal Engine 3D visualization environment receives it. To check the block execution
order, right-click the blocks and select Properties. On the General tab, confirm these Priority
settings:

• Simulation 3D Scene Configuration — 0
• Simulation 3D Actor Transform Set — -1

For more information about execution order, see “Control and Display Execution Order”.

Ports
Input

Translation — Actor translation
array

Actor translation, in m. Array dimensions are number of parts per actor-by-3.

• Translation(1,1), Translation(1,2), and Translation(1,3) — Vehicle displacement
along world X-, Y, and Z- axes, respectively.

• Translation(...,1), Translation(...,2), and Translation(...,3) — Actor
displacement relative to vehicle, in vehicle-fixed coordinate system initially aligned with world X-,
Y, and Z- axes, respectively.

For example, consider a vehicle actor with a vehicle body and four wheels. The Translation signal:

• Dimensions are [5x3].
• Contains translation information according to the axle and wheel locations, relative to vehicle.

Translation =

Xv Yv Zv
XFL YFL ZFL
XFR YFR ZFR
XRL YRL ZRL
XRR YRR ZRR

Translation Array Element
Vehicle, Xv Translation(1,1)
Vehicle, Yv Translation(1,2)
Vehicle, Zv Translation(1,3)
Front left wheel, XFL Translation(2,1)
Front left wheel, YFL Translation(2,2)
Front left wheel, ZFL Translation(2,3)
Front right wheel, XFR Translation(3,1)
Front right wheel, YFR Translation(3,2)
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Translation Array Element
Front right wheel, ZFR Translation(3,3)
Rear left wheel, XRL Translation(4,1)
Rear left wheel, YRL Translation(4,2)
Rear left wheel, ZRL Translation(4,3)
Rear right wheel, XRR Translation(5,1)
Rear right wheel, YRR Translation(5,2)
Rear right wheel, ZRR Translation(5,3)

Rotation — Actor rotation
array

Actor rotation across a [-pi/2, pi/2] range, in rad. Array dimensions are number of parts per actor-
by-3.

• Rotation(1,1), Rotation(1,2), and Rotation(1,3) — Vehicle rotation about vehicle-fixed
pitch, roll, and yaw Y-, Z-, and X- axes, respectively.

• Rotation(...,1), Rotation(...,2), and Rotation(...,3) — Actor rotation about vehicle-
fixed pitch, roll, and yaw Y-, Z-, and X- axes, respectively.

For example, consider a vehicle actor with a vehicle body and four wheels. The Rotation signal:

• Dimensions are [5x3].
• Contains rotation information according to the axle and wheel locations.

Rotation =

Pitchv Rollv Yawv
PitchFL RollFL YawFL
PitchFR RollFR YawFR
PitchRL RollRL YawRL
PitchRR RollRR YawRR

Rotation Array Element
Vehicle, Pitchv Rotation(1,1)
Vehicle, Rollv Rotation(1,2)
Vehicle, Yawv Rotation(1,3)
Front left wheel, PitchFL Rotation(2,1)
Front left wheel, RollFL Rotation(2,2)
Front left wheel, YawFL Rotation(2,3)
Front right wheel, PitchFR Rotation(3,1)
Front right wheel, RollFR Rotation(3,2)
Front right wheel, YawFR Rotation(3,3)
Rear left wheel, PitchRL Rotation(4,1)
Rear left wheel, RollRL Rotation(4,2)
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Rotation Array Element
Rear left wheel, YawRL Rotation(4,3)
Rear right wheel, PitchRR Rotation(5,1)
Rear right wheel, RollRR Rotation(5,2)
Rear right wheel, YawRR Rotation(5,3)

Scale — Actor scale
array

Actor scale. Array dimensions are number of number of parts per actor-by-3.

• Scale(1,1), Scale(1,2), and Scale(1,3) — Vehicle scale along world X-, Y-, and Z- axes,
respectively.

• Scale(...,1), Scale(...,2), and Scale(...,3) — Actor scale along world X-, Y-, and Z-
axes, respectively.

For example, consider a vehicle actor with a vehicle body and four wheels. The Scale signal:

• Dimensions are [5x3].
• Contains scale information according to the axle and wheel locations.

Scale =

XVscale YVscale ZVscale
XFLscale YFLscale ZFLscale
XFRscale YFRscale ZFRscale
XRLscale YRLscale ZRLscale
XRRscale YRRscale ZRRscale

Scale Array Element
Vehicle, Xvscale

Scale(1,1)
Vehicle, Yvscale

Scale(1,2)
Vehicle, Zvscale

Scale(1,3)
Front left wheel, XFLscale

Scale(2,1)
Front left wheel, YFLscale

Scale(2,2)
Front left wheel, ZFLscale

Scale(2,3)
Front right wheel, XFRscale

Scale(3,1)
Front right wheel, YFRscale

Scale(3,2)
Front right wheel, ZFRscale

Scale(3,3)
Rear left wheel, XRLscale

Scale(4,1)
Rear left wheel, YRLscale

Scale(4,2)
Rear left wheel, ZRLscale

Scale(4,3)
Rear right wheel, XRRscale

Scale(5,1)
Rear right wheel, YRRscale

Scale(5,2)
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Scale Array Element
Rear right wheel, ZRRscale

Scale(5,3)

Parameters
Actor Setup

Tag for actor in 3D scene, ActorTag — Name
SimulinkActor1 (default) | character vector

Actor name.

Actors are scene objects that support 3D translation, rotation, and scale. Parts are actor components.
Components do not exist by themselves; they are associated with an actor.

The block does not support multiple instances of the same actor tag. To refer to the same scene actor
when you use the 3D block pairs (e.g. Simulation 3D Actor Transform Get and Simulation 3D Actor
Transform Set), specify the same Tag for actor in 3D scene, ActorTag parameter.

Number of parts per actor to set, NumberOfParts — Name
1 (default) | scalar

Number of parts per actor. Actors are scene objects that support 3D translation, rotation, and scale.
Parts are actor components. Components do not exist by themselves; they are associated with an
actor. Typically, a vehicle actor with a body and four wheels has 5 parts.

The block does not support multiple instances of the same actor tag. To refer to the same scene actor
when you use the 3D block pairs (e.g. Simulation 3D Actor Transform Get and Simulation 3D Actor
Transform Set), specify the same Tag for actor in 3D scene, ActorTag parameter.

Initial Values

Initial array values to translate actor per part, Translation — Actor initial
position
[0 0 0] (default) | array

Actor initial position, along world X-, Y-, and Z- axes, in m.

Array dimensions are number of parts per actor-by-3.

• Translation(1,1), Translation(1,2), and Translation(1,3) — Vehicle displacement
along world X-, Y, and Z- axes, respectively.

• Translation(...,1), Translation(...,2), and Translation(...,3) — Actor
displacement relative to vehicle, in vehicle-fixed coordinate system initially aligned with world X-,
Y, and Z- axes, respectively.

For example, consider a vehicle actor with a vehicle body and four wheels. The parameter:

• Dimensions are [5x3].
• Contains translation information according to the axle and wheel locations, relative to vehicle.
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Translation =

Xv Yv Zv
XFL YFL ZFL
XFR YFR ZFR
XRL YRL ZRL
XRR YRR ZRR

Translation Array Element
Vehicle, Xv Translation(1,1)
Vehicle, Yv Translation(1,2)
Vehicle, Zv Translation(1,3)
Front left wheel, XFL Translation(2,1)
Front left wheel, YFL Translation(2,2)
Front left wheel, ZFL Translation(2,3)
Front right wheel, XFR Translation(3,1)
Front right wheel, YFR Translation(3,2)
Front right wheel, ZFR Translation(3,3)
Rear left wheel, XRL Translation(4,1)
Rear left wheel, YRL Translation(4,2)
Rear left wheel, ZRL Translation(4,3)
Rear right wheel, XRR Translation(5,1)
Rear right wheel, YRR Translation(5,2)
Rear right wheel, ZRR Translation(5,3)

Initial array values to rotate actor per part, Rotation — Actor initial rotation
[0 0 0] (default) | array

Actor initial rotation about world X-, Y-, and Z- axes across a [-pi/2, pi/2] range, in rad.

Array dimensions are number of parts per actor-by-3.

• Rotation(1,1), Rotation(1,2), and Rotation(1,3) — Vehicle rotation about vehicle-fixed
pitch, roll, and yaw Y-, Z-, and X- axes, respectively.

• Rotation(...,1), Rotation(...,2), and Rotation(...,3) — Actor rotation about vehicle-
fixed pitch, roll, and yaw Y-, Z-, and X- axes, respectively.

For example, consider a vehicle actor with a vehicle body and four wheels. The parameter:

• Dimensions are [5x3].
• Contains rotation information according to the axle and wheel locations.
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Rotation =

Pitchv Rollv Yawv
PitchFL RollFL YawFL
PitchFR RollFR YawFR
PitchRL RollRL YawRL
PitchRR RollRR YawRR

Rotation Array Element
Vehicle, Pitchv Rotation(1,1)
Vehicle, Rollv Rotation(1,2)
Vehicle, Yawv Rotation(1,3)
Front left wheel, PitchFL Rotation(2,1)
Front left wheel, RollFL Rotation(2,2)
Front left wheel, YawFL Rotation(2,3)
Front right wheel, PitchFR Rotation(3,1)
Front right wheel, RollFR Rotation(3,2)
Front right wheel, YawFR Rotation(3,3)
Rear left wheel, PitchRL Rotation(4,1)
Rear left wheel, RollRL Rotation(4,2)
Rear left wheel, YawRL Rotation(4,3)
Rear right wheel, PitchRR Rotation(5,1)
Rear right wheel, RollRR Rotation(5,2)
Rear right wheel, YawRR Rotation(5,3)

Initial array values to scale actor per part, Scale — Actor initial scale
[1 1 1] (default) | array

Actor initial scale.

Array dimensions are number of number of parts per actor-by-3.

• Scale(1,1), Scale(1,2), and Scale(1,3) — Vehicle scale along world X-, Y, and Z- axes,
respectively.

• Scale(...,1), Scale(...,2), and Scale(...,3) — Actor scale along world X-, Y, and Z-
axes, respectively.

For example, consider a vehicle actor with a vehicle body and four wheels. The parameter:

• Dimensions are [5x3].
• Contains scale information according to the axle and wheel locations.
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Scale =

XVscale YVscale ZVscale
XFLscale YFLscale ZFLscale
XFRscale YFRscale ZFRscale
XRLscale YRLscale ZRLscale
XRRscale YRRscale ZRRscale

Scale Array Element Scale Axis
Vehicle, Xvscale

Scale(1,1) World X-axis
Vehicle, Yvscale

Scale(1,2) World Y-axis
Vehicle, Zvscale

Scale(1,3) World Z-axis
Front left wheel, XFLscale

Scale(2,1) World X-axis
Front left wheel, YFLscale

Scale(2,2) World Y-axis
Front left wheel, ZFLscale

Scale(2,3) World Z-axis
Front right wheel, XFRscale

Scale(3,1) World X-axis
Front right wheel, YFRscale

Scale(3,2) World Y-axis
Front right wheel, ZFRscale

Scale(3,3) World Z-axis
Rear left wheel, XRLscale

Scale(4,1) World X-axis
Rear left wheel, YRLscale

Scale(4,2) World Y-axis
Rear left wheel, ZRLscale

Scale(4,3) World Z-axis
Rear right wheel, XRRscale

Scale(5,1) World X-axis
Rear right wheel, YRRscale

Scale(5,2) World Y-axis
Rear right wheel, ZRRscale

Scale(5,3) World Z-axis

Sample time — Sample time
-1 (default) | scalar

Sample time, Ts. The graphics frame rate is the inverse of the sample time.

Version History
Introduced in R2021b

See Also
Simulation 3D Actor Transform Get | Simulation 3D Camera Get | Simulation 3D Scene Configuration
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Simulation 3D Aircraft
Implement aircraft in 3D environment
Library: Aerospace Blockset / Animation / Simulation 3D

Description
The Simulation 3D Aircraft block implements an aircraft in a 3D visualization environment using
translation and rotation to place the aircraft.

To use this block, ensure that the Simulation 3D Scene Configuration block is in your model. If you
set the Sample time parameter of this block to -1, the block uses the sample time specified in the
Simulation 3D Scene Configuration block.

The block input uses the aircraft north-east-down (NED) right-handed (RH) Cartesian coordinate
system, with its origin fixed at the approximate aircraft center of gravity.

• X-axis — Along aircraft longitudinal axis, points forward
• Y-axis — Along aircraft lateral axis, points to the right
• Z-axis — Points downward

For more information, see “About Aerospace Coordinate Systems” on page 2-7.

Tip Verify that the Simulation 3D Aircraft block executes before the Simulation 3D Scene
Configuration block. That way, Simulation 3D Aircraft prepares the signal data before the Unreal
Engine 3D visualization environment receives it. To check the block execution order, right-click the
blocks and select Properties. On the General tab, confirm these Priority settings:

• Simulation 3D Scene Configuration — 0
• Simulation 3D Aircraft — -1

For more information about execution order, see “Control and Display Execution Order”.

Skeletons, Bones, and Meshes

Unreal uses a skeleton, bones, and mesh to define a 3D model. A skeleton is comprised of a set of
bones. A mesh is the outer covering of the skeleton. Aircraft parts are sections of the mesh, such as
ailerons or wheels, which are linked to the bones. For more information, see https://
docs.unrealengine.com/4.27/AnimatingObjects/SkeletalMeshAnimation/Skeleton/.

For more information on how the Simulation 3D Aircraft block translation input arrays connect to
aircraft types, see “Algorithms” on page 5-785.
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Ports
Input

Translation — Aircraft translation
11-by-3 array | 12-by-3 array | 15-by-3 array | 30-by-3 array | 57-by-3 array

Aircraft translation, specified as:

• 11-by-3 array — Aircraft Type is Sky Hogg.
• 12-by-3 array — Aircraft Type is Airliner.
• 15-by-3 array — Aircraft Type is General Aviation.
• 30-by-3 array — Aircraft Type is Air Transport.
• 57-by-3 array — Aircraft Type is Custom.

The signal contains translation [X, Y, Z], in meters, with one row of the array for each bone of the
aircraft.

The translation applies to these bones of the Airliner type:

Bone Index
BODY 1
LEFT_ENGINE 2
RIGHT_ENGINE 3
RUDDER 4
ELEVATOR 5
LEFT_AILERON 6
RIGHT_AILERON 7
FLAPS 8
NOSE_WHEEL_STRUT 9
NOSE_WHEEL 10
LEFT_WHEEL 11
RIGHT_WHEEL 12

The translation applies to these bones of the Sky Hogg type:

Bone Index
BODY 1
PROPELLER 2
RUDDER 3
ELEVATOR 4
LEFT_AILERON 5
RIGHT_AILERON 6
FLAPS 7
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Bone Index
NOSE_WHEEL_STRUT 8
NOSE_WHEEL 9
LEFT_WHEEL 10
RIGHT_WHEEL 11

The translation applies to these bones of the General Aviation type:

Bone Index
BODY 1
ENGINE1 2
RUDDER 3
ELEVATOR 4
LEFT_AILERON 5
RIGHT_AILERON 6
FLAPS 7
LEFT_SPOILER 8
RIGHT_SPOILER 9
NOSE_GEAR 10
NOSE_WHEEL 11
LEFT_GEAR 12
LEFT_WHEEL 13
RIGHT_GEAR 14
RIGHT_WHEEL 15

The translation applies to these bones of the Air Transport type:

Bone Index
BODY 1
ENGINE1 2
ENGINE2 3
ENGINE3 4
ENGINE4 5
RUDDER 6
ELEVATOR 7
HORIZONTAL_STAB 8
LEFT_AILERON 9
RIGHT_AILERON 10
FLAPS1 11
FLAPS2 12
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Bone Index
LEFT_SPOILER 13
RIGHT_SPOILER 14
NOSE_GEAR 15
NOSE_WHEEL 16
NOSE_GEAR_DOOR1 17
NOSE_GEAR_DOOR2 18
LEFT_GEAR 19
LEFT_WHEEL 20
LEFT_GEAR_LINK 21
LEFT_GEAR_DOOR1 22
LEFT_GEAR_DOOR2 23
LEFT_GEAR_DOOR2_2 24
RIGHT_GEAR 25
RIGHT_WHEEL 26
RIGHT_GEAR_LINK 27
RIGHT_GEAR_DOOR1 28
RIGHT_GEAR_DOOR2 29
RIGHT_GEAR_DOOR2_2 30

The translation applies to these bones of the Custom type:

Bone Index
BODY 1
ENGINE1 2
ENGINE1_PROP 3
ENGINE2 4
ENGINE2_PROP 5
ENGINE3 6
ENGINE3_PROP 7
ENGINE4 8
ENGINE4_PROP 9
ENGINE5 10
ENGINE5_PROP 11
ENGINE6 12
ENGINE6_PROP 13
ENGINE7 14
ENGINE7_PROP 15
ENGINE8 16
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Bone Index
ENGINE8_PROP 17
ENGINE9 18
ENGINE9_PROP 19
ENGINE10 20
ENGINE10_PROP 21
ENGINE11 22
ENGINE11_PROP 23
ENGINE12 24
ENGINE12_PROP 25
ENGINE13 26
ENGINE13_PROP 27
ENGINE14 28
ENGINE14_PROP 29
ENGINE15 30
ENGINE15_PROP 31
ENGINE16 32
ENGINE16_PROP 33
WING1 34
WING1_LEFT_FLAP 35
WING1_RIGHT_FLAP 36
WING1_LEFT_AILERON 337
WING1_RIGHT_AILERON 38
WING1_LEFT_SPOILER 39
WING1_RIGHT_SPOILER 40
WING2 41
WING2_LEFT_FLAP 42
WING2_RIGHT_FLAP 43
HORIZONTAL_STABILIZER 44
LEFT_ELEVATOR 45
RIGHT_ELEVATOR 46
LEFT_RUDDER 47
RIGHT_RUDDER 48
NOSE_GEAR 49
NOSE_WHEEL 50
NOSE_GEAR_DOOR 51
LEFT_GEAR 52
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Bone Index
LEFT_WHEEL 53
LEFT_GEAR_DOOR 54
RIGHT_GEAR 55
RIGHT_WHEEL 56
RIGHT_GEAR_DOOR 57

Rotation — Aircraft and wheel rotation
11-by-3 array | 12-by-3 array | 15-by-3 array | 30-by-3 array | 57-by-3 array

Aircraft rotation, specified as:

• 11-by-3 array — Aircraft Type is Sky Hogg.
• 12-by-3 array — Aircraft Type is Airliner.
• 15-by-3 array — Aircraft Type is General Aviation.
• 30-by-3 array — Aircraft Type is Air Transport.
• 57-by-3 array — Aircraft Type is Custom.

The rotation applies to the same bones as listed for the “Translation” on page 5-0  port.

The signal contains the rotation [roll, pitch, yaw], in radians, with one row of the array for each bone
of the aircraft.

LightStates — Aircraft light control
1-by-7 vector of Boolean values

Aircraft light control, specified as a 1-by-7 vector of Boolean values. Each element of the vector turns
on or off a specific aircraft light group. The vector has this order:

• LANDING_LIGHTS
• TAXI_LIGHTS
• ANTICOLLISION_BEACONS
• WINGTIP_STROBE_LIGHTS
• TAIL_STROBE_LIGHTS
• NAVIGATION_LIGHTS
• POSITION_LIGHTS

Dependencies

To enable this port, set the Light Configuration parameter to Configurable lights.

Output

Altitude — Aircraft attitude
1-by-4 vector

Aircraft altitude, returned as a 1-by-4 vector. The four altitudes are, in order:

• aircraft_body
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• aircraft_front_tire
• aircraft_left_tire
• aircraft_right_tire

Dependencies

To enable this port, select the Enable altitude sensor check box.
Data Types: double

WoW — Weight on wheels
true | false

Aircraft weight on wheels logical switch, returned as true if either of the main gear tires (left or right)
are on the ground. Otherwise, false is returned.
Dependencies

To enable this port, select the Enable altitude sensor check box.
Data Types: Boolean

Parameters
Sample time — Sample time

-1 (default) | real scalar

Sample time, Ts. The graphics frame rate is the inverse of the sample time.
Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: real scalar
Default: '-1'

Aircraft Parameters

Type — Aircraft type

Sky Hogg (default) | Airliner | General Aviation | Air Transport | Custom

Aircraft type, specified as Sky Hogg, Airliner, General Aviation, Air Transport, or Custom.
Dependencies

Setting this parameter requires that you set the Initial Translation and Initial rotation parameters
to the matching array size. Failure to appropriately set these array sizes causes an error.
Programmatic Use
Block Parameter: Mesh
Type: character vector
Values: 'Sky Hogg' | 'Airliner' | 'General Aviation' | 'Air Transport' | 'Custom'
Default: 'Sky Hogg'

Path to general aviation mesh — Path to general aviation mesh
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/MathWorksAerospaceContent/Vehicles/Aircraft/GeneralAviation/Mesh/
SK_GeneralAviation.SK_GeneralAviation' (default) | character vector

Path to general aviation mesh, specified as a character vector.

Dependencies

• To enable this parameter, set Type to General Aviation.

Programmatic Use
Block Parameter: MeshPathGA
Type: character vector
Values: '/MathWorksAerospaceContent/Vehicles/Aircraft/GeneralAviation/Mesh/
SK_GeneralAviation.SK_GeneralAviation'
Default: '/MathWorksAerospaceContent/Vehicles/Aircraft/GeneralAviation/Mesh/
SK_GeneralAviation.SK_GeneralAviation'

Path to air transport mesh — Path to air transport mesh

/MathWorksAerospaceContent/Vehicles/Aircraft/AirTransport/Mesh/
SK_AirTransport.SK_AirTransport (default) | character vector

Path to air transport mesh, specified as a character vector.

Dependencies

• To enable this parameter, set Type to Air Transport.

Programmatic Use
Block Parameter: MeshPathAT
Type: character vector
Values: '/MathWorksAerospaceContent/Vehicles/Aircraft/AirTransport/Mesh/
SK_AirTransport.SK_AirTransport'
Default: '/MathWorksAerospaceContent/Vehicles/Aircraft/AirTransport/Mesh/
SK_AirTransport.SK_AirTransport'

Path to custom mesh — Path to custom mesh

/MathWorksAerospaceContent/Vehicles/Aircraft/Custom/Mesh/SK_HL20.SK_HL20
(default) | /MathWorksAerospaceContent/Vehicles/Aircraft/Custom/Mesh/
SK_Aircraft.SK_Aircraft | character vector

Path to custom mesh, specified as a character vector.

Dependencies

• To enable this parameter, set Type to Custom.

Programmatic Use
Block Parameter: MeshPath
Type: character vector
Values: '/MathWorksAerospaceContent/Vehicles/Aircraft/Custom/Mesh/
SK_HL20.SK_HL20'
Default: '/MathWorksAerospaceContent/Vehicles/Aircraft/Custom/Mesh/
SK_HL20.SK_HL20'
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Color — Aircraft color

Red (default) | Orange | Yellow | Green | Cyan | Blue | Black | White | Silver | Metal

Aircraft color, specified as Red, Orange, Yellow, Green, Cyan, Blue, Black, White, Silver, or
Metal.

Programmatic Use
Block Parameter: AircraftColor
Type: character vector
Values: 'Red' | 'Orange' | 'Yellow' | 'Green' | 'Cyan' | 'Blue' | 'Black' | 'White' |
'Silver' | 'Metal'
Default: 'Red'

Name — Aircraft name

SimulinkVehicle1 (default) | character vector

Aircraft name, specified as a character vector. By default, when you use the block in your model, the
block sets the Name parameter to SimulinkVehicleX. The value of X depends on the number of
Simulation 3D Aircraft blocks that you have in your model.

Programmatic Use
Block Parameter: ActorName
Type: character vector
Values: scalar
Default: 'SimulinkVehicle1'

Initial Values

Initial translation (in meters) — Initial translation of aircraft

zeros(11,3) (default) | 11-by-3 array | 12-by-3 array | 15-by-3 array | 30-by-3 array | 57-by-3 array

Initial translation of aircraft, specified as an 11-by-3, 12-by-3, 15-by-3, 30-by-3, or 57-by-3 array.

Dependencies

This parameter must match the aircraft type you set in Type. Failure to appropriately set these array
sizes causes an error.

Programmatic Use
Block Parameter: Translation
Type: character vector
Values: 11-by-3 array | 12-by-3 array | 15-by-3 array | 30-by-3 array | 57-by-3 array
Default: 'zeros(11,3)'

Initial rotation (in radians) — Aircraft rotation

zeros(11,3) (default) | 11-by-3 array | 12-by-3 array | 15-by-3 array | 30-by-3 array | 57-by-3 array

Initial rotation of aircraft, specified as a 11-by-3, 12-by-3, 15-by-3, 30-by-3, or 57-by-3 array.

Programmatic Use
Block Parameter: Rotation
Type: character vector
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Values: 11-by-3 array | 12-by-3 array | 15-by-3 array | 30-by-3 array | 57-by-3 array
Default: 'zeros(11,3)'

Altitude Sensor

Enable altitude sensor — Altitude sensor

on (default) | off

To enable the altitude sensor, select this check box. Otherwise, clear this check box.
Programmatic Use
Block Parameter: IsGHSensorEnabled
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Enable visible sensor rays — Visible sensor rays

off (default) | on

To enable visible sensor rays, select this check box. Otherwise, clear this check box.
Dependencies

To enable this parameter, select the Enable altitude sensor check box.
Programmatic Use
Block Parameter: AreGHRaysVisible
Type: character vector
Values: 'on' | 'off'
Default: 'off'

Length of rays (in meters) — Length of rays

1524 (default) | real scalar

Length of rays, specified as a real scalar in meters. The length of the rays limits the altitude
detection. For example, if the vertical distance to the ground beneath the aircraft origin is greater
than the length of the rays plus the aircraft body Z offset, the altitude sensor returns -1 for the first
value.
Dependencies

To enable this parameter, select the Enable altitude sensor check box.
Programmatic Use
Block Parameter: GHRayLength
Type: character vector
Values: real scalar
Default: '1524'

Aircraft body Z offset (in meters) — Aircraft body Z offset

0.90 (default) | real scalar

Aircraft body Z offset, specified as a real scalar in meters.
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Dependencies

To enable this parameter, select the Enable altitude sensor check box.

Programmatic Use
Block Parameter: GHBodyOffset
Type: character vector
Values: real scalar
Default: '0.90'

Front gear tire radius (in meters) — Front gear tire radius

0.21 (default) | real scalar

Front gear tire radius, specified as a real scalar in meters. The front gear altitude ray originates at
the front gear axle center plus the front gear tire radius Z offset.

Dependencies

To enable this parameter, select the Enable altitude sensor check box.

Programmatic Use
Block Parameter: GHFrontTireRadius
Type: character vector
Values: real scalar
Default: '0.21'

Left gear tire radius (in meters) — Left gear tire radius

0.21 (default) | real scalar

Left gear tire radius, specified as a real scalar in meters.

Dependencies

To enable this parameter, select the Enable altitude sensor check box.

Programmatic Use
Block Parameter: GHLeftTireRadius
Type: character vector
Values: real scalar
Default: '0.21'

Right gear tire radius (in meters) — Right gear tire radius

0.21 (default) | real scalar

Right gear tire radius, specified as a real scalar in meters.

Dependencies

To enable this parameter, select the Enable altitude sensor check box.

Programmatic Use
Block Parameter: GHRightTireRadius
Type: character vector
Values: real scalar
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Default: '0.21'

Light Configuration

Light configuration — Light configurations options

Automatic lights (default) | Configurable lights | Lights off

Light configuration options

• Automatic lights — Use default aircraft lighting configuration that provides realistic pattern
cycling.

• Configurable lights — Configure aircraft lighting parameters.
• Lights off — Turn off all aircraft lights.

Dependencies

• Setting this parameter to Automatic lights disables the configurability of all other Light
Configuration parameters. The block uses the default parameter values for aircraft lighting
values.

• Setting this parameter to Configurable lights enables the configurability of the Light
Configuration parameters according to the aircraft type.

• Setting Type to these aircraft types and Light Configuration to Configurable lights enables
the configurability of the lighting parameters in use for each aircraft.

Type Lights Light Parameters
Airliner Landing lights • Landing lights intensity (cd)

• Landing lights cone half angle (deg)
Taxi lights • Taxi lights intensity (cd)

• Taxi lights cone half angle (deg)
Red/green navigation
lights

Navigation lights intensity

White strobe lights • Strobe lights intensity
• Wingtip strobe period (s)
• Wingtip strobe pulse width (% of

period)
• Tail strobe period (s)
• Tail strobe pulse width (% of period)

Red beacon lights • Beacon lights intensity
• Beacon period (s)
• Beacon pulse width (% of period)

Sky Hogg Landing lights • Landing lights intensity (cd)
• Landing lights cone half angle (deg)

Red/green navigation
lights

Navigation lights intensity
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Type Lights Light Parameters
White strobe lights • Strobe lights intensity

• Tail strobe period (s)
• Tail strobe pulse width (% of period)

Red beacon lights • Beacon lights intensity
• Beacon period (s)
• Beacon pulse width (% of period)

General Aviation,
Air Transport, or
Custom

Landing lights • Landing lights intensity (cd)
• Landing lights cone half angle (deg)
• Left landing light location
• Left landing light orientation
• Right landing light location
• Right landing light orientation

Taxi lights • Taxi lights intensity (cd)
• Taxi lights cone half angle (deg)
• Taxi lights location
• Taxi lights orientation (deg)

Red/green navigation
lights

Navigation lights intensity

White navigation
lights

Position light intensity

White strobe lights • Strobe lights intensity
• Wingtip strobe period (s)
• Wingtip strobe pulse width (% of

period)
• Tail strobe period (s)
• Tail strobe pulse width (% of period)

Red beacon lights • Beacon lights intensity
• Beacon period (s)
• Beacon pulse width (% of period)

• Setting this parameter to Lights off disables the configurability of all other Light
Configuration parameters. The block turns off all aircraft lighting.

Programmatic Use
Block Parameter: 'LightsConfig'
Type: character vector
Values: 'Automatic lights' | 'Configurable lights' | 'Lights off'
Default: 'Automatic lights'

Landing lights intensity (cd) — Landing lights intensity

30000 (default) | positive scalar
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Landing lights intensity, specified as a positive scalar, in candela.

Dependencies

To enable this parameter, set Light configuration to Configurable lights.

Programmatic Use
Block Parameter: 'LandingLightIntensity'
Type: character vector
Values: positive scalar
Default: '30000'

Landing lights cone half angle (deg) — Landing lights cone half angle

15 (default) | positive scalar

Landing lights cone half angle, specified as a positive scalar, in degrees.

Dependencies

To enable this parameter, set Light configuration to Configurable lights.

Programmatic Use
Block Parameter: 'LandingLightConeAngle'
Type: character vector
Values: positive scalar
Default: '15'

Left landing light location — Left landing light location

[0 0 0] (default) | 3-element vector

Left landing light location with respect to the associated bone of the skeletal mesh, specified as a 3-
element vector.

Dependencies

To enable this parameter, set Type to General Aviation, Air Transport, or Custom and Light
configuration to Configurable lights.

Programmatic Use
Block Parameter: 'CustomLeftLandingLightLocation'
Type: character vector
Values: 3-element vector
Default: '[0 0 0]'

Left landing light orientation (deg) — Left landing light orientation

[0 0 0] (default) | 3-element vector

Left landing light orientation with respect to the associated bone of the skeletal mesh, specified as a
3-element vector.

Dependencies

To enable this parameter, set Type to General Aviation, Air Transport, or Custom and Light
configuration to Configurable lights.

5 Blocks

5-780



Programmatic Use
Block Parameter: 'CustomLeftLandingLightOrientation'
Type: character vector
Values: 3-element vector
Default: '[0 0 0]'

Right landing light location — Right landing light location

[0 0 0] (default) | 3-element vector

Right landing light location with respect to the associated bone of the skeletal mesh, specified as a 3-
element vector.

Dependencies

To enable this parameter, set Type to General Aviation, Air Transport, or Custom and Light
configuration to Configurable lights.

Programmatic Use
Block Parameter: 'CustomRightLandingLightLocation'
Type: character vector
Values: 3-element vector
Default: '[0 0 0]'

Right landing light orientation (deg) — Right landing light orientation

[0 0 0] (default) | 3-element vector

Right landing light orientation with respect to the associated bone of the skeletal mesh, specified as a
3-element vector.

Dependencies

To enable this parameter, set Type to General Aviation, Air Transport, or Custom and Light
configuration to Configurable lights.

Programmatic Use
Block Parameter: 'CustomRightLandingLightOrientation'
Type: character vector
Values: 3-element vector
Default: '[0 0 0]'

Taxi lights intensity (cd) — Taxi lights intensity

150000 (default) | positive scalar

Taxi lights intensity, specified as a positive scalar, in candela.

Dependencies

To enable this parameter, set Type to Airliner, General Aviation, Air Transport, or Custom
and Light configuration to Configurable lights.

Programmatic Use
Block Parameter: 'TaxiLightIntensity'
Type: character vector
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Values: positive scalar
Default: '150000'

Taxi lights cone half angle (deg) — Taxi lights cone half angle

36 (default) | positive scalar

Taxi lights cone half angle, specified as a positive scalar, in degrees.

Dependencies

To enable this parameter, set Type to Airliner, General Aviation, Air Transport, or Custom
and Light configuration to Configurable lights.

Programmatic Use
Block Parameter: 'TaxiLightConeAngle'
Type: character vector
Values: positive scalar
Default: '36'

Taxi lights location — Taxi lights location

[0 0 0] (default) | 3-element vector

Taxi lights location with respect to the associated bone of the skeletal mesh, specified as a 3-element
vector

Dependencies

To enable this parameter, set Type to General Aviation, Air Transport, or Custom and Light
configuration to Configurable lights.

Programmatic Use
Block Parameter: 'CustomTaxiLightLocation'
Type: character vector
Values: positive scalar
Default: '[0 0 0]'

Taxi lights orientation (deg) — Taxi lights orientation

[0 0 0] (default) | 3-element vector

Taxi lights orientation with respect to the associated bone of the skeletal mesh, specified as a 3-
element vector

Dependencies

To enable this parameter, set Type to General Aviation, Air Transport, or Custom and Light
configuration to Configurable lights.

Programmatic Use
Block Parameter: 'CustomTaxiLightOrientation'
Type: character vector
Values: positive scalar
Default: '[0 0 0]'
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Navigation lights intensity — Navigation lights intensity

500 (default) | positive scalar

Navigation lights intensity, specified as a positive scalar.
Dependencies

To enable this parameter, set Light configuration to Configurable lights.
Programmatic Use
Block Parameter: 'NavLightIntensity'
Type: character vector
Values: positive scalar
Default: '500'

Position light intensity — Position light intensity

500 (default) | positive scalar

Position light intensity, specified as a positive scalar.
Dependencies

To enable this parameter, set Light configuration to Configurable lights.
Programmatic Use
Block Parameter: 'PositionLightIntensity'
Type: character vector
Values: positive scalar
Default: '500'

Strobe lights intensity — Strobe lights intensity

5000 (default) | positive scalar

Strobe lights intensity, specified as a positive scalar.
Dependencies

To enable this parameter, set Light configuration to Configurable lights.
Programmatic Use
Block Parameter: 'StrobeLightIntensity'
Type: character vector
Values: positive scalar
Default: '5000'

Wingtip strobe period (s) — Wingtip strobe period

1.5 (default) | positive scalar

Wingtip strobe period, specified as a positive scalar.
Dependencies

To enable this parameter, set Type to Airliner, General Aviation, Air Transport, or Custom
and Light configuration to Configurable lights.
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Programmatic Use
Block Parameter: 'WingtipStrobePeriod'
Type: character vector
Values: positive scalar
Default: '1.5'

Wingtip strobe pulse width (% of period) — Wingtip strobe pulse width

6 (default) | positive scalar

Wingtip strobe pulse width, specified as a positive scalar.

Dependencies

To enable this parameter, set Type to Airliner, General Aviation, Air Transport, or Custom
and Light configuration to Configurable lights.

Programmatic Use
Block Parameter: 'WingtipStrobePulseWidth'
Type: character vector
Values: positive scalar
Default: '6'

Tail strobe period (s) — Tail strobe period

1.5 (default) | positive scalar

Tail strobe period, specified as a positive scalar, in seconds.

Dependencies

To enable this parameter, set Light configuration to Configurable lights.

Programmatic Use
Block Parameter: 'TailStrobePeriod'
Type: character vector
Values: positive scalar
Default: '1.5'

Tail strobe pulse width (% of period) — Tail strobe pulse width

6 (default) | positive scalar

Tail strobe pulse width, specified as a positive scalar.

Dependencies

To enable this parameter, set Light configuration to Configurable lights.

Programmatic Use
Block Parameter: 'TailStrobePulseWidth'
Type: character vector
Values: positive scalar
Default: '6'

Beacon lights intensity — Beacon lights intensity
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4000 (default) | positive scalar

Beacon lights intensity, specified as a positive scalar.
Dependencies

To enable this parameter, set Light configuration to Configurable lights.
Programmatic Use
Block Parameter: 'BeaconLightIntensity'
Type: character vector
Values: positive scalar
Default: '4000'

Beacon period (s) — Beacon period

1.5 (default) | positive scalar

Beacon period, specified as a positive scalar, in seconds.
Dependencies

To enable this parameter, set Light configuration to Configurable lights.
Programmatic Use
Block Parameter: 'BeaconPeriod'
Type: character vector
Values: positive scalar
Default: '1.5'

Beacon pulse width (% of period) — Beacon pulse width

10 (default) | positive scalar

Beacon pulse width, specified as a positive scalar.
Dependencies

To enable this parameter, set Light configuration to Configurable lights.
Programmatic Use
Block Parameter: 'BeaconPulseWidth'
Type: character vector
Values: positive scalar
Default: '10'

Algorithms
This topic lists how the block input arrays, 11-by-3, 12-by-3, 15-by-3, 30-by-3, and 57-by-3, connect to
their associated aircraft types.

Airliner and Sky Hogg Aircraft Types

In Unreal skeletons, all bones have six degrees of freedom. However, for the Airliner and Sky Hogg
aircraft types, the Simulation 3D Aircraft block only enables all six degrees of freedom (6DOF) for the
BODY aircraft bone. For the other aircraft bones, the block enables only one degree of freedom. For
more information, see Airliner Active Degrees of Freedom and Sky Hogg Active Degrees of Freedom.
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In these tables, the markings indicate enabled or disabled degrees of freedom for corresponding
aircraft bones. Columns X, Y, Z, Pitch, Roll, Pitch, and Yaw each correspond to one degree for the
associated bone.

•
 — Degree of freedom enabled for the aircraft bone.

• X — Degree of freedom disabled for the aircraft bone.

Airliner Active Degrees of Freedom

Bone Index X Y Z Roll Pitch Yaw
BODY 1

LEFT_ENGIN
E

2 X X X X X

RIGHT_ENGI
NE

3 X X X X X

RUDDER 4 X X X X X

ELEVATOR 5 X X X X X

LEFT_AILER
ON

6 X X X X X

RIGHT_AILE
RON

7 X X X X X

FLAPS 8 X X X X X

NOSE_WHE
EL_STRUT

9 X X X X X

NOSE_WHE
EL

10 X X X X X

LEFT_WHEE
L

11 X X X X X

RIGHT_WHE
EL

12 X X X X X
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Sky Hogg Active Degrees of Freedom

Bone Index X Y Z Roll Pitch Yaw
BODY 1

PROPELLER 2 X X X X X

RUDDER 3 X X X X X

ELEVATOR 4 X X X X X

LEFT_AILER
ON

5 X X X X X

RIGHT_AILE
RON

6 X X X X X

FLAPS 7 X X X X X

NOSE_WHE
EL_STRUT

8 X X X X X

NOSE_WHE
EL

9 X X X X X

LEFT_WHEE
L

10 X X X X X

RIGHT_WHE
EL

11 X X X X X

General Aviation, Air Transport, and Custom Aircraft Types

For general aviation, air transport and custom aircraft, the Simulation 3D Aircraft block enables six
degrees of freedom (6DOF) for all aircraft bones. Note, the default poses for each bone in the skeletal
mesh affects how the mesh deforms when you manipulate each degree of freedom.

Version History
Introduced in R2021b

Support for Custom Meshes and Aircraft Lighting
Behavior changed in R2022a

The block now supports:

• The specification of a custom aircraft mesh with the Path to custom mesh parameter. To enable
this parameter, set Type to Custom.

• The configuration of aircraft lighting with a new Light Configuration tab.
• More colors for aircraft bodies in the Color parameter.

See Also
Simulation 3D Actor Transform Get | Simulation 3D Actor Transform Set | Simulation 3D Camera Get
| Simulation 3D Scene Configuration | Simulation 3D Message Get | Simulation 3D Message Set
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Simulation 3D Camera Get
Camera image
Library: Vehicle Dynamics Blockset / Vehicle Scenarios / Sim3D /

Sim3D Core
Aerospace Blockset / Animation / Simulation 3D
Simulink 3D Animation / Simulation 3D

Description
The Simulation 3D Camera Get block provides an interface to an ideal camera in the 3D visualization
environment. The image output is a red, green, and blue (RGB) array.

If you set the sample time to -1, the block uses the sample time specified in the Simulation 3D Scene
Configuration block. To use this sensor, ensure that the Simulation 3D Scene Configuration block is in
your model.

Tip Verify that the Simulation 3D Scene Configuration block executes before the Simulation 3D
Camera Get block. That way, the Unreal Engine 3D visualization environment prepares the data
before the Simulation 3D Camera Get block receives it. To check the block execution order, right-click
the blocks and select Properties. On the General tab, confirm these Priority settings:

• Simulation 3D Scene Configuration — 0
• Simulation 3D Camera Get — 1

For more information about execution order, see “Control and Display Execution Order”.

Ports
Output

Image — 3D output camera image
m-by-n-by-3 array of RGB triplet values

3D output camera image, returned as an m-by-n-by-3 array of RGB triplet values. m is the vertical
resolution of the image, and n is the horizontal resolution of the image.
Data Types: int8 | uint8

Parameters
Mounting

Sensor identifier — Number to identify unique sensor
0 (default) | positive integer
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Unique sensor identifier, specified as a positive integer. This number is used to identify a specific
sensor. The sensor identifier distinguishes between sensors in a multi-sensor system.
Example: 2

Vehicle name — Name of a vehicle
Scene Origin (default) | character vector

Vehicle name. Block provides a list of vehicles in the model. If you select Scene Origin, the block
places a sensor at the scene origin.
Example: SimulinkVehicle1

Vehicle mounting location — Sensor mounting location
Origin (default) | Front bumper | Rear bumper | Right mirror | Left mirror | Rearview
mirror | Hood center | Roof center

Sensor mounting location.

• When Vehicle name is Scene Origin, the block mounts the sensor to the origin of the scene,
and Mounting location can be set to Origin only. During simulation, the sensor remains
stationary.

• When Vehicle name is the name of a vehicle (for example, SimulinkVehicle1) the block
mounts the sensor to one of the predefined mounting locations described in the table. During
simulation, the sensor travels with the vehicle.

Vehicle Mounting Location Description Orientation Relative to
Vehicle Origin [Roll, Pitch,
Yaw] (deg)

Origin Forward-facing sensor mounted
to the vehicle origin, which is on
the ground and at the geometric
center of the vehicle

[0, 0, 0]
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Vehicle Mounting Location Description Orientation Relative to
Vehicle Origin [Roll, Pitch,
Yaw] (deg)

Front bumper Forward-facing sensor mounted
to the front bumper

[0, 0, 0]

Rear bumper Backward-facing sensor
mounted to the rear bumper

[0, 0, 180]
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Vehicle Mounting Location Description Orientation Relative to
Vehicle Origin [Roll, Pitch,
Yaw] (deg)

Right mirror Downward-facing sensor
mounted to the right side-view
mirror

[0, –90, 0]

Left mirror Downward-facing sensor
mounted to the left side-view
mirror

[0, –90, 0]

Rearview mirror Forward-facing sensor mounted
to the rearview mirror, inside
the vehicle

[0, 0, 0]
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Vehicle Mounting Location Description Orientation Relative to
Vehicle Origin [Roll, Pitch,
Yaw] (deg)

Hood center Forward-facing sensor mounted
to the center of the hood

[0, 0, 0]

Roof center Forward-facing sensor mounted
to the center of the roof

[0, 0, 0]

The (X, Y, Z) location of the sensor relative to the vehicle depends on the vehicle type. To specify the
vehicle type, use the Type parameter of the Simulation 3D Scene Configuration block to which you
are mounting. The tables show the X, Y, and Z locations of sensors in the vehicle coordinate system.
In this coordinate system:

• The X-axis points forward from the vehicle.
• The Y-axis points to the left of the vehicle, as viewed when facing forward.
• The Z-axis points up from the ground.
• Roll, pitch, and yaw are clockwise-positive when looking in the positive direction of the X-axis, Y-

axis, and Z-axis, respectively. When looking at a vehicle from the top down, then the yaw angle
(that is, the orientation angle) is counterclockwise-positive, because you are looking in the
negative direction of the axis.
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Box Truck — Sensor Locations Relative to Vehicle Origin

Mounting Location X (m) Y (m) Z (m)
Front bumper 5.10 0 0.60
Rear bumper –5 0 0.60
Right mirror 2.90 1.60 2.10
Left mirror 2.90 –1.60 2.10
Rearview mirror 2.60 0.20 2.60
Hood center 3.80 0 2.10
Roof center 1.30 0 4.20

Hatchback — Sensor Locations Relative to Vehicle Origin

Mounting Location X (m) Y (m) Z (m)
Front bumper 1.93 0 0.51
Rear bumper –1.93 0 0.51
Right mirror 0.43 –0.84 1.01
Left mirror 0.43 0.84 1.01
Rearview mirror 0.32 0 1.27
Hood center 1.44 0 1.01
Roof center 0 0 1.57

Muscle Car — Sensor Locations Relative to Vehicle Origin

Mounting Location X (m) Y (m) Z (m)
Front bumper 2.47 0 0.45
Rear bumper –2.47 0 0.45
Right mirror 0.43 –1.08 1.01
Left mirror 0.43 1.08 1.01
Rearview mirror 0.32 0 1.20
Hood center 1.28 0 1.14
Roof center –0.25 0 1.58
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Sedan — Sensor Locations Relative to Vehicle Origin

Mounting Location X (m) Y (m) Z (m)
Front bumper 2.42 0 0.51
Rear bumper –2.42 0 0.51
Right mirror 0.59 –0.94 1.09
Left mirror 0.59 0.94 1.09
Rearview mirror 0.43 0 1.31
Hood center 1.46 0 1.11
Roof center –0.45 0 1.69

Small Pickup Truck — Sensor Locations Relative to Vehicle Origin

Mounting Location X (m) Y (m) Z (m)
Front bumper 3.07 0 0.51
Rear bumper –3.07 0 0.51
Right mirror 1.10 –1.13 1.52
Left mirror 1.10 1.13 1.52
Rearview mirror 0.85 0 1.77
Hood center 2.22 0 1.59
Roof center 0 0 2.27

Sport Utility Vehicle — Sensor Locations Relative to Vehicle Origin

Mounting Location X (m) Y (m) Z (m)
Front bumper 2.42 0 0.51
Rear bumper –2.42 0 0.51
Right mirror 0.60 –1 1.35
Left mirror 0.60 1 1.35
Rearview mirror 0.39 0 1.55
Hood center 1.58 0 1.39
Roof center –0.56 0 2

Example: Origin

Specify offset — Specify offset from mounting location
off (default) | on

Select this parameter to specify an offset from the mounting location.

Relative translation [X, Y, Z] — Translation offset from mounting location
[0,0,0] (default) | real-valued 1-by-3 vector

Specify a translation offset from the mount location, about the vehicle coordinate system X, Y, and Z
axes. Units are in meters.
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• The X-axis points forward from the vehicle.
• The Y-axis points to the left of the vehicle, as viewed when facing forward.
• The Z-axis points up.

Example: [0,0,0.01]

Dependencies

To enable this parameter, select Specify offset.

Relative rotation [Roll, Pitch, Yaw] — Rotational offset from mounting location
[0,0,0] (default) | real-valued 1-by-3 vector

Specify a rotational offset from the mounting location, about the vehicle coordinate system X, Y, and
Z axes. Units are in degrees.

• Roll angle is the angle of rotation about the X-axis of the vehicle coordinate system. A positive roll
angle corresponds to a clockwise rotation when looking in the positive direction of the X-axis.

• Pitch angle is the angle of rotation about the Y-axis of the vehicle coordinate system. A positive
pitch angle corresponds to a clockwise rotation when looking in the positive direction of the Y-
axis.

• Yaw angle is the angle of rotation about the Z of the vehicle coordinate system. A positive yaw
angle corresponds to a clockwise rotation when looking in the positive direction of the Z-axis.

Example: [0,0,10]

Dependencies

To enable this parameter, select Specify offset.

Sample time — Sample time
-1 (default) | positive scalar

Sample time of the block in seconds. The 3D simulation environment frame rate is the inverse of the
sample time.

If you set the sample time to -1, the block uses the sample time specified in the Simulation 3D Scene
Configuration block.

Parameter

Horizontal resolution — Pixels
uint32(1280) (default) | scalar

Horizontal image resolution, in pixels.

Vertical resolution — Pixels
uint32(720) (default) | scalar

Vertical image resolution, in pixels.

Horizontal field of view — Field of view
single(60) (default) | scalar

Horizontal field of view (FOV), in deg.
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Tips
• To understand how to set tag of Sim 3d Scene Cap and how it the tag is related to the Simulation

3D Camera Get block, see “Place Cameras on Actors in the Unreal Editor” (Vehicle Dynamics
Blockset).

Version History
Introduced in R2021b

See Also
Simulation 3D Actor Transform Get | Simulation 3D Actor Transform Set | Simulation 3D Scene
Configuration
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Simulation 3D Message Get
Retrieve data from Unreal Engine visualization environment
Library: Vehicle Dynamics Blockset / Vehicle Scenarios / Sim3D /

Sim3D Core
Aerospace Blockset / Animation / Simulation 3D

Description
The Simulation 3D Message Get block retrieves data from the Unreal Engine 3D visualization
environment. In your model, ensure that the Simulation 3D Scene Configuration block is at the same
level as the Simulation 3D Message Get block.

Tip Verify that the Simulation 3D Scene Configuration block executes before the Simulation 3D
Message Get block. That way, the Unreal Engine 3D visualization environment prepares the data
before the Simulation 3D Message Get block receives it. To check the block execution order, right-
click the blocks and select Properties. On the General tab, confirm these Priority settings:

• Simulation 3D Scene Configuration — 0
• Simulation 3D Message Get — 1

For more information about execution order, see “Control and Display Execution Order”.

Configure Scenes to Send Data

To use the block, you must configure scenes in the Unreal Engine environment to send data to the
Simulink model:

1 Install the customize 3D scenes for aerospace simulations.
2 In the Unreal Editor, follow these general workflows to send data to Simulink.
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Unreal Engine
User

Workflow

Blueprint a Instantiate the Sim3DSet actor that corresponds to the data type
you want to send to the Simulink model. This example shows the
Unreal Editor Sim3DSet data types.

b Specify an actor tag name that matches the Simulation 3D
Message Get block Signal name parameter.

c Navigate to the Level Blueprint.
d Find the blueprint method for the Sim3DSet actor class based on

the data type and size specified by the Simulation 3D Message
Get block Data type and Message size parameters.

For example, in Unreal Editor, this diagram shows that Write
Array Boolean is the method for the Sim3DSetBoolean actor
class that sends Boolean data type of array size 30.

e Compile and save the scene.

Note By default, the Double Lane Change scene has a
Sim3DSetBoolean actor with tag name NumOfConesHit.
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Unreal Engine
User

Workflow

C++ class a Create a new actor class for the mesh or asset that you want the
Simulink model to interact with. Derive it from ASim3dActor.

b In the new actor class:

• Declare a pointer to the signal name as a class field.
• Get the class tag.
• Create a signal writer and assign the pointer in the method

Sim3dSetup.
• In the method Sim3dStep, invoke the

WriteSimulation3DMessage function to write the data to
the Simulink model.

• Delete the signal writer in the method Sim3dRelease of the
actor.

For more information about the Unreal Editor, see the Unreal Engine 4 Documentation.

Ports
Output

ReadMsg — Data retrieved from scene
scalar | array

Data retrieved from the 3D visualization environment scene data. In the Unreal Engine environment,
you can use the Sim3DSet class to configure scene actors to send data to the Simulink model.

Parameters
Signal name, SigName — Message signal name
mySignal (default)

Specifies the signal name in the 3D visualization environment. In the Unreal Engine environment, use
the Sim3DSet actor class 'Tags' property located in the 'Details' pane.

For example, you can retrieve data from the double-lane change scene that indicates if cones are hit
during a double-lane change maneuver. To retrieve cone hit data from the double-lane change scene,
set this parameter to NumOfConesHit. In the double-lane change scene, the Sim3DSet actor class
'Tags' property is set to NumOfConesHit.

Data type, DataType — Message data type
double* | single | int8* | uint8* | int16* | uint16* | int32 | uint32* | boolean

3D visualization environment signal data type. The supported data types depend on the Unreal
Engine workflow.
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Workflow Supported Data Types
Blueprint single

int32

Boolean
*C++ class double

single

int8

uint8

int16

uint16

int32

uint32

Boolean

In the Unreal Engine environment, instantiate the Sim3DSet actor class for the data type that you
want to send to the Simulink model. For example, you can retrieve data from the double-lane change
scene that indicates if cones are hit during a double-lane change maneuver. To retrieve cone hit data
from the double-lane change scene, set this parameter to boolean. In the double-lane change scene,
the Sim3DSetBoolean actor class is instantiated to send the cone hit or miss boolean data.

Message size, MsgSize — Message dimension
[1 1] (default) | scalar | array

3D visualization environment signal dimension. In the Unreal Engine environment blueprint, set the
input to the node of the Sim3DSet actor class to specify the dimensions of data that you want to send
to the Simulink model.

For example, you can retrieve data from the double-lane change scene that indicates if cones are hit
during a double-lane change maneuver. To retrieve cone hit data from the double-lane change scene,
set this parameter to [2 15]. In the double-lane change scene, the input to the blueprint node for
the Sim3DSetBoolean actor class is set to 30, the number of cones in the scene.

Sample time — Sample time
0.02 (default) | -1 | scalar

Sample time, in s. The graphics frame rate is the inverse of the sample time. If you set the sample
time to -1, the block uses the sample time specified in the Simulation 3D Scene Configuration block.

Version History
Introduced in R2021b
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See Also
Simulation 3D Scene Configuration | Simulation 3D Message Set

External Websites
Unreal Engine

 Simulation 3D Message Get
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Simulation 3D Message Set
Send data to Unreal Engine visualization environment
Library: Vehicle Dynamics Blockset / Vehicle Scenarios / Sim3D /

Sim3D Core
Aerospace Blockset / Animation / Simulation 3D
Simulink 3D Animation / Simulation 3D

Description
The Simulation 3D Message Set block sends data to the Unreal Engine 3D visualization environment.
In your model, ensure that the Simulation 3D Scene Configuration block is at the same level as the
Simulation 3D Message Set block.

Tip Verify that the Simulation 3D Message Set block executes before the Simulation 3D Scene
Configuration block. That way, Simulation 3D Message Set prepares the signal data before the Unreal
Engine 3D visualization environment receives it. To check the block execution order, right-click the
blocks and select Properties. On the General tab, confirm these Priority settings:

• Simulation 3D Scene Configuration — 0
• Simulation 3D Message Set — -1

For more information about execution order, see “Control and Display Execution Order”.

Configure Scenes to Receive Data

To use the block, you must configure scenes in the Unreal Engine environment to receive data from
the Simulink model:

1 Install the customize 3D scenes for aerospace simulations.
2 In the Unreal Editor, follow these general workflows to receive data from Simulink.
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Unreal Engine
User

Workflow

Blueprint a Instantiate the Sim3DGet actor that corresponds to the data type
you want to receive from the Simulink model. This example shows
the Unreal Editor Sim3DGet data types.

b Specify an actor tag name that matches the Simulation 3D
Message Set block Signal name parameter.

c Navigate to the Level Blueprint.
d Find the blueprint method for the Sim3DGet actor class based on

the data type and size that you want to receive from the Simulink
model.

For example, in Unreal Editor, this diagram shows that Read
Scalar Integer is the method for Sim3DGetInteger actor
class to receive int32 data type of size scalar.

e Compile and save the scene.

Note By default, the Double Lane Change scene has a
Sim3DGetInteger actor with tag name TrafficLight1.
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Unreal Engine
User

Workflow

C++ class a Create a new actor class for the mesh or asset that you want the
Simulink model to interact with. Derive it from ASim3dActor.

b In the new actor class:

• Declare a pointer to the signal name as a class field.
• Get the class tag.
• Create a signal reader and assign the pointer in the method

Sim3dSetup.
• In the method Sim3dStep, invoke the

ReadSimulation3DMessage function to read the data from a
Simulink model.

• Delete the signal reader in the method Sim3dRelease of the
actor.

For more information about the Unreal Editor, see the Unreal Engine 4 Documentation.

Ports
Input

WriteMsg — Data sent to scene
scalar | array

Data sent to the 3D visualization environment scene. In the Unreal Engine environment, you can
configure the Sim3DGet class to receive the data from the Simulink model.

Parameters
Signal name, SigName — Message signal name
mySignal (default)

Specifies the signal name in the 3D visualization environment. In the Unreal Engine environment, use
the Sim3Get actor class 'Tags' property located in the 'Details' pane.

For example, you can send data to the double lane change scene that changes the traffic signal light
color to red, yellow, or green. To send data to the traffic signal light, set this parameter to
TrafficLight1. In the double lane change scene, the 'Tags' property value for Sim3dGetInteger
actor class is set to TrafficLight1.

Sample time — Sample time
0.02 (default) | -1 | scalar

Sample time, in s. The graphics frame rate is the inverse of the sample time. If you set the sample
time to -1, the block uses the sample time specified in the Simulation 3D Scene Configuration block.

Version History
Introduced in R2021b
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See Also
Simulation 3D Scene Configuration | Simulation 3D Message Get

External Websites
Unreal Engine
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Simulation 3D Scene Configuration
Scene configuration for 3D simulation environment
Library: Vehicle Dynamics Blockset / Vehicle Scenarios / Sim3D /

Sim3D Core
Aerospace Blockset / Animation / Simulation 3D
Automated Driving Toolbox / Simulation 3D
UAV Toolbox / Simulation 3D
Simulink 3D Animation / Simulation 3D

Description
The Simulation 3D Scene Configuration block implements a 3D simulation environment that is
rendered by using the Unreal Engine from Epic Games. Aerospace Blockset Interface for Unreal
Engine Projects integrates the 3D simulation environment with Simulink so that you can query the
world around the vehicle and virtually test perception, control, and planning algorithms. Using this
block, you can also control the position of the sun and the weather conditions of a scene. For more
details, see Sun Position and Weather on page 5-820.

You can simulate from a set of prebuilt scenes or from your own custom scenes. Scene customization
requires the Aerospace Blockset Interface for Unreal Engine Projects support package. For more
details, see “Customize 3D Scenes for Aerospace Blockset Simulations” on page 4-2.

Note The Simulation 3D Scene Configuration block must execute after blocks that send data to the
3D environment and before blocks that receive data from the 3D environment. To verify the execution
order of such blocks, right-click the blocks and select Properties. Then, on the General tab, confirm
these Priority settings:

• For blocks that send data to the 3D environment, such as Simulation 3D Vehicle with Ground
Following blocks, Priority must be set to -1. That way, these blocks prepare their data before the
3D environment receives it.

• For the Simulation 3D Scene Configuration block in your model, Priority must be set to 0.
• For blocks that receive data from the 3D environment, such as Simulation 3D Message Get blocks,

Priority must be set to 1. That way, the 3D environment can prepare the data before these blocks
receive it.

For more information about execution order, see “Control and Display Execution Order”.
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Parameters
Scene

Scene Selection

Scene source — Source of scene

Default Scenes (default) | Unreal Executable | Unreal Editor

Source of the scene in which to simulate, specified as one of the options in the table.

Option Description
Default Scenes Simulate in one of the default, prebuilt scenes

specified in the Scene name parameter.
Unreal Executable Simulate in a scene that is part of an Unreal

Engine executable file. Specify the executable file
in the Project name parameter. Specify the
scene in the Scene parameter.

Select this option to simulate in custom scenes
that have been packaged into an executable for
faster simulation.

Unreal Editor Simulate in a scene that is part of an Unreal
Engine project (.uproject) file and is open in
the Unreal Editor. Specify the project file in the
Project parameter.

Select this option when developing custom
scenes. By clicking Open Unreal Editor, you can
co-simulate within Simulink and the Unreal
Editor and modify your scenes based on the
simulation results.

Scene name — Name of prebuilt 3D scene

Airport (default)

Name of the prebuilt 3D scene in which to simulate, specified as one of these options.

The Aerospace Blockset Interface for Unreal Engine Projects contains customizable versions of these
scenes. For details about customizing scenes, see “Customize Scenes Using Simulink and Unreal
Editor” on page 4-6.

Dependencies

To enable this parameter, set Scene source to Default Scenes.

Project name — Name of Unreal Engine executable file

VehicleSimulation.exe (default) | valid executable file name
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Name of the Unreal Engine executable file, specified as a valid executable project file name. You can
either browse for the file or specify the full path to the project file, using backslashes. To specify a
scene from this file to simulate in, use the Scene parameter.

By default, Project name is set to VehicleSimulation.exe, which is on the MATLAB search path.
Example: C:\Local\WindowsNoEditor\AutoVrtlEnv.exe
Dependencies

To enable this parameter, set Scene source to Unreal Executable.

Scene — Name of scene from executable file

/Game/Maps/HwStrght (default) | path to valid scene name

Name of a scene from the executable file specified by the Project name parameter, specified as a
path to a valid scene name.

When you package scenes from an Unreal Engine project into an executable file, the Unreal Editor
saves the scenes to an internal folder within the executable file. This folder is located at the path /
Game/Maps. Therefore, you must prepend /Game/Maps to the scene name. You must specify this
path using forward slashes. For the file name, do not specify the .umap extension. For example, if the
scene from the executable in which you want to simulate is named myScene.umap, specify Scene
as /Game/Maps/myScene.

Alternatively, you can browse for the scene in the corresponding Unreal Engine project. These scenes
are typically saved to the Content/Maps subfolder of the project. This subfolder contains all the
scenes in your project. The scenes have the extension .umap. Select one of the scenes that you
packaged into the executable file specified by the Project name parameter. Use backward slashes
and specify the .umap extension for the scene.

By default, Scene is set to /Game/Maps/HwStrght, which is a scene from the default
VehicleSimulation.exe executable file specified by the Project name parameter. This scene
corresponds to the prebuilt Straight Road scene.
Example: /Game/Maps/scene1
Example: C:\Local\myProject\Content\Maps\scene1.umap
Dependencies

To enable this parameter, set Scene source to Unreal Executable.

Project — Name of Unreal Engine project file

valid project file name

Name of the Unreal Engine project file, specified as a valid project file name. You can either browse
for the file or specify the full path to the file, using backslashes. The file must contain no spaces. To
simulate scenes from this project in the Unreal Editor, click Open Unreal Editor. If you have an
Unreal Editor session open already, then this button is disabled.

To run the simulation, in Simulink, click Run. Before you click Play in the Unreal Editor, wait until
the Diagnostic Viewer window displays this confirmation message:
In the Simulation 3D Scene Configuration block, you set the scene source to 'Unreal Editor'.
In Unreal Editor, select 'Play' to view the scene.
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This message confirms that Simulink has instantiated the scene actors, including the vehicles and
cameras, in the Unreal Engine 3D environment. If you click Play before the Diagnostic Viewer
window displays this confirmation message, Simulink might not instantiate the actors in the Unreal
Editor.

Dependencies

To enable this parameter, set Scene source to Unreal Editor.

Scene Parameters

Scene view — Configure placement of virtual camera that displays scene

Scene Origin | vehicle name

Configure the placement of the virtual camera that displays the scene during simulation.

• If your model contains no blocks, then during simulation, you view the scene from a camera
positioned at the scene origin.

• If your model contains at least one vehicle block, then by default, you view the scene from behind
the first vehicle that was placed in your model. To change the view to a different vehicle, set
Scene view to the name of that vehicle. The Scene view parameter list is populated with all the
Name parameter values of the vehicle blocks contained in your model.

If you add a Simulation 3D Scene Configuration block to your model before adding any vehicle blocks,
the virtual camera remains positioned at the scene. To reposition the camera to follow a vehicle,
update this parameter.

When Scene view is set to a vehicle name, during simulation, you can change the location of the
camera around the vehicle.

To smoothly change the camera views, use these key commands.

Key Camera View
1 Back left
2 Back
3 Back right
4 Left
5 Internal
6 Right
7 Front left
8 Front
9 Front right
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Key Camera View
0 Overhead View Animated GIF

For additional camera controls, use these key commands.

Key Camera Control
Tab Cycle the view between all vehicles in the scene.

View Animated GIF
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Key Camera Control
Mouse scroll wheel Control the camera distance from the vehicle.

View Animated GIF

L Toggle a camera lag effect on or off. When you enable the lag effect, the
camera view includes:

• Position lag, based on the vehicle translational acceleration
• Rotation lag, based on the vehicle rotational velocity

This lag enables improved visualization of overall vehicle acceleration and
rotation.

View Animated GIF
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Key Camera Control
F Toggle the free camera mode on or off. When you enable the free camera

mode, you can use the mouse to change the pitch and yaw of the camera.
This mode enables you to orbit the camera around the vehicle.

View Animated GIF

Sample time — Sample time of visualization engine

(default) | scalar greater than or equal to 0.01

Sample time, Ts, of the visualization engine, specified as a scalar greater than or equal to 0.01. Units
are in seconds.

The graphics frame rate of the visualization engine is the inverse of the sample time. For example, if
Sample time is 1/60, then the visualization engine solver tries to achieve a frame rate of 60 frames
per second. However, the real-time graphics frame rate is often lower due to factors such as graphics
card performance and model complexity.

By default, blocks that receive data from the visualization engine, such as blocks, inherit this sample
rate.

Display 3D simulation window — Unreal Engine visualization

on (default) | off

Select whether to run simulations in the 3D visualization environment without visualizing the results,
that is, in headless mode.

Consider running in headless mode in these cases:

• You want to run multiple 3D simulations in parallel to test models in different Unreal Engine
scenarios.

Dependencies

To enable this parameter, set Scene source to Default Scenes or Unreal Executable.
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Weather

Override scene weather — Control the scene weather and sun position

off (default) | on

Select whether to control the scene weather and sun position during simulation. Use the enabled
parameters to change the sun position, clouds, fog, and rain.

This table summarizes sun position settings for specific times of day.

Time of Day Settings Unreal Editor Environment
Midnight Sun altitude: -90

Sun azimuth: 180

Sunrise in the
north

Sun altitude: 0

Sun azimuth: 180

Noon Sun altitude: 90

Sun azimuth: 180

This table summarizes settings for specific cloud conditions.
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Cloud
Condition

Settings Unreal Editor Environment

Clear Cloud opacity: 0

Heavy Cloud opacity: 85

This table summarizes settings for specific fog conditions.

Fog Condition Settings Unreal Editor Environment
None Fog density: 0

Heavy Fog density: 100

This table summarizes settings for specific rain conditions.
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Rain Condition Settings Unreal Editor Environment
Light Cloud opacity: 10

Rain density: 25

Heavy Cloud opacity: 10

Rain density: 80

Sun altitude — Altitude angle between sun and horizon

40 (default) | any value between -90 and 90

Altitude angle in a vertical plane between the sun's rays and the horizontal projection of the rays, in
deg.

Use the Sun altitude and Sun azimuth parameters to control the time of day in the scene. For
example, to specify sunrise in the north, set Sun altitude to 0 deg and Sun azimuth to 180 deg.

Dependencies

To enable this parameter, select Override scene weather.

Sun azimuth — Azimuth angle from south to horizontal projection of the sun ray

90 (default) | any value between 0 and 360

Azimuth angle in the horizontal plane measured from the south to the horizontal projection of the sun
rays, in deg.
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Use the Sun altitude and Sun azimuth parameters to control the time of day in the scene. For
example, to specify sunrise in the north, set Sun altitude to 0 deg and Sun azimuth to 180 deg.

Dependencies

To enable this parameter, select Override scene weather.

Cloud opacity — Unreal Editor Cloud Opacity global actor target value

10 (default) | any value between 0 and 100

Parameter that corresponds to the Unreal Editor Cloud Opacity global actor target value, in percent.
Zero is a cloudless scene.

Use the Cloud opacity and Cloud speed parameters to control clouds in the scene.

Dependencies

To enable this parameter, select Override scene weather.

Cloud speed — Unreal Editor Cloud Speed global actor target value

1 (default) | any value between -100 and 100

Parameter that corresponds to the Unreal Editor Cloud Speed global actor target value. The clouds
move from west to east for positive values and east to west for negative values.
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Use the Cloud opacity and Cloud speed parameters to control clouds in the scene.

Dependencies

To enable this parameter, select Override scene weather.

Fog density — Unreal Editor Set Fog Density and Set Start Distance target values

0 (default) | any value between 0 and 100

Parameter that corresponds to the Unreal Editor Set Fog Density and Set Start Distance target
values, in percent.

Dependencies

To enable this parameter, select Override scene weather.

Rain density — Unreal Editor local actor controlling rain density, wetness, rain puddles,
and ripples

0 (default) | any value between 0 and 100

Parameter corresponding to the Unreal Editor local actor that controls rain density, wetness, rain
puddles, and ripples, in percent.
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Use the Cloud opacity and Rain density parameters to control rain in the scene.
Dependencies

To enable this parameter, select Override scene weather.

Geospatial

Enable geospatial configuration — Option to enable geospatial parameters and variant
subsystem

off (default) | on

Select this check box to enable geospatial parameters and a variant subsystem.

Access token ID — ID of stored token

string representing ID of stored token

ID of stored token, specified as a string. To create this token, create a Cesium ion account, then
generate the token through this account. For more information, see https://cesium.com/ion.

Origin height (m) — Height at georeference point on globe

real scalar

Height at georeference point on the globe, specified as a real scalar. This parameter represents the
height above the 1984 World Geodetic System (WGS84) ellipsoid model of the Earth at the latitude
and longitude specified in Origin latitude and Origin longitude.

Origin latitude — Latitude

real scalar

Latitude, specified as a real scalar in decimal degrees.

Origin longitude — Longitude
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real scalar

Longitude, specified as a real scalar in decimal degrees.

Map style — Raster overlay type

Aerial (default) | Aerial with labels | Road

Raster overlay type, specified as Aerial, Aerial with labels, or Road.

Additional asset IDs — Local dataset IDs

[] (default) | array | vector

Local dataset IDs, specified as an array or vector.

Use advanced Sun sky — Georeferenced, location-accurate Sun Sky actor

off (default) | on

Select this check box to add a georeferenced, location-accurate Sun Sky actor in simulation.

Solar time — Current solar time

11 (default) | scalar real

Current solar time, specified as scalar hours from midnight.

Time zone — Time zone

11 (default) | scalar real

Time zone, specified as hours offset from Greenwich Mean Time (GMT). To specify hours before GMT,
use a minus sign (-).

Day — Day

21 (default) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31

Day, specified as a scalar from 1 to 31.

Month — Month

9 (default) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12

Month, specified as a scalar from 1 to 12.

Year — Year

2022 (default) | scalar real

Year, specified as a scalar real.

Use daylight saving time (DST) — Daylight saving time
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off (default) | on

Select this check box to enable daylight saving time.

DST start day — Start day of daylight saving time

10 (default) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31

Start day of daylight saving time, specified as a scalar from 1 to 31.

DST start month — Start month of daylight saving time

3 (default) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12

Start month of daylight saving time, specified as a scalar from 1 to 12.

DST end day — Last day of daylight saving time

3 (default) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31

Last day of daylight saving time, specified as a scalar from 1 to 31.

DST end month — Last month of daylight saving time

11 (default) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12

Last month of daylight saving time, specified as a scalar from 1 to 12.

DST switch hour — Hour when daylight saving time switches

2 (default) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24

Hour when daylight saving time switches, specified as a scalar from 1 to 24.

Authentication manager — Management of access tokens
button

Click to mange access tokens, such as create, update, and delete tokens.

More About
Sun Position and Weather

To control the scene weather and sun position, on the Weather tab, select Override scene weather.
Use the enabled parameters to change the sun position, clouds, fog, and rain during the simulation.

Sun Position

Use Sun altitude and Sun azimuth to control the sun position.

• Sun altitude — Altitude angle in a vertical plane between the sun rays and the horizontal
projection of the rays.
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• Sun azimuth — Azimuth angle in the horizontal plane measured from the south to the horizontal
projection of the sun rays.

This table summarizes sun position settings for specific times of day.

Time of Day Settings Unreal Editor Environment
Midnight Sun altitude: -90

Sun azimuth: 180

Sunrise in the
north

Sun altitude: 0

Sun azimuth: 180

Noon Sun altitude: 90

Sun azimuth: 180
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Clouds

Use Cloud opacity and Cloud speed to control clouds in the scene.

• Cloud opacity — Unreal Editor Cloud Opacity global actor target value. Zero is a cloudless
scene.

• Cloud speed — Unreal Editor Cloud Speed global actor target value. The clouds move from west
to east for positive values and east to west for negative values.

This table summarizes settings for specific cloud conditions.

Cloud
Condition

Settings Unreal Editor Environment

Clear Cloud opacity: 0

Heavy Cloud opacity: 85

Fog

Use Fog density to control fog in the scene. Fog density corresponds to the Unreal Editor Set Fog
Density.
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This table summarizes settings for specific fog conditions.

Fog Condition Settings Unreal Editor Environment
None Fog density: 0

Heavy Fog density: 100

Rain

Use Cloud opacity and Rain density to control rain in the scene.

• Cloud opacity — Unreal Editor Cloud Opacity global actor target value.
• Rain density — Unreal Editor local actor that controls rain density, wetness, rain puddles, and

ripples.
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This table summarizes settings for specific rain conditions.

Rain Condition Settings Unreal Editor Environment
Light Cloud opacity: 10

Rain density: 25

Heavy Cloud opacity: 10

Rain density: 80

Version History
Introduced in R2021b

See Also
Topics
“Visualize with Cesium” on page 2-41
“How 3D Simulation for Aerospace Blockset Works” on page 2-39
“Unreal Engine Simulation Environment Requirements and Limitations” on page 2-36
“Customize 3D Scenes for Aerospace Blockset Simulations” on page 4-2
“Prepare Custom Aircraft Mesh for the Unreal Editor” on page 4-33
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Simulation Pace
Set simulation rate for animation viewing
Library: Aerospace Blockset / Animation / Animation Support Utilities

Description
The Simulation Pace block lets you run model simulation at a slower pace so that you can comfortably
view connected animations and understand and observe the system behavior. Visualizing simulations
at a slower rate makes it easier to understand underlying system design, identify design issues and
demonstrate near real-time behavior. You can view the results and inspect your system while the
simulation is in progress.

Use this block in scenarios where one simulation-second is completed in a few wall clock time
milliseconds.

When configuring this block, also consider the block sample time, which affects the simulation pace.
The default is 1/30th of a second, which corresponds to a 30 frames-per-second visualization rate
(typical for desktop computers). For more information, see “Sample time” on page 5-0 .

To use this block:

• Set the model solver to Fixed-step.
• Use a discrete sample time.

Tip The Simulation Pace block:

• Does not produce deployable code.
• Is not supported in referenced models for simulation in accelerator or rapid accelerator mode.

Ports
Output

Port_1 — Pace error
scalar

Pace error, specified as a scalar.

The block optionally outputs the pace error value (simulationTime minus ClockTime), in seconds. The
pace error is positive if the simulation is running faster than the specified pace and negative if slower
than the specified pace.

Outputting the pace error from the block lets you record the overall pace achieved during the
simulation or routing the signal to other blocks to determine if the simulation is too slow to keep up
with the specified pace.
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Dependencies

To enable this port, select the Output pace error (sec) check box.
Data Types: double

Parameters
Simulation pace — Ratio of simulation time to clock time

1 (default) | scalar

Ratio of simulation time to clock time, specified as a scalar, in seconds of simulation time per second
of clock time.

Programmatic Use
Block Parameter: OutputPaceError
Type: character vector
Values:'1' | scalar
Default: '1'

Sleep mode — Control simulation pace

Auto (default) | MATLAB Thread | Off | Busy-Wait

Control simulation pace of model using one of these methods. MATLAB Thread, Busy-Wait, and
Auto slow down the simulation pace at simulation-second 0.1 to wait for the wall clock to get to time
1. Use this parameter when one simulation-second is completed in a few wall clock time milliseconds.

• Auto — Use the model configuration parameter setting Enable pacing to slow down
simulation to control the simulation pace. If the model configuration parameter setting Enable
pacing to slow down simulation is not selected, the block behaves as though the MATLAB
Thread option is selected.

• MATLAB Thread — Use the operating system sleep function during simulation to wait for the
wall clock to get to time 1.

• Off — Disable the pace functionality and let the simulation run as fast as possible.
• Busy-Wait — Use a while loop in conjunction with the Simstruct to wait for the simulation to wait

for the wall clock to get to time 1.

Programmatic Use
Block Parameter: SleepMode
Type: character vector
Values:'MATLAB Thread' | 'Off' | 'Busy-Wait' | 'Auto'
Default: 'Auto'

Output pace error — Display pace error

off (default) | on

Select this check box to output the pace error value (simulationTime minus ClockTime), in seconds.
The pace error is positive if the simulation is running faster than the specified pace and negative if
slower than the specified pace. To disable the display, clear this check box .
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Programmatic Use
Block Parameter: OutputPaceError
Type: character vector
Values:'off' | 'on'
Default: 'off'

Sample time — Sample time

1/30 (default) | -1 | scalar | vector

Specify the sample time as a scalar. The default 1/30th of a second corresponds to a 30 frames-per-
second visualization rate (typical for desktop computers). To set how often the Simulink interface
synchronizes with the wall clock, use this parameter.

The block sample time must be:

• Discrete
• Greater than 0.0 or an inherited sample time (-1)

The block sample time and its optional offset time ([Ts, To]) must be finite and discrete.

Caution Choose as slow a sample time as needed for smooth animation, since oversampling has little
benefit and undersampling can cause animation jumpiness. Undersampling can also potentially block
the MATLAB main thread on your computer.

Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar | vector
Default: '1/30'

Algorithms
The simulation pace is implemented by putting the entire MATLAB thread to sleep until it must run
again to keep up the pace. The Simulink software is single threaded and runs on the one MATLAB
thread, so only one Simulation Pace block can be active at a time.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Pilot Joystick
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Topics
“Specify Sample Time”
“Simulation Pacing”
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Spacecraft Dynamics
Model dynamics of one or more spacecraft
Library: Aerospace Blockset / Spacecraft / Spacecraft Dynamics

Description
The Spacecraft Dynamics block models translational and rotational dynamics of spacecraft using
numerical integration. It computes the position, velocity, attitude, and angular velocity of one or more
spacecraft over time. For the most accurate results, use a variable step solver with low tolerance
settings (less than 1e-8). To trade off accuracy for speed, use larger tolerances, depending on your
mission requirements.

You can define initial orbital states as

• A set of orbital elements.
• Position and velocity state vectors.

To propagate orbital states, the block uses the gravity model selected for the current central body. It
also includes external accelerations and forces that you provide as inputs to the block. To define
initial attitude states, use quaternions, direction cosine matrices (DCMs), or Euler angles.

To propagate attitude states, the block uses moments provided as inputs to the block and mass
properties defined on the block.

Aerospace Blockset uses quaternions that are defined using the scalar-first convention.

The Spacecraft Dynamics block supports scalar and vector expansion. The block parameter and input
port dimensions determine the number of the output signals and the number of spacecraft. After
scalar and vector expansion, all parameters in the Orbit, Mass, and Attitude tabs and all input ports
except for φθψ (Moon libration angles) and αδW (right ascension, declination, and rotation angle)
input ports are defined for each spacecraft.

The size of the provided initial conditions determines the number of spacecraft being modeled. If you
supply more than one value for a parameter in the Orbit, Attitude, or Mass tabs, the block outputs a
constellation of satellites. Any parameter with a single provided value is expanded and applied to all
the satellites in the constellation. For example, if you provide a single value for all the parameters on
the block except True anomaly, which contains six values, the block creates a constellation of six
satellites, varying true anomaly only.

The block applies the same expansion behavior to the block input ports. All input ports support
expansion except Moon libration angles (when Central body is Moon) and Spin axis right
ascension (RA) at J2000, Spin axis declination (Dec) at J2000, and Initial rotation angle at
J2000 (when Central body is Custom). All other ports accept either a single value expanded to all
spacecraft being modeled, or individual values applied to each spacecraft.

For more information on the coordinate systems and rotational and translational dynamics the
Spacecraft Dynamics block uses, see “Algorithms” on page 5-868.
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To help model the drag on spacecraft for high precision orbit propagation, the Orbit Propagator block
supports atmospheric drag. Atmospheric drag affects spacecraft flying at low Earth orbit (LEO); it is
less relevant further away from Earth. For the atmospheric drag equation, see “Atmospheric Drag” on
page 5-871.

Ports
Input

Fb — Applied forces
3-element vector | numSat-by-3 array

Force applied to the spacecraft center of mass in the body frame, specified as a 3-element vector or
numSat-by-3 array at the current time step. numSat is the number of spacecraft.
Dependencies

To enable this port, select the Input body forces check box.
Data Types: double

Mb — Applied moments
3-element vector | m-by-3 array

Moment applied to the spacecraft with respect of mass in the body frame, specified as a 3-element
vector or numSat-by-3 array at the current time step. numSat is the number of spacecraft.
Dependencies

To enable this port, select the Input body moments check box.
Data Types: double

A — External acceleration
3-element vector | m-by-3 array

External acceleration to apply to the spacecraft with respect to the ICRF or fixed-frame at the current
timestep, specified as a 3-element vector or m-by-3 array.
Dependencies

To enable this port, select the Input external accelerations check box.

To specify the acceleration coordinate frame, set the External acceleration coordinate frame
parameter.
Data Types: double

φθψ — Moon libration angles
3-element vector

Moon libration angles for transformation between the ICRF and Moon-centric fixed-frame using the
Moon-centric Principal Axis (PA) system, specified as a 3-element vector. To get these values, use the
Moon Libration block.

Note The fixed-frame used by this block when Central body is set to Moon is the Mean Earth/pole
axis (ME) system. For more information, see “Algorithms” on page 5-578.
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Dependencies

To enable this port:

• Set Central body to Moon.
• Select the Input Moon libration angles check box.

Data Types: double

αδW — Right ascension, declination, and rotation angle
3-element vector

Central body spin axis instantaneous right ascension, declination, and rotation angle, specified as a 3-
element vector. This port is available only for custom central bodies.

Dependencies

To enable this port:

• Set Central body to Custom.
• Set Central body spin axis source to Port.

Data Types: double

m — Spacecraft mass
scalar | 1D array of size numSat

Spacecraft mass at the current timestep. numSat is the number of spacecraft.

Dependencies

To enable this port, set Mass type to Custom Variable.
Data Types: double

dm/dt — Rate of change of mass
scalar | 1D array of size numSat

Rate of change of mass (positive if accreted, negative if ablated) at the current timestep, specified as
a scalar or 1D array of size numSat. numSat is the number of spacecraft.

Dependencies

To enable this port, set Mass type to Simple Variable.
Data Types: double

I — Spacecraft inertia tensor
3-by-3 array | 3-by-3-by-numSat array

Spacecraft inertia tensor, specified as a 3-by-3 array or 3-by-3-by-numSat array at the current
timestep. numSat is the number of spacecraft.

Dependencies

To enable this port, set Mass type to Custom Variable.
Data Types: double
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dI/dt — Rate of change of inertia tensor matrix
3-by-3 array | 3-by-3-by-numSat array

Rate of change of inertia tensor matrix, specified as a 3-by-3 array or 3-by-3-by-numSat array at the
current time step. numSat is the number of spacecraft.

Dependencies

To enable this port, set Mass type to Custom Variable.
Data Types: double

Vre — Relative velocity
3-element vector | numSat-by-3 array

Relative velocity at which the mass is accreted to or ablated from the body in body-fixed axes,
specified as a 3-element vector or numSat-by-3 array. numSat is the number of spacecraft.

Dependencies

To enable this port:

• Set Mass type to Custom Variable or Simple Variable.
• Select the Include mass flow relative velocity check box.

Data Types: double

ρ — Atmospheric density
scalar

Atmospheric density to calculate acceleration due to atmospheric drag.

Dependencies

To enable this port:

• Set the Propagation method parameter to Numerical (high precision).
• Set the Central Body parameter to Earth.
• Select the Include atmospheric drag check box.
• Set the Atmospheric density source parameter to Port.

Data Types: double

F107a — 81-day average Ottawa F10.7 cm solar flux
scalar

81-day average Ottawa F10.7 cm solar flux, centered on the current day specified in Start date/time.
These F107 Average values correspond to the 10.7 cm radio flux at the actual distance of the Earth
from the Sun. This site provides both classes of values:

https://www.ngdc.noaa.gov/stp/space-weather/solar-data/solar-features/solar-radio/noontime-flux/
penticton/

Dependencies

To enable this port:
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• Set the Propagation method parameter to Numerical (high precision).
• Set the Central Body parameter to Earth.
• Select the Include atmospheric drag check box.
• Set the Atmospheric density source parameter to Dialog.

Data Types: double

F107 — Daily Ottawa F10.7 cm solar flux
scalar

Daily Ottawa F10.7 cm solar flux, centered on the current day specified in Start date/time. The
f107Daily values do not correspond to the radio flux at 1 AU. This site provides both classes of values:

https://www.ngdc.noaa.gov/stp/space-weather/solar-data/solar-features/solar-radio/noontime-flux/
penticton/
Dependencies

To enable this port:

• Set the Propagation method parameter to Numerical (high precision).
• Set the Central Body parameter to Earth.
• Select the Include atmospheric drag check box.
• Set the Atmospheric density source parameter to Dialog.

Data Types: double

aph — Daily magnetic index information
N-by-7 array

Daily magnetic index information (aph), specified as an N-by-7 array. The magnetic index information
consists of:
Daily magnetic index (AP)
3 hour AP for current time
3 hour AP for 3 hours before current time
3 hour AP for 6 hours before current time
3 hour AP for 9 hours before current time
Average of eight 3 hour AP indices from 12 to 33 hours before current time
Average of eight 3 hour AP indices from 36 to 57 hours before current time

The effects of daily magnetic index are not large or established below 80,000 m. For more
information, see Limitations on NRLMSISE-00 Atmosphere Model.
Dependencies

To enable this port:

• Set the Propagation method parameter to Numerical (high precision).
• Set the Central Body parameter to Earth.
• Select the Include atmospheric drag check box.
• Set the Atmospheric density source parameter to Dialog.

Data Types: double
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Flags — Variation flags
array of 23

Variation flags, specified as an array of 23, to enable or disable particular variations for the outputs.
You can specify one of the following values for a field. The default value for each field is 1.

• 0.0

Removes the value effect on the output.
• 1.0

Applies the main and the cross-term effects of that value on the output.
• 2.0

Applies only the cross-term effect of that value on the output.

Field Description
Flags(1) F10.7 effect on mean
Flags(2) Independent of time
Flags(3) Symmetrical annual
Flags(4) Symmetrical semiannual
Flags(5) Asymmetrical annual
Flags(6) Asymmetrical semiannual
Flags(7) Diurnal
Flags(8) Semidiurnal
Flags(9) Daily AP. If you set this field to -1, the block uses the entire matrix of magnetic

index information (APH) instead of APH(:,1)
Flags(10) All UT, longitudinal effects
Flags(11) Longitudinal
Flags(12) UT and mixed UT, longitudinal
Flags(13) Mixed AP, UT, longitudinal
Flags(14) Terdiurnal
Flags(15) Departures from diffusive equilibrium
Flags(16) All exospheric temperature variations
Flags(17) All variations from 120,000 meter temperature (TLB)
Flags(18) All lower thermosphere (TN1) temperature variations
Flags(19) All 120,000 meter gradient (S) variations
Flags(20) All upper stratosphere (TN2) temperature variations
Flags(21) All variations from 120,000 meter values (ZLB)
Flags(22) All lower mesosphere temperature (TN3) variations
Flags(23) Turbopause scale height variations

Dependencies

To enable this port:
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• Set the Propagation method parameter to Numerical (high precision).
• Set the Central Body parameter to Earth.
• Select the Include atmospheric drag check box.
• Set the Atmospheric density source parameter to Dialog.
• Set the Flags source parameter to Port.

Data Types: double

Cd — Atmospheric drag coefficient
scalar | vector of size numSat

Atmospheric drag coefficient, specified as a scalar or vector of size numSat.

Dependencies

To enable this port:

• Set the Propagation method parameter to Numerical (high precision).
• Set the Central Body parameter to Earth.
• Select the Include atmospheric drag check box.
• Set the Drag coefficient source parameter to Port.

Data Types: double

Ad — Atmospheric drag area
scalar | vector of size numSat

Atmospheric drag area, specified as a scalar or vector of size numSat.

Dependencies

To enable this port:

• Set the Propagation method parameter to Numerical (high precision).
• Set the Central Body parameter to Earth.
• Select the Include atmospheric drag check box.
• Set the Drag area source parameter to Port.

Data Types: double

Output

X — Position of spacecraft
3-element vector | numSat-by-3 array

Position of the spacecraft with respect to the ICRF or fixed-frame outport coordinate frame, returned
as a 3-element vector or numSat-by-3 array at the current time step. numSat is the number of
spacecraft.

Dependencies

• To change the output coordinate frame for this port, set the State vector output coordinate
frame parameter.
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• The size of the initial conditions provided in the Mass, Orbit, or Attitude tab control the port
dimension.

Data Types: double

V — Velocity
3-element vector | numSat-by-3 array

Velocity of the spacecraft with respect to the ICRF or fixed-frame outport coordinate frame, returned
as a 3-element vector or numSat-by-3 array at the current time step. numSat is the number of
spacecraft.

Dependencies

• To change the output coordinate frame for this port, set the State vector output coordinate
frame parameter.

• The size of the initial conditions provided in the Mass, Orbit, or Attitude tab control the port
dimension.

Data Types: double

A — Total inertial acceleration
3-element vector | numSat-by-3 array

Total inertial acceleration of the spacecraft with respect to the ICRF, returned as a 3-element vector
or numSat-by-3 array at the current timestep. numSat is the number of spacecraft.

Dependencies

• To enable this port, select the Output total inertial acceleration check box
• The size of the initial conditions provided in the Orbit tab control the port dimension.

Data Types: double

qbody2icrf — Spacecraft attitude quaternion
4-element quaternion | numSat-by-4 array

Spacecraft attitude quaternion, returned as a (scalar first) quaternion rotation from the body axis to
the outport frame, as a 4-element quaternion, or numSat-by-4 array (scalar first) at the current time
step. numSat is the number of spacecraft.

Dependencies

The coordinate frame and attitude format of this port depends on these settings:

• To specify the attitude reference coordinate frame, set the Attitude reference coordinate frame
parameter.

• Set Attitude representation to Quaternion.

Data Types: double

DCM — Spacecraft attitude direction cosine matrix
3-by-3 array | numSat-by-3-by-3 array

Spacecraft attitude direction cosine matrix (DCM), returned as a3-by-3 array or numSat-by-3-by-3
array. numSat is the number of spacecraft.
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Dependencies

The coordinate frame and attitude format of this port depends on these settings:

• To specify the attitude reference coordinate frame, set the Attitude reference coordinate frame
parameter.

• Set Attitude representation to DCM.

Data Types: double

R1,R2,R3 — Spacecraft attitude Euler angles
3-element vector | numSat-by-3 array

Spacecraft attitude Euler angles, returned as a 3-element vector or numSat-by-3 array. numSat is the
number of spacecraft.

Dependencies

The coordinate frame and attitude format of this port depend on these settings:

• To specify the attitude reference coordinate frame, set the Attitude reference coordinate frame
parameter.

• Set Attitude representation to Euler angles.

Data Types: double

ω — Angular rate of spacecraft
3-element vector | numSat-by-3 array

Angular rate of the spacecraft relative to the attitude reference coordinate frame, returned as a 3-
element vector or numSat-by-3 array, expressed as body axis angular rates PQR. numSat is the
number of spacecraft.

Dependencies

The attitude reference coordinate frame depends on the Attitude reference coordinate frame
parameter.
Data Types: double

dω/dt — Body angular acceleration
3-element array | numSat-by-3 array

Body angular acceleration relative to the ICRF frame, returned as a 3-element array or numSat-by-3
array. numSat is the number of spacecraft.

Dependencies

To enable this port, select the Output total inertial angular acceleration check box.

The attitude reference coordinate frame depends on the Attitude reference coordinate frame
parameter.
Data Types: double

qicrf2ff — Coordinate system transformation
4-element array
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Coordinate system transformation between the ICRF and fixed-frame coordinate system at the
current timestep, returned as a 4-element array.

Dependencies

To enable this port, select the Output quaternion (ICRF to Fixed-frame) check box.
Data Types: double

tutc — Time at current time step
scalar | 6-element array

Time at current time step, returned as a:

• scalar — If you specify the Start data/time parameter as a Julian date.
• 6-element array — If you specify the Start data/time parameter as a Gregorian date with six

elements (year, month, day, hours, minutes, seconds).

This value equals the Start date/time parameter value plus the elapsed simulation time.

Dependencies

To enable this parameter, select the Output current date/time (UTC Julian date) check box.
Data Types: double

Fuel Status — Fuel status
scalar | numSat-element array

Fuel tank status at the current timestep, returned as a scalar or numSat-element array, returned as:

• 1 — Tank is full.
• 0 — Tank is not full or empty.
• -1 — Tank is empty.

numSat is the number of spacecraft.

Dependencies

To enable this parameter, select the Output fuel tank status check box.
Data Types: double

Parameters
Main

Input body forces — Option to enable external forces

on (default) | off

To enable external forces to be included in the integration of the spacecraft equations of motion in
the body frame, select this check box. Otherwise, clear this check box.

Programmatic Use
Block Parameter: forcesin
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Type: character vector
Values: 'off' | 'on'
Default: 'off'

Input body moments — Option to enable external moments

on (default) | off

To enable external moments to be included in the integration of the spacecraft equations of motion in
the body frame, select this check box. Otherwise, clear this check box.

Programmatic Use
Block Parameter: momentsIn
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Input external accelerations — Option to input additional force accelerations

off (default) | on

To enable additional external accelerations to be included in the integration of the spacecraft
equations of motion, select this check box. Otherwise, clear this check box.

Programmatic Use
Block Parameter: accelIn
Type: character vector
Values: 'off' | 'on'
Default: 'off'

External acceleration coordinate frame — Frame for acceleration input port

ICRF (default) | Fixed-frame

Frame for acceleration input port A, specified as ICRF or Fixed-frame.

Dependencies

To enable this parameter, select the Input external accelerations check box.

Programmatic Use
Block Parameter: accelFrame
Type: character vector
Values: 'ICRF' | 'Fixed-frame'
Default: 'ICRF'

State vector output coordinate frame — Position and velocity state output port
coordinate frame

ICRF (default) | Fixed-frame

Position and velocity state output port coordinate frame setup, specified as ICRF or Fixed-frame.

Programmatic Use
Block Parameter: outportFrame
Type: character vector
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Values: 'ICRF' | 'Fixed-frame'
Default: 'ICRF'
Data Types: string

Output total inertial acceleration — Option to enable total acceleration port

off (default) | on

Enable the total acceleration output computed by the block with respect to the ICRF or fixed-frame
outport coordinate frame. This acceleration includes all external accelerations, forces, and internal
environmental accelerations that act on the spacecraft.

Note Do not use this port as part of a simulation loop (in other words, do not feed this output back
into the block).

Tunable: Yes

Dependencies

To change the output coordinate frame for this port, set the State vector output coordinate frame
parameter.

Programmatic Use
Block Parameter: AccelOut
Type: character vector
Values: 'on' | 'off'
Default: 'off'
Data Types: string

Start date/time (UTC Julian date) — Initial start time for simulation

juliandate (2020, 1, 1, 12, 0, 0) (default) | valid scalar Julian date | valid Gregorian date
including year, month, day, hours, minutes, seconds as 1D or 6-element array for Gregorian dates

Initial start date and time of simulation, specified as a Julian or Gregorian date. The block defines
initial conditions using this value.

Tip To calculate the Julian date, use the juliandate function.

Tunable: Yes

Dependencies

The data format for this parameter is controlled by the Time format parameter.

Programmatic Use
Block Parameter: startDate
Type: character vector
Values: 'juliandate(2020, 1, 1, 12, 0, 0)' | valid scalar Julian date | valid Gregorian date
including year, month, day, hours, minutes, seconds as 1D or 6-element array
Default: 'juliandate(2020, 1, 1, 12, 0, 0)'
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Output current date/time (UTC Julian date) — Option to add output port tutc

on (default) | off

To output the current date or time, select this check box. Otherwise, clear this check box.

Dependencies

The data format for this parameter is controlled by the Time format parameter.

Programmatic Use
Block Parameter: dateOut
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Action for out-of-range input — Out-of-range block behavior

Warning (default) | Error | None

Out-of-range block behavior action. Specify one of these options.

Action Description
None No action.
Warning Warning displays in the MATLAB Command Window. Model

simulation continues.
Error (default) MATLAB returns an exception. Model simulation stops.

Programmatic Use
Block Parameter: action
Type: character vector
Values: 'None' | 'Warning' | 'Error'
Default: 'Warning'

Mass

Mass type — Spacecraft mass type

Fixed (default) | Simple Variable | Custom Variable

Spacecraft mass type, specified as:

• Fixed — Mass and inertia are constant throughout the simulation.
• Simple Variable — Mass and inertia vary linearly as a function of mass rate.
• Custom Variable — Instantaneous mass, inertia, and inertia rate are inputs to the block.

Programmatic Use
Block Parameter: massType
Type: character vector
Values: 'Fixed' | 'Simple Variable' | 'Custom Variable'
Default: 'Fixed'
Data Types: double
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Mass — Initial mass of rigid body spacecraft

4.0 (default) | scalar | vector of size numSat

Initial mass of rigid body spacecraft, specified as scalar or vector of size numSat. numSat is the
number of spacecraft.

Tunable: Yes

Dependencies

To enable this parameter, set the Mass type parameter to either Fixed or Simple variable.

Programmatic Use
Block Parameter: mass
Type: character vector
Values: scalar | vector of size numSat
Default: '4.0'

Empty mass — Spacecraft empty mass

3.5 (default) | scalar | vector of size numSat

Spacecraft empty (dry) mass, specified as a scalar or vector of size numSat. numSat is the number of
spacecraft.

Tunable: Yes

Dependencies

To enable this parameter, set Mass type to Simple variable.

Programmatic Use
Block Parameter: emptyMass
Type: character vector
Values: 1D array of size numSat | 1D array of size numSat
Default: '3.5'
Data Types: double

Full mass — Spacecraft full mass

4.0 (default) | scalar | vector of size numSat

Spacecraft full (wet) mass, specified as a scalar or vector of size numSat. numSat is the number of
spacecraft.

Tunable: Yes

Dependencies

To enable this parameter, set Mass type to Simple variable.

Programmatic Use
Block Parameter: fullMass
Type: character vector
Values: scalar | vector of size numSat
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Default: '4.0'
Data Types: double

Inertia tensor — Inertia tensor matrix

[0.2273, 0, 0; 0 0.2273 0; 0 0 .0040] (default) | 3-by-3 array | 3-by-3-by-numSat array

Initial inertia tensor matrix of the spacecraft, specified, as a 3-by-3 array for a single spacecraft or a
3-by-3-by-numSat array for multiple spacecraft.

Tunable: Yes

Dependencies

To enable this parameter, set Mass type to Fixed.

Programmatic Use
Block Parameter: inertia
Type: character vector
Values: '[0.2273, 0, 0; 0 0.2273 0; 0 0 .0040]' | 3-by-3 array | 3-by-3-by-numSat array
Default: '[0.2273, 0, 0; 0 0.2273 0; 0 0 .0040]'

Empty inertia tensor — Empty inertia tensor matrix

[0.1989, 0, 0; 0 0.1989 0; 0 0 .0035] (default) | 3-by-3 array | 3-by-3-by-numSat array

Empty (dry) inertia tensor matrix, specified as a 3-by-3 array for a single spacecraft or a 3-by-3-by-
numSat array for multiple spacecraft.

Tunable: Yes

Dependencies

To enable this parameter, set Mass type to Simple variable.

Programmatic Use
Block Parameter: emptyInertia
Type: character vector
Values: 3-by-3 array | 3-by-3-by-numSat array
Default: [0.1989, 0, 0; 0 0.1989 0; 0 0 .0035]

Full inertia tensor — Full inertia tensor matrix

[0.2273, 0, 0; 0, 0.2273, 0; 0, 0, .0040] (default) | 3-by-3 array | 3-by-3-by-numSat
array

Full (wet) inertia tensor matrix, specified as a 3-by-3 array for a single spacecraft or a 3-by-3-by-
numSat array for multiple spacecraft.

Tunable: Yes

Dependencies

To enable this parameter, set Mass type to Simple variable.
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Programmatic Use
Block Parameter: fullInertia
Type: character vector
Values: 3-by-3 array | 3-by-3-by-numSat array
Default: [0.2273, 0, 0; 0, 0.2273, 0; 0, 0, .0040]

Include mass flow relative velocity — Option to enable mass flow velocity

off (default) | on

To enable mass flow velocity to the block, select this check box. The mass flow velocity is the relative
velocity in the body frame at which the mass is accreted or ablated. To disable mass flow velocity to
the block, clear this check box.

Dependencies

To enable this parameter, set Mass type to Simple variable or Custom variable.

Programmatic Use
Block Parameter: useMassFlowRelativeVelocity
Type: character vector
Values: 'on' | 'off'
Default: 'off'
Data Types: double

Limit mass flow when mass is empty or full — Option to limit mass flow

on (default) | off

To limit the mass flow when the spacecraft mass is full or empty, select this check box. Otherwise,
clear this check box.

Dependencies

To enable this parameter, set Mass type to Simple variable.

Programmatic Use
Block Parameter: limitMassFlow
Type: character vector
Values: 'on' | 'off'
Default: 'on'
Data Types: double

Output fuel tank status — Option to enable fuel tank status

on (default) | off

To enable fuel tank status, select this check box. Otherwise, clear this check box.

Dependencies

To enable this parameter, set Mass type to Simple variable.

Programmatic Use
Block Parameter: outputFuelStatus

5 Blocks

5-844



Type: character vector
Values: 'on' | 'off'
Default: 'on'
Data Types: double

Orbit

Define the initial states of the spacecraft.

Initial state format — Input method for initial states of orbit

Orbital elements (default) | ICRF state vector | Fixed-frame state vector

Input method for initial states of orbit, specified as Orbital elements, ICRF state vector, or
Fixed-frame state vector.
Programmatic Use
Block Parameter stateFormatNum when propagator is set to High precision (numerical)
Type: character vector
Values: 'Orbital elements' | 'Orbital elements' | 'ICRF state vector' | 'Fixed-
frame state' when propagator is set to 'High precision (numerical)'
Default: 'Orbital elements'

Orbit type — Orbit classification

Keplerian (default) | Elliptical equatorial | Circular | Circular equatorial

Orbit classification, specified as:

• Keplerian — Model elliptical, parabolic, and hyperbolic orbits using six standard Keplerian
orbital elements.

• Elliptical equatorial — Fully define an equatorial orbit, where inclination is 0 or 180
degrees and the right ascension of the ascending node is undefined.

• Circular — Define a circular orbit, where eccentricity is 0 and the argument of periapsis is
undefined. To fully define a circular orbit, select Circular equatorial.

• Circular equatorial — Fully define a circular orbit, where eccentricity is 0 and the argument
of periapsis is undefined.

Dependencies

To enable this parameter, set Initial state format to Orbital elements.
Programmatic Use
Block Parameter: orbitType
Type: character vector
Values: 'Keplerian' | 'Elliptical equatorial' | 'Circular inclined' | 'Circular
equatorial'
Default: 'Keplerian'

Semi-major axis — Half of major axis of ellipse

6786000 (default) | scalar | 1D array of size numSat

Half of ellipse major axis, specified as a 1D array of size numSat. numSat is the number of spacecraft.
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• For parabolic orbits, this block interprets this parameter as the periapsis radius (distance from
periapsis to the focus point of orbit).

• For hyperbolic orbits, this block interprets this parameter as the distance from periapsis to the
hyperbola center.

Tunable: Yes
Dependencies

To enable this parameter, set Initial state format to Orbital elements.
Programmatic Use
Block Parameter: semiMajorAxis
Type: character vector
Values: scalar | 1D array of size numSat
Default: '6786000'

Eccentricity — Deviation of orbit

0.01 (default) | scalar | value between 0 and 1, or greater than 1 for Keplerian orbit type | 1D array of
size numSat

Deviation of the orbit from a perfect circle, specified as a scalar or 1D array of size numSat. numSat
is the number of spacecraft.

If Orbit type is set to Keplerian, this value can be:

• 1 for parabolic orbit
• Greater than 1 for hyperbolic orbit

Tunable: Yes
Dependencies

To enable this parameter:

• Set Initial state format to Orbital elements.
• Set Orbit type to Keplerian or Elliptical equatorial.

Programmatic Use
Block Parameter: eccentricity
Type: character vector
Values: 0.01 | scalar | value between 0 and 1, or greater than 1 for Keplerian orbit type | 1D array of
size numSat
Default: '0.01'

Inclination — Tilt angle of orbital plane

50 (default) | scalar | 1D array of size numSat | degrees between 0 and 180 | radians between 0 and
pi

Vertical tilt of the ellipse with respect to the reference plane measured at the ascending node,
specified as a scalar or 1D array of size numSat, in specified units. numSat is the number of
spacecraft.

Tunable: Yes
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Dependencies

To enable this parameter:

• Set Initial state format to Orbital elements
• Set Orbit type to Keplerian or Circular inclined

Programmatic Use
Block Parameter: inclination
Type: character vector
Values: 50 | scalar | 1D array of size numSat | degrees between 0 and 180 | radians between 0 and pi
Default: '50'

RAAN — Angular distance in equatorial plane

95 (default) | scalar value between 0 and 360 | 1D array of size numSat

Right ascension of ascending node (RAAN), specified as a value between 0 and 360, specified as a
scalar or 1D array of size numSat, in specified units. numSat is the number of spacecraft. RAAN is the
angular distance along the reference plane from the International Celestial Reference Frame (ICRF)
x-axis to the location of the ascending node — the point at which the spacecraft crosses the reference
plane from south to north.

Tunable: Yes

Dependencies

To enable this parameter:

• Set Initial state format to Orbital elements.
• Set Orbit type to Keplerian or Circular inclined.

Programmatic Use
Block Parameter: raan
Type: character vector
Values: '95' | scalar value between 0 and 360 | 1D array of size numSat
Default: '95'

Argument of periapsis — Angle from spacecraft ascending node to periapsis

93 (default) | value between 0 and 360 | 1D array of size numSat

Angle from the spacecraft ascending node to periapsis (closest point of orbit to the central body),
specified as a 1D array of size numSat, in specified units. numSat is the number of spacecraft.

Tunable: Yes

Dependencies

To enable this parameter:

• Set Initial state format to Orbital elements
• Set Orbit type to Keplerian
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Programmatic Use
Block Parameter: argPeriapsis
Type: character vector
Values: 93 | scalar value between 0 and 360 | 1D array of size numSat
Default: '93'

True anomaly — Angle between periapsis and initial position of spacecraft

203 (default) | scalar value between 0 and 360 | 1D array of size numSat

Angle between periapsis (closest point of orbit to the central body) and the initial position of
spacecraft along its orbit at Start date/time, specified as a scalar or 1D array of size numSat, in
specified units. numSat is the number of spacecraft.

Tunable: Yes

Dependencies

To enable this parameter:

• Set Initial state format to Orbital elements.
• Set Orbit type to Keplerian or Elliptical inclined.

Programmatic Use
Block Parameter: trueAnomaly
Type: character vector
Values: '203' | scalar value between 0 and 360 | 1D array of size numSat
Default: '203'

Argument of latitude — Angle between ascending node and initial position of spacecraft

200 (default) | scalar | value between 0 and 360 | 1D array of size numSat

Angle between the ascending node and the initial position of spacecraft along its orbit at Start date/
time, specified as a scalar or 3-element vector or 1D array of size numSat, in specified units. numSat
is number of spacecraft.

Tunable: Yes

Dependencies

To enable this parameter:

• Set Initial state format to Orbital elements.
• Set Orbit Type to Circular inclined.

Programmatic Use
Block Parameter: argLat
Type: character vector
Values: '200' | scalar value between 0 and 360 | 1D array of size numSat
Default: '200'

Longitude of periapsis — Angle between ICRF x-axis and eccentricity vector

100 (default) | scalar | value between 0 and 360 | 1D array of size numSat
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Angle between the ICRF x-axis and the eccentricity vector, specified as a scalar or 3-element vector
or 1D array of size numSat, in specified units. numSat is the number of spacecraft

Tunable: Yes

Dependencies

To enable this parameter:

• Set Initial state format to Orbital elements.
• Set Orbit type to Elliptical equatorial.

Programmatic Use
Block Parameter: lonPeriapsis
Type: character vector
Values: 100 | scalar value between 0 and 360 | 1D array of size numSat
Default: '100'

True longitude — Angle between ICRF x-axis and initial position of spacecraft

150 (default) | scalar | value between 0 and 360 | 1D array of size numSat | numSat-by-3 vector

Angle between the ICRF x-axis and the initial position of spacecraft along its orbit at Start date/
time, specified as a scalar or 1D array of size numSat or a numSat-by-3 vector, in specified units.
numSat is the number of spacecraft.

Tunable: Yes

Dependencies

To enable this parameter:

• Set Initial state format to Orbital elements.
• Set Orbit type to Circular equatorial.

Programmatic Use
Block Parameter: trueLon
Type: character vector
Values: '150' | scalar value between 0 and 360 | 1D array of size numSat | numSat-by-3 vector
Default: '150'

ICRF position — Cartesian position vector of spacecraft

[3649700.0 3308200.0 -4676600.0] (default) | 3-element vector | | numSat-by-3 array

Cartesian position vector of spacecraft in ICRF coordinate system at Start date/time, specified as a
3-element vector for single spacecraft or a numSat-by-3 array for multiple spacecraft. numSat is the
number of spacecraft.

Tunable: Yes

Dependencies

To enable this parameter, set Initial state format to ICRF state vector.
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Programmatic Use
Block Parameter: inertialPosition
Type: character vector
Values: [3649700.0 3308200.0 -4676600.0] | 3-element vector | numSat-by-3 array
Default: '[3649700.0 3308200.0 -4676600.0]'

ICRF velocity — Cartesian velocity vector of spacecraft

[-2750.8 6666.4 2573.4] (default) | 3-element vector | numSat-by-3 array

Cartesian velocity vector of spacecraft in ICRF coordinate system at Start date/time, specified as a
3-element vector for single spacecraft or a numSat-by-3 array for multiple spacecraft. numSat is the
number of spacecraft.

Tunable: Yes

Dependencies

To enable this parameter, set Initial state format to ICRF state vector.

Programmatic Use
Block Parameter: inertialVelocity
Type: character vector
Values: [-2750.8 6666.4 2573.4] | 3-element vector | 2-D array of size numSat-by-3 array
Default: '[-2750.8 6666.4 2573.4]'

Fixed-frame position — Position vector of spacecraft

[-4142689.0 -2676864.7 -4669861.6] (default) | 3-element vector | numSat-by-3 array

Cartesian position vector of spacecraft in fixed-frame coordinate system at Start date/time, specified
as a 3-element vector for single spacecraft or a numSat-by-3 array for multiple spacecraft. numSat is
the number of spacecraft.

Tunable: Yes

Dependencies

To enable this parameter, set Initial state format to Fixed-frame state vector.

Programmatic Use
Block Parameter: fixedPosition
Type: character vector
Values: '[-4142689.0 -2676864.7 -4669861.6]' | 3-element vector for single spacecraft |
numSat-by-3 array
Default: '[-2750.8 6666.4 2573.4]'

Fixed-frame velocity — Velocity vector of spacecraft

[1452.7 -6720.7 2568.1] (default) | 3-element vector | numSat-by-3 array

Cartesian velocity vector of spacecraft in fixed-frame coordinate system at Start date/time, specified
as a 3-element vector for single spacecraft or a numSat-by-3 array for multiple spacecraft. numSat is
the number of spacecraft.

Tunable: Yes

5 Blocks

5-850



Dependencies

To enable this parameter, set Initial state format to Fixed-frame state vector.
Programmatic Use
Block Parameter: fixedVelocity
Type: character vector
Values: '[1452.7 -6720.7 2568.1]' | 3-element vector | numSat-by-3 array
Default: '[1452.7 -6720.7 2568.1]'

Attitude

Attitude reference coordinate frame — Attitude and angular rate coordinate frame

ICRF (default) | Fixed-frame | NED | LVLH

Attitude and angular rate coordinate frame with respect to the attitude and angular rate initial
conditions, specified as:

• ICRF
• Fixed-frame
• NED
• LVLH

Programmatic Use
Block Parameter: attitudeFrame
Type: character vector
Values: 'ICRF' | 'Fixed-frame' | 'NED' | 'LVLH'
Default: 'ICRF'
Data Types: string

Attitude representation — Orientation format

Quaternion (default) | DCM | Euler angles

Orientation format for spacecraft attitude (initial condition and output port), specified as
Quaternion, DCM, or Euler angles.
Programmatic Use
Block Parameter: attitudeFrame
Type: character vector
Values: 'Quaternion' | 'DCM' | 'Euler angles'
Default: 'Quaternion'
Data Types: double

Initial body attitude — Spacecraft initial attitude

[1, 0, 0, 0] (default) | 4-element vector | numSat-by-4 array | 3-by-3 array | numSat-by-3-by-3
array

Spacecraft initial attitude (orientation) of the spacecraft provided as either a quaternion, DCM, or
Euler angle set with respect to Attitude representation.

Tunable: Yes
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Dependencies

This parameter name and value format changes depending on the Attitude representation
parameter.

Parameter Name Attitude Representation
Setting

Value Format

Initial quaternion Quaternion • 4-element vector
• numSat-by-4 array

Initial DCM DCM • 3-by-3 array
• numSat-by-3-by-3 array

Initial Euler angles Euler angles • 3-element vector
• numSat-by-3 array

Programmatic Use
Block Parameter: attitude
Type: character vector
Values: 4-element vector | numSat-by-4 array | 3-by-3 array | numSat-by-3-by-3 array | 3-element
array | numSat-by-3 array
Default: '[1, 0, 0, 0]'
Data Types: double

Angle rotation order — Angle rotation order

ZYX (default) | ZYX | ZYZ | ZXY | ZXZ | YXZ | YXY | YZX | YZY | XYZ | XYX | XZY | XZX

Rotation angle sequence for Euler angle attitude representation.

Tunable: Yes

Dependencies

To enable this parameter, set Attitude representation to Euler angles.

Programmatic Use
Block Parameter: rotationOrder
Type: character vector
Values: 'ZYX' | 'ZYZ' |'ZXY' | 'ZXZ' | 'YXZ' | 'YXY' | 'YZX' | 'YZY' | 'XYZ' | 'XYX' | 'XZY' |
'XZX'
Default: 'ZYX'
Data Types: double

Initial body angular rates PQR — Initial body-fixed angular rates

[0, 0, 0] (default) | 3-element vector | numSat-by-3 array

Initial body-fixed angular rates (PQR) with respect to Attitude reference coordinate frame.

Tunable: Yes

Programmatic Use
Block Parameter: attitudeRate
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Type: character vector
Values: | 3-element vector | numSat-by-3 array
Default: [0, 0, 0]
Data Types: double

Output total inertial angular acceleration — Option to enable total vehicle
acceleration

off (default) | on

Enable output total vehicle acceleration computed by the block with respect to the ICRF attitude
reference coordinate frame. This acceleration includes all moments that act on the spacecraft.

Tunable: Yes

Programmatic Use
Block Parameter: angAccelOut
Type: character vector
Values: 'on' | 'off'
Default: 'off'
Data Types: string

Include gravity gradient torque — Option to enable gravity gradient torque

on (default) | off

Select this check box to enable the use of the gravity gradient torque in the block rotational dynamics
equations. Otherwise, clear this check box.

Tunable: Yes

Programmatic Use
Block Parameter: angAccelOut
Type: character vector
Values: 'on' | 'off'
Default: 'on'
Data Types: double

Central Body

Central body — Celestial body around which spacecraft orbits

Earth (default) | Moon | Mercury | Venus | Mars | Jupiter | Saturn | Uranus | Neptune | Custom

Celestial body, specified as Earth, Moon, Mercury, Venus, Mars, Jupiter, Saturn, Uranus,
Neptune, or Custom, around which the spacecraft defined in the Orbit tab orbits.

Programmatic Use
Block Parameter: centralBody
Type: character vector
Values: 'Earth' | 'Moon' |'Mercury' | 'Venus' | 'Mars' | 'Jupiter' | 'Saturn' | 'Uranus' |
'Neptune' | 'Custom' |
Default: 'Earth'
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Gravitational potential model — Gravity model for central body

Spherical harmonics when Central body set to Earth, Moon, Mars, or Custom, Oblate
ellipsoid when Central body set to Mercury, Venus, Jupiter, Saturn, Uranus, or Neptune
(default) | Point-mass | Oblate ellipsoid (J2)

Control the gravity model for the central body by specifying as Spherical harmonics, Point-
mass, or Oblate ellipsoid (J2).

Dependencies

Available options are based on Central body settings.

Earth, Moon, Mars, or Custom Mercury, Venus, Jupiter, Saturn, Uranus, or
Neptune

Spherical harmonics Oblate ellipsoid (J2)
Point-mass Point-mass
Oblate ellipsoid (J2) —

Programmatic Use
Block Parameter: gravityModel when centralBody set to 'Earth', 'Moon', 'Mars', or
'Custom' | gravityModelnoSH when centralBody set to Mercury, Venus, Jupiter, Saturn,
Uranus, or Neptune
Type: character vector
Values: 'Spherical harmonics' | 'Point-mass' | 'Oblate ellipsoid (J2)' when
centralBody set to 'Earth', 'Moon', 'Mars', or 'Custom'; 'Point-mass' | 'Oblate
ellipsoid (J2)' when centralBody set to Mercury, Venus, Jupiter, Saturn, Uranus, or
Neptune
Default: 'Spherical harmonics' when centralBody set to 'Earth', 'Moon', 'Mars', or
'Custom'; 'Oblate ellipsoid (J2)' when centralBody set to Mercury, Venus, Jupiter,
Saturn, Uranus, or Neptune

Spherical harmonic model — Spherical harmonic model

EGM2008 for Central body set to Earth, LP-100K for Central body set to Moon, GMM2B for Central
body set to Mars, (default) | EGM96 | EIGEN-GL04C | LP-165P

Spherical harmonic gravitational potential model, specified according to the specified Central body.

Dependencies

Available options are based on Central body settings:

Central body Spherical Harmonic Model Option
Earth EGM2008, EGM96, or EIGEN-GL04C
Moon LP-100K or LP-165P
Mars GMM2B

Programmatic Use
Block Parameter: 'earthSH' when centralBody set to 'Earth' | 'moonSH' when
centralBody set to 'Moon' | 'marsSH' when centralBody set to 'Mars'
Type: character vector
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Values: 'EGM2008' | 'EGM96' | 'EIGEN-GL04C' when centralBody set to 'earthSH';
'LP-100K' | 'LP-165P' when centralBody set to 'moonSH'; 'GMM2B' when centralBody set to
'marsSH'
Default: 'Spherical harmonics'

Rotational rate — Rotational rate

4.06124975e-3 (default) | scalar

Rotational rate of a custom central body, specified as a scalar.

Dependencies

To enable this parameter, set Central body to Custom.

Programmatic Use
Block Parameter: 'customOmega'
Type: character vector
Values: '4.06124975e-3' | scalar
Default: '4.06124975e-3'
Data Types: double

Spherical harmonic coefficient file — Harmonic coefficient MAT-file

aerogmm2b.mat (default) | harmonic coefficient MAT-file

Harmonic coefficient MAT-file that contains definitions for a custom planetary model, specified as a
character vector or string.

This file must contain these variables:

Variable Description
Re Scalar of planet equatorial radius in meters (m).
GM Scalar of planetary gravitational parameter in meters cubed per second squared

(m3/s2)
.

degree Scalar of maximum degree.
C (degree+1)-by-(degree+1) matrix containing normalized spherical harmonic

coefficients matrix, C.
S (degree+1)-by-(degree+1) matrix containing normalized spherical harmonic

coefficients matrix, S.

Dependencies

To enable this parameter:

• SetCentral body to Custom.
• Set Gravitational potential model to Spherical harmonics.

Programmatic Use
Block Parameter: shFile
Type: character vector
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Values: 'aerogmm2b.mat' | harmonic coefficient MAT-file
Default: 'aerogmm2b.mat'

Degree — Degree of harmonic model

120 (default) | scalar | maximum of 2159

Degree of harmonic model, specified as a scalar.

Planet
Model

Recommended Degree Maximum Degree

EGM2008 120 2159
EGM96 70 360
LP100K 60 100
LP165P 60 165
GMM2B 60 80
EIGENGL04C 70 360

Dependencies

To enable this parameter:

• Set Central body to Earth, Moon, Mars, or Custom.
• Set Gravitational potential model to Spherical harmonics.

Programmatic Use
Block Parameter: shDegree
Type: character vector
Values: '80' | scalar
Default: '80'

Use Earth orientation parameters (EOPs) — Option to use Earth orientation
parameters

on (default) | off

Select this check box to use Earth orientation parameters for the transformation between the ICRF
and fixed-frame coordinate systems. Otherwise, clear this check box.

Dependencies

To enable this parameter, set Central body to Earth.

Programmatic Use
Block Parameter: useEOPs
Type: character vector
Values: 'on' | 'off'
Default: 'on'

IERS EOP data file — Earth orientation data

aeroiersdata.mat (default) | MAT-file
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Custom list of Earth orientation data, specified in a MAT-file.

Dependencies

To enable this parameter:

• Select the Use Earth orientation parameters (EOPs) check box.
• Set Central body to Earth.

Programmatic Use
Block Parameter: eopFile
Type: character vector
Values: 'aeroiersdata.mat' | MAT-file
Default: 'aeroiersdata.mat'

Input Moon libration angles — Moon libration Euler angle rate

off (default) | on

To specify Euler libration angles (φ θ ψ) for Moon orientation, select this check box.

Dependencies

To enable this parameter, set Central body to Moon.

Programmatic Use
Block Parameter: useMoonLib
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Output quaternion (ICRF to Fixed-frame) — Option to add output transformation
quaternion port

off (default) | on

To add output transformation quaternion port for the quaternion transformation from the ICRF to the
fixed-frame coordinate system, select this check box. Otherwise, clear this check box.

Programmatic Use
Block Parameter: outputTransform
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Central body spin axis source — Central body spin source

Port (default) | Dialog

Central body spin axis source, specified as Port or Dialog. The block uses the spin axis to calculate
the transformation from the ICRF to the fixed-frame coordinate system for the custom central body.

Dependencies

To enable this parameter, set Central body to Custom.
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Programmatic Use
Block Parameter: cbPoleSrc
Type: character vector
Values: 'Port' | 'Dialog'
Default: 'Port'

Spin axis right ascension (RA) at J2000 — Right ascension of central body spin axis
at J2000

317.68143 (default) | double scalar

Right ascension of central body spin axis at J2000 (2451545.0 JD, 2000 Jan 1 12:00:00 TT), specified
as a double scalar.

Tunable: Yes

Dependencies

To enable this parameter:

• Set Central body to Custom.
• Set Central body spin axis source to Dialog.

Programmatic Use
Block Parameter: cbRA
Type: character vector
Values: '317.68143' | double scalar
Default: '317.68143'

Spin axis RA rate (deg/century) — Right ascension rate of central body spin axis

-0.1061 (default) | double scalar

Right ascension rate of the central body spin axis, specified as a double scalar, in specified angle
units/century.

Tunable: Yes

Dependencies

To enable this parameter:

• Set Central body to Custom.
• Set Central body spin axis source to Dialog.

Programmatic Use
Block Parameter: cbRARate
Type: character vector
Values: '-0.1061' | double scalar
Default: '-0.1061'

Spin axis declination (Dec) at J2000 — Declination of central body spin axis at J2000

52.88650 (default) | double scalar
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Declination of the central body spin axis at J2000 (2451545.0 JD, 2000 Jan 1 12:00:00 TT), specified
as a double scalar.

Tunable: Yes

Dependencies

To enable this parameter:

• Set Central body to Custom.
• Set Central body spin axis source to Dialog.

Programmatic Use
Block Parameter: cbDec
Type: character vector
Values: '52.88650' | double scalar
Default: '52.88650'

Spin axis Dec rate (deg/century) — Declination rate of central body spin axis

-0.0609 (default) | double scalar

Declination rate of the central body spin axis, specified as a double scalar, in specified angle units/
century.

Tunable: Yes

Dependencies

To enable this parameter:

• Set Central body to Custom.
• Set Central body spin axis source to Dialog.

Programmatic Use
Block Parameter: cbDecRate
Type: character vector
Values: '-0.0609' | double scalar
Default: '-0.0609'

Initial rotation angle at J2000 — Rotation angle of central body x-axis

176.630 (default) | double scalar

Rotation angle of the central body x axis with respect to the ICRF x-axis at J2000 (2451545.0 JD, 2000
Jan 1 12:00:00 TT), specified as a double scalar, in specified angle units.

Tunable: Yes

Dependencies

To enable this parameter:

• Set Central body to Custom.
• Set Central body spin axis source to Dialog.
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Programmatic Use
Block Parameter: cbRotAngle
Type: character vector
Values: '176.630' | double scalar
Default: '176.630'

Rotation rate (deg/day) — Rotation rate of central body x-axis

350.89198226 (default) | double scalar

Rotation rate of the central body x axis with respect to the ICRF x-axis (2451545.0 JD, 2000 Jan 1
12:00:00 UTC), specified as a double scalar, in angle units/day.

Tunable: Yes

Dependencies

To enable this parameter:

• Set Central body to Custom.
• Set Central body spin axis source to Dialog.

Programmatic Use
Block Parameter: cbRotRate
Type: character vector
Values: '350.89198226' | double scalar
Default: '350.89198226'

Equatorial radius — Equatorial radius

3396200 (default) | double scalar

Equatorial radius for a custom central body, specified as a double scalar.

Tunable: Yes

Dependencies

To enable this parameter, set Gravitational potential model to None, Point-mass, or Oblate
ellipsoid (J2).

Programmatic Use
Block Parameter: customR
Type: character vector
Values: '3396200' | double scalar
Default: '3396200'

Flattening — Flattening ratio

0.00589 (default) | double scalar

Flattening ratio for custom central body, specified as a double scalar.

Tunable: Yes
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Dependencies

To enable this parameter:

• Set Central body to Custom.
• Set Gravitational potential model to Point-mass, Oblate ellipsoid (J2), or Spherical

harmonics.

Programmatic Use
Block Parameter: customF
Type: character vector
Values: '0.00589' | double scalar
Default: '0.00589'

Gravitational parameter — Gravitational parameter

4.305e13 (default) | double scalar

Gravitational parameter for a custom central body, specified as a double scalar.

Tunable: Yes

Dependencies

To enable this parameter:

• Set Central body to Custom.
• Set Gravitational potential model to None, Point-mass, or Oblate ellipsoid (J2).

Programmatic Use
Block Parameter: customMu
Type: character vector
Values: '4.305e13' | double scalar
Default: '4.305e13'

Second degree zonal harmonic (J2) — Most significant or largest spherical harmonic
term

1.0826269e-03 (default) | double scalar

Most significant or largest spherical harmonic term, which accounts for oblateness of a celestial body,
specified as a double scalar.

Tunable: Yes

Dependencies

To enable this parameter:

• Set Central body to Custom.
• Set Gravitational potential model to Oblate ellipsoid (J2).

Programmatic Use
Block Parameter: customJ2
Type: character vector
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Values: '1.0826269e-03' | double scalar
Default: '1.0826269e-03'

Drag

Include atmospheric drag — Option to include atmospheric drag

off (default) | on

To include atmospheric drag, select this check box.

Dependencies

To enable this parameter:

• Set the Propagation method parameter to Numerical (high precision).
• Set the Central Body parameter to Earth.

Programmatic Use
Block Parameter: useDrag
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Atmospheric density source — Source of atmospheric density value

Dialog (default) | Port

Source of atmospheric density value, specified as Dialog or Port.

Dependencies

To enable this parameter:

• Set the Propagation method parameter to Numerical (high precision).
• Set the Central Body parameter to Earth.
• Select the Include atmospheric drag check box.

Programmatic Use
Block Parameter: atmosSrc
Type: character vector
Values: 'Dialog' | 'Port'
Default: 'Dialog'

Atmospheric model — Atmospheric model

NRLMSISE-00 (default)

Atmospheric model for atmospheric drag calculation, specified as NRLMSISE-00.

Dependencies

To enable this parameter:

• Set the Propagation method parameter to Numerical (high precision).
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• Set the Central Body parameter to Earth.
• Select the Include atmospheric drag check box.
• Set the Atmospheric density source parameter to Dialog.

Programmatic Use
Block Parameter: atmosModel
Type: character vector
Values: 'NRLMSISE-00'
Default: 'NRLMSISE-00'

Flags source — Variation flag source

Dialog (default) | Port

Variation flag source, specified as Dialog or Port.

Dependencies

To enable this parameter:

• Set the Propagation method parameter to Numerical (high precision).
• Set the Central Body parameter to Earth.
• Select the Include atmospheric drag check box.

Programmatic Use
Block Parameter: fluxFlagsSrc
Type: character vector
Values: 'Dialog' | 'Port'
Default: 'Dialog'

Flags — Variation flags

ones(1,23) (default)

Variation flags, specified as an array of 23 (ones(1,23)). You can specify one of the following values
for a field. The default value for each field is 1.

• 0.0 — Removes the effect on the output.
• 1.0 — Applies the main and the cross-term effects of that value on the output.
• 2.0 — Applies only the cross-term effect of that value on the output.

The array has these fields.

Field Description
Flags(1) F10.7 effect on mean
Flags(2) Independent of time
Flags(3) Symmetrical annual
Flags(4) Symmetrical semiannual
Flags(5) Asymmetrical annual
Flags(6) Asymmetrical semiannual
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Field Description
Flags(7) Diurnal
Flags(8) Semidiurnal
Flags(9) Daily AP. If you set this field to -1, the block uses the entire matrix of

magnetic index information (APH) instead of APH(:,1).
Flags(10) All UT, longitudinal effects
Flags(11) Longitudinal
Flags(12) UT and mixed UT, longitudinal
Flags(13) Mixed AP, UT, longitudinal
Flags(14) Terdiurnal
Flags(15) Departures from diffusive equilibrium
Flags(16) All exospheric temperature variations
Flags(17) All variations from 120,000 meter temperature (TLB)
Flags(18) All lower thermosphere (TN1) temperature variations
Flags(19) All 120,000 meter gradient (S) variations
Flags(20) All upper stratosphere (TN2) temperature variations
Flags(21) All variations from 120,000 meter values (ZLB)
Flags(22) All lower mesosphere temperature (TN3) variations
Flags(23) Turbopause scale height variations

Dependencies

To enable this parameter:

• Set the Propagation method parameter to Numerical (high precision).
• Set the Central Body parameter to Earth.
• Select the Include atmospheric drag check box.
• Set the Flags source to Dialog.

Programmatic Use
Block Parameter: fluxFlags
Type: character vector
Values: 'ones(1,23)'
Default: 'ones(1,23)'

Include anomalous oxygen in density calculation — Option to include anomalous
oxygen in density calculation

off (default) | on

To include anomalous oxygen in density calculations, select this check box.

Dependencies

To enable this parameter:
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• Set the Propagation method parameter to Numerical (high precision).
• Set the Central Body parameter to Earth.
• Select the Include atmospheric drag check box.

Programmatic Use
Block Parameter: useOxygen
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Drag coefficient source — Source of drag coefficient

Dialog (default) | Port

Source of drag coefficient, specified as Dialog or Port.
Dependencies

To enable this parameter:

• Set the Propagation method parameter to Numerical (high precision).
• Set the Central Body parameter to Earth.
• Select the Include atmospheric drag check box.

Programmatic Use
Block Parameter: dragCoeffSrc
Type: character vector
Values: 'Dialog' | 'Source'
Default: 'Dialog'

Drag coefficient — Spacecraft coefficient of drag

2.179 (default) | scalar | vector of size numSat

Spacecraft coefficient of drag used by atmospheric drag calculation, specified as a scalar or as a
vector of size numSat.
Dependencies

To enable this parameter:

• Set the Propagation method parameter to Numerical (high precision).
• Set the Central Body parameter to Earth.
• Select the Include atmospheric drag check box.
• Set the Drag coefficient source parameter to Dialog.

Programmatic Use
Block Parameter: dragCoeff
Type: character vector
Values: scalar | vector of size numSat
Default: '2.179'

Drag area source — Source of drag area
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Dialog (default) | Port

Source of drag area, specified as Dialog or Port.

Dependencies

To enable this parameter:

• Set the Propagation method parameter to Numerical (high precision).
• Set the Central Body parameter to Earth.
• Select the Include atmospheric drag check box.
• Set the Drag coefficient source parameter to Dialog.

Programmatic Use
Block Parameter: dragAreaSrc
Type: character vector
Values: 'Dialog' | 'Source'
Default: 'Dialog'

Drag area — Area to compute acceleration due to atmospheric drag

1.0 (default) | scalar | vector of size numSat

Area to compute acceleration due to atmospheric drag, specified as a scalar or as a vector of size
numSat. This area of the spacecraft is perpendicular to the spacecraft relative velocity.

Dependencies

To enable this parameter:

• Set the Propagation method parameter to Numerical (high precision).
• Set the Central Body parameter to Earth.
• Select the Include atmospheric drag check box.
• Set the Drag coefficient source parameter to Dialog.

Programmatic Use
Block Parameter: dragArea
Type: character vector
Values: scalar | vector of size numSat
Default: '1.0'

Units

Units — Parameter and port units

Metric (m/s) (default) | Metric (km/s) | Metric (km/h) | English (ft/s) | English
(kts)

Parameter and port units, specified as shown here.
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Units Forces Moment Mass Inertia Distance Velocity Accelera
tion

Area Density

Metric
(m/s)

Newton Newton-
meter

Kilograms Kilogram
m2

meters meters/se
c

meters/se
c2

m2 kg/m3,
some
density
outputs
1/m3

Metric
(km/s)

Newton Newton-
meter

Kilograms Kilogram
m2

kilometer
s

kilometer
s/sec

kilometer
s/sec2

m2 kg/m3,
some
density
outputs
1/m3

Metric
(km/h)

Newton Newton-
meter

Kilograms Kilogram
m2

kilometer
s

kilometer
s/hour

kilometer
s/hour2

m2 kg/m3,
some
density
outputs
1/m3

English
(ft/s)

Pound-
force

Foot-
pound

Slugs Slug ft2 feet feet/sec feet/sec2 feet2 lbm/ft3,
some
density
outputs
1/ft3

English
(kts)

Pound-
force

Foot-
pound

Slugs Slug ft2 nautical
mile

knots knots/sec feet2 lbm/ft3,
some
density
outputs
1/ft3

Programmatic Use
Block Parameter: units
Type: character vector
Values: 'Metric (m/s)' | 'Metric (km/s)' | 'Metric (km/h)' | 'English (ft/s)' |
'English (kts)'
Default: 'Metric (m/s)'

Angle units — Angle units

Degrees (default) | Radians

Parameter and port units for angles, specified as Degrees or Radians.

Programmatic Use
Block Parameter: angleUnits
Type: character vector
Values: 'Degrees' | 'Radians'
Default: 'Degrees'

Time format — Time format for start date and time output

Julian date (default) | Gregorian
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Time format for Start date/time (UTC Julian date) and output port tutc, specified as Julian date
or Gregorian.

Programmatic Use
Block Parameter: timeFormat
Type: character vector
Values: 'Julian date' | 'Gregorian'
Default: 'Julian date'

Algorithms
Coordinate Systems

The Spacecraft Dynamics block works in the ICRF and fixed-frame coordinate systems.

• ICRF — International Celestial Reference Frame. This frame can be treated as equal to the ECI
coordinate system realized at J2000 (Jan 1 2000 12:00:00 TT). For more information, see “ECI
Coordinates” on page 2-11.

• Fixed-frame — Fixed-frame is a generic term for the coordinate system that is fixed to the central
body. The axes of the system rotate with the central body and are not fixed in inertial space. If the
Use Earth orientation parameters (EOPs) check box is not selected, the block still uses the
IAU2000/2005 reduction, but with Earth orientation parameters set to 0.

• When Central Body is Earth and the Use Earth orientation parameters (EOPs) check box
is selected, the fixed-frame coordinate system for the Moon is the Mean Earth/pole axis frame
(ME). This frame is realized by two transformations. First, the values in the ICRF frame are
transformed into the Principal Axis system (PA), which is the axis defined by the libration
angles provided as inputs to the block (for more information, see Moon Libration). The states
are then transformed into the ME system using a fixed rotation from the "Report of the
IAU/IAG Working Group on cartographic coordinates and rotational elements: 2006" [7].

• When Central Body is Moon and the Input Moon libration angles check box is selected, the
fixed-frame coordinate system for the Moon is the coordinate system defined by the libration
angles provided as inputs to the block (for more information, see Moon Libration).

• When Central Body is Custom, the fixed-frame coordinate system is defined by the poles of
rotation and prime meridian defined by the block input α, δ, W, or the spin axis properties. In
all other cases, the fixed frame for each central body is defined by the directions of the poles of
rotation and prime meridians defined in the "Report of the IAU/IAG Working Group on
cartographic coordinates and rotational elements: 2006" [7].

Translational Dynamics

The Spacecraft Dynamics block uses the Simulink solver to solve translational and rotational
equations of motion of one or more spacecraft. The block translational dynamics are governed by
these equations:

aicrf = a centralbodygravity + body2inertial
F b
m aapplied

aicrf integrate ricrf , vicrf

where:
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• a applied are the custom acceleration components from the A (applied acceleration) port.
• F b are the input body force components.
• m is the spacecraft mass.

The method for computing central body acceleration depends on the current setting for the
Gravitational potential model parameter. For gravity models that include nonspherical
acceleration terms, the block computes nonspherical gravity in a fixed-frame coordinated system (for
example, ITRF, in the case of Earth). However, the block always performs numerical integration in the
inertial ICRF coordinate system. Therefore, at each timestep, the block:

1 Transforms position and velocity states into the fixed-frame.
2 Calculates nonspherical gravity in the fixed-frame.
3 Transforms the resulting acceleration into the inertial frame.
4 Sums the resulting acceleration with the other acceleration terms.
5 Integrates the summed acceleration terms.

Point-Mass

This option treats the central body as a point-mass, including only the effects of spherical gravity
using Newton's law of universal gravitation.

a centralBodyGravity = − μ
r2

ricrf
r

where μ is the standard gravitation parameter of the central body.
Oblate Ellipsoid

In addition to spherical gravity, this option includes the perturbing effects of the second-degree, zonal
harmonic gravity coefficient J2, accounting for the oblateness of the central body. J2 accounts for the
vast majority of the central bodies gravitational departure from a perfect sphere.

a centralBodyGravity = − μ
r2

ricrf
r + f ixed2inertial a nonspherical ,

where:

a nonspherical = 1
r
∂
∂r U −

rf fk
r2 rf f i2 + rf f j2

∂
∂ϕ U rf f i i

                    + 1
r
∂
∂r U +

rf fk
r2 rf f i2 + rf f j2

∂
∂ϕ U rf f j j

                    + 1
r
∂
∂r U rk +

rf f i2 + rf f j2

r2
∂
∂ϕ U k

given the partial derivatives in spherical coordinates:

∂
∂r U = 3μ

r2
Rcb
r

2
P2, 0 sin ϕ J2
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∂
∂ϕ U = − u

r
Rcb
r

2
P2, 1 sin ϕ J2

where:

• ϕ and λ are the satellite geocentric latitude and longitude.
• P2,0 and P2,1 associated Legendre functions.
• μ is the standard gravitation parameter of the central body.
• Rcb is the central body equatorial radius.

The transformation fixed2inertial converts fixed-frame position, velocity, and acceleration into
the ICRF coordinate system with origin at the center of the central body, accounting for centrifugal
and coriolis acceleration. For more information about the fixed and intertial coordinate systems used
for each central body, see “Coordinate Systems” on page 5-868.

Spherical Harmonics

This option adds increased fidelity by including higher-order perturbation effects accounting for
zonal, sectoral, and tesseral harmonics. For reference, the second-degree, zeroth order zonal
harmonic J2 is -C2,0. The Spherical Harmonics model accounts for harmonics up to max degree l=lmax,
which varies by central body and geopotential model.

a centralBodyGravity = − μ
r2

ricrf
r + f ixed2inertial a nonspherical ,

where

a nonspherical = 1
r
∂
∂r U −

rf fk
r2 rf f i2 + rf f j2

∂
∂ϕ U rf f i i

                    + 1
r
∂
∂r U +

rf fk
r2 rf f i2 + rf f j2

∂
∂ϕ U rf f j j

                    + 1
r
∂
∂r U rk +

rf f i2 + rf f j2

r2
∂
∂ϕ U k

given the partial derivatives

∂
∂r U = − u

r2 ∑l = 2

lmax
∑

m = 0

l Rcb
r

l

l + 1 Pl, m sin ϕ Cl, mcos(mλ) + Sl, msin mλ

∂
∂ϕ U = u

r ∑l = 2

lmax
∑

m = 0

l Rcb
r

l

Pl, m + 1 sin ϕ − m tan ϕ Pl, m sin ϕ Cl, mcos(mλ) + Sl, msin mλ

∂
∂λ U = u

r ∑l = 2

lmax
∑

m = 0

l Rcb
r

l

m Pl, m sin ϕ Sl, mcos(mλ)− Cl, msin(mλ) ,

where:
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• ϕ and λ are the satellite geocentric latitude and longitude.
• Pl,m are associated Legendre functions.
• μ is the standard gravitation parameter of the central body.
• Rcb is the central body equatorial radius.
• Cl,m and Sl,m are the unnormalized harmonic coefficients.

The transformation fixed2inertial converts fixed-frame position, velocity, and acceleration into
the ICRF coordinate system with origin at the center of the central body, accounting for centrifugal
and coriolis acceleration. For more information about the fixed and intertial coordinate systems used
for each central body, see “Coordinate Systems” on page 5-868.

Rotational Dynamics

Rotational dynamics are governed by:

ω̇bicrf = Mb− ωbicrf × Imomωbicrf − İ momωbicrf inv Imom

ω̇bicrf integrate q bicrf , ωbicrf ,

where:

• Mb are the body moment components.

• Imom is the spacecraft inertia tensor matrix.

When Mass type is Fixed, İ mom equals 0.

When Mass type is Simple Variable, this equation estimates the rate of change of the inertia
tensor:

İ mom =
Ifull− Iempty

mfull−mempty
ṁ

This equation gives the rate of change of the quaternion vector:

q̇0

q̇1

q̇2

q̇3

=

0 ωb 1 ωb 2 ωb 3
−ωb 1 0 −ωb 3 ωb 2
−ωb 2 ωb 3 0 −ωb 1
−ωb 3 −ωb 2 ωb 1 0

q0
q1
q2
q3

Atmospheric Drag

The Orbit Propagator block uses this atmospheric drag equation:

adrag = − 1
2ρ

CDA
m vrel

2

where:
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• m — Spacecraft mass used by atmospheric drag calculation.
• CD — Coefficient of drag assuming that it is dimensionless at approximately 2.179.
• ρ — Atmospheric density.
• A — Area normal to vrel, where

v rel = v sat + v atmos

• vrel — Velocity relative to atmosphere.

Version History
Introduced in R2021b
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Orbit Propagator | CubeSat Vehicle | Moon Libration | Attitude Profile | NRLMSISE-00 Atmosphere
Model
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Spherical Harmonic Gravity Model
Implement spherical harmonic representation of planetary gravity
Library: Aerospace Blockset / Environment / Gravity

Description
The Spherical Harmonic Gravity Model block implements the mathematical representation of
spherical harmonic planetary gravity based on planetary gravitational potential. It provides a
convenient way to describe a planet gravitational field outside of its surface in spherical harmonic
expansion.

You can use spherical harmonics to modify the magnitude and direction of spherical gravity (-GM/r2).
The most significant or largest spherical harmonic term is the second degree zonal harmonic, J2,
which accounts for oblateness of a planet.

Use this block if you want more accurate gravity values than spherical gravity models. For example,
nonatmospheric flight applications might require higher accuracy.

Limitations
• The block excludes the centrifugal effects of planetary rotation, and the effects of a precessing

reference frame.
• Spherical harmonic gravity model is valid for radial positions greater than the planet equatorial

radius. Minor errors might occur for radial positions near or at the planetary surface. The
spherical harmonic gravity model is not valid for radial positions less than the planetary surface.

Ports
Input

Xff — Fixed-frame coordinates
N-by-3 matrix

Fixed-frame coordinates from center of planet, specified as an N-by-3 matrix, in selected units. Each
row of the matrix is a separate position to calculate. The z-axis is positive toward the North Pole. If
Central body model has a value of EGM2008 or EGM96, this matrix contains Earth-centered Earth-
fixed (ECEF) coordinates.

When inputting a large fixed-frame matrix and a high degree value, you might receive an out-of-
memory error. For more information about avoiding out-of-memory errors in the MATLAB
environment, see “Resolve “Out of Memory” Errors”.

When inputting a large fixed-frame matrix, you might receive a maximum matrix size limitation. To
determine the largest matrix or array that you can create in the MATLAB environment for your
platform, see “Performance and Memory”.
Data Types: double
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Output

gff — Gravity values
N-by-3 matrix

Array of gravity values in the x-axis, y-axis, and z-axis of the fixed-frame coordinates, in selected
length units per second squared. Each row of the matrix returns the calculated gravity vector for the
corresponding row in the input matrix.
Data Types: double

Parameters
Units — Input and output units

Metric (MKS) (default) | English

Input and output units, specified as:

Units Input Output
Metric (MKS) Meters (m) Meters/sec2 (m/s2)
English Feet (ft) Feet/sec2 (ft/s2)

Programmatic Use
Block Parameter: units
Type: character vector
Values: 'Metric (MKS)' | 'English'
Default: 'Metric (MKS)'

Action for out-of-range input — Out-of-range input behavior

Warning (default) | Error | None

Out-of-range input behavior, specified as:

Value Description
None No action.
Warning Warning in the Diagnostic Viewer, model simulation continues.
Error MATLAB returns an exception, model simulation stops.

The spherical harmonic gravity model is invalid for radial positions less than the planetary surface.
The Spherical Harmonic Gravity Model block accepts out of range radial position inputs (less than
planetary equatorial radius) when Action for out-of-range input is set to None or Warning.
However, the block output might not be accurate or reliable.
Programmatic Use
Block Parameter: action
Type: character vector
Values: 'None' | 'Warning' | 'Error'
Default: 'Warning'

Central body model — Planetary model
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EGM2008 (default) | EGM96 | LP100K | LP165P | GMM2B | Custom | EIGENGL04C

Planetary model, specified as:

Central body model Notes
EGM2008 Earth — Is the latest Earth spherical harmonic gravitational model

from National Geospatial-Intelligence Agency (NGA). This block
provides the WGS-84 version of this gravitational model. You can use
the EGM96 planetary model if you need to use the older standard for
Earth.

EGM96 Earth
LP100K Moon — Is best for lunar orbit determination based upon

computational time required to compute orbits. This planet model
was created in approximately the same year as LP165P with similar
data.

LP165P Moon — Is best for extended lunar mission orbit accuracy. This
planet model was created in approximately the same year as LP100K
with similar data.

GMM2B Mars
Custom Enables you to specify your own planetary model. This option

enables the Central body MAT-file parameter.
EIGENGL04C Earth — Supports the gravity field model, EIGEN-GL04C (http://

icgem.gfz-potsdam.de/tom_longtime). This model is an
upgrade to EIGEN-CG03C.

For more information on the fixed-frame coordinate system for the central bodies, see “Algorithms”
on page 5-877.

When defining your own planetary model, the Degree parameter is limited to the maximum value for
int16. When inputting a large degree, you might receive an out-of-memory error. For more
information about avoiding out-of-memory errors in the MATLAB environment, see “Resolve “Out of
Memory” Errors”.

Dependencies

Setting this parameter to Custom enables Central body MAT-file.

Programmatic Use
Block Parameter: ptype
Type: character vector
Values: 'EGM2008' | 'EGM96' | 'LP100K' | 'LP165P' | 'GMM2B' | 'Custom' | 'EIGENGL04C'
Default: 'EGM2008'

Degree — Degree of harmonic model

120 (default) | scalar

Degree of harmonic model, specified as a scalar:
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Central body
model

Recommended Degree Maximum Degree

EGM2008 120 2159
EGM96 70 360
LP100K 60 100
LP165P 60 165
GMM2B 60 80
EIGENGL04C 70 360

Programmatic Use
Block Parameter: degree
Type: character vector
Values: scalar
Default: '120'

Central body MAT-file — Central body MAT-file

'aerogmm2b.mat' (default)

Central body MAT-file that contains definitions for a custom planetary model. The aerogmm2b.mat
file in Aerospace Blockset is the default MAT-file for a custom planetary model.

This file must contain:

Variable Description
Re Scalar of planet equatorial radius in meters (m).
GM Scalar of planetary gravitational parameter in meters cubed per second squared

(m3/s2)
degree Scalar of maximum degree.
C (degree+1)-by-(degree+1) matrix containing normalized spherical harmonic

coefficients matrix, C.
S (degree+1)-by-(degree+1) matrix containing normalized spherical harmonic

coefficients matrix, S.

When using a large value for Degree, you might receive an out-of-memory error. For more
information about avoiding out-of-memory errors in the MATLAB environment, see “Resolve “Out of
Memory” Errors”.

Dependencies

To enable this parameter, set Central body model to Custom.

Programmatic Use
Block Parameter: datafile
Type: character vector
Values: 'aerogmm2b.mat' | MAT-file
Default: 'aerogmm2b.mat'
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Algorithms
The Spherical Harmonic Gravity block works in the fixed-frame coordinate system for the central
bodies:

• Earth — The fixed-frame coordinate system is the Earth-centered Earth-fixed (ECEF) coordinate
system.

• Moon — The fixed-frame coordinate system is the Principal Axis system (PA), the orientation
specified by JPL planetary ephemeris DE403.

• Mars — The fixed-frame coordinate system is defined by the directions of the poles of rotation and
prime meridians defined in [14].

Version History
Introduced in R2010a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Centrifugal Effect Model | Zonal Harmonic Gravity Model

Topics
“Resolve “Out of Memory” Errors”
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Symmetric Inertia Tensor
Create inertia tensor from moments and products of inertia
Library: Aerospace Blockset / Mass Properties

Description
The Symmetric Inertia Tensor block creates an inertia tensor from moments and products of inertia.
Each input corresponds to an element of the tensor.

The inertia tensor has the form of:

Inertia =
Ixx −Ixy −Ixz
−Ixy Iyy −Iyz
−Ixz −Iyz Izz

Ports
Input

Ixx — Moment of inertia
scalar

Moment of inertia about the x-axis, specified as a scalar.
Data Types: double

Ixy — Product of inertia in xy plane
scalar

Product of inertia in the xy plane, specified as a scalar.
Data Types: double

Ixz — Product of inertia in xz plane
scalar

Product of inertia in the xz plane, specified as a scalar.
Data Types: double

Iyy — Moment of inertia about y-axis
scalar

Moment of inertia about the y-axis, specified as a scalar.
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Data Types: double

Iyz — Product of inertia in yz plane
scalar

Product of inertia in the yz plane, specified as a scalar.
Data Types: double

Izz — Moment of inertia about z-axis
scalar

Moment of inertia about the z-axis, specified as a scalar.
Data Types: double

Output

I — Inertia tensor
3-by-3 matrix

Symmetric inertia tensor, returned as a 3-by-3 matrix.
Data Types: double

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Create 3x3 Matrix
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Temperature Conversion
Convert from temperature units to desired temperature units
Library: Aerospace Blockset / Utilities / Unit Conversions

Description
The Temperature Conversion block computes the conversion factor from specified input temperature
units to specified output temperature units and applies the conversion factor to the input signal.

The Temperature Conversion block port labels change based on the input and output units selected
from the Initial unit and the Final unit lists.

Ports
Input

Port_1 — Temperature
scalar | array

Temperature, specified as a scalar or array, in initial temperature units.

Dependencies

The input port label depends on the Initial unit setting.
Data Types: double

Output

Port_1 — Temperature
scalar | array

Temperature, returned as a scalar or array, in final temperature units.

Dependencies

The output port label depends on the Final unit setting.
Data Types: double

Parameters
Initial unit — Input units

R (default) | F | C | K

Input units, specified as:
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K Kelvin
F Degrees Fahrenheit
C Degrees Celsius
R Degrees Rankine

Dependencies

The input port label depends on the Initial unit setting.

Programmatic Use
Block Parameter: IU
Type: character vector
Values: 'K' | 'F' | 'C' | 'R'
Default: 'R'

Final unit — Output units

K (default) | F | C | R

Output units, specified as:

K Kelvin
F Degrees Fahrenheit
C Degrees Celsius
R Degrees Rankine

Dependencies

The output port label depends on the Final unit setting.

Programmatic Use
Block Parameter: OU
Type: character vector
Values: 'K' | 'F' | 'C' | 'R'
Default: 'K'

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Acceleration Conversion | Angle Conversion | Angular Acceleration Conversion | Angular Velocity
Conversion | Density Conversion | Force Conversion | Length Conversion | Mass Conversion |
Pressure Conversion | Velocity Conversion
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Three-axis Accelerometer
Implement three-axis accelerometer
Library: Aerospace Blockset / GNC / Navigation

Description
The Three-Axis Accelerometer block implements an accelerometer on each of the three axes. For
more information on the ideal measured accelerations, see “Algorithms” on page 5-888.

Optionally, to apply discretizations to the Three-Axis Accelerometer block inputs and dynamics along
with nonlinearizations of the measured accelerations, use the Saturation block.

The Three-axis Accelerometer block icon displays the input and output units selected from the Units
parameter.

Limitations
• Vibropendulous error and hysteresis effects are not accounted for in this block.
• This block is not intended to model the internal dynamics of different forms of the instrument.

Ports
Input

Ab — Actual accelerations
three-element vector

Actual accelerations in body-fixed axes, specified as a three-element vector, in the units specified in
the Units parameter.
Data Types: double

ω — Angular rates
three-element vector

Angular rates in body-fixed axes, specified as a three-element vector, in radians per second.
Data Types: double

dω/dt — Angular accelerations
three-element vector

Angular accelerations in body-fixed axes, specified as a three-element vector, in radians per second
squared.
Data Types: double
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CG — Location of center of gravity
three-element vector

Location of the center of gravity, specified as a three-element vector, in the units specified in the
Units parameter.
Data Types: double

g — Gravity
three-element vector

Gravity in body axis, specified as a three-element vector, in the units specified in the Units
parameter.
Data Types: double

Output

Ameas — Measured accelerations
three-element vector

Measured accelerations from the accelerometer, returned as a three-element vector, in the units
specified in the Units parameter.
Data Types: double

Parameters
Units — Units

Metric (MKS) (default) | English

Input and output units, specified as:

Units Acceleration Length
Metric (MKS) Meters per second squared Meters
English (British
Imperial)

Feet per second squared Feet

Programmatic Use
Block Parameter: units
Type: character vector
Values: 'Metric (MKS)' | 'English'
Default: 'Metric (MKS)'

Accelerometer location — Accelerometer location

[0 0 0] (default) | three-element vector

Location of the accelerometer group, specified as a three-element vector, measured from the zero
datum (typically the nose) to aft, to the right of the vertical centerline, and above the horizontal
centerline. This measurement reference is the same for the center of gravity input. The units are the
units specified in the Units parameter.
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Programmatic Use
Block Parameter: acc
Type: character vector
Values: three-element vector
Default: '[0 0 0]'

Subtract gravity — Subtract gravity

on (default) | off

To subtract gravity from acceleration readings, select this check box.
Programmatic Use
Block Parameter: gtype
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Second order dynamics — Second-order dynamics

on (default) | off

To apply second-order dynamics to acceleration readings, select this check box.
Programmatic Use
Block Parameter: dtype_a
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Natural frequency (rad/sec) — Natural frequency

190 (default) | scalar

Natural frequency of the accelerometer, specified as a double scalar, in radians per second.
Programmatic Use
Block Parameter: w_a
Type: character vector
Values: double scalar
Default: '190'

Damping ratio — Damping ratio

0.707 (default) | scalar

Damping ratio of the accelerometer, specified as a double scalar, with no dimensions.
Programmatic Use
Block Parameter: z_a
Type: character vector
Values: double scalar
Default: '0.707'

Scale factors and cross-coupling — Scale factors and cross coupling
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[1 0 0; 0 1 0; 0 0 1] (default) | 3-by-3 matrix

Scale factors and cross-coupling, specified as a 3-by-3 matrix, to skew the accelerometer from body
axes and to scale accelerations along body axes.

Programmatic Use
Block Parameter: a_sf_cc
Type: character vector
Values: 3-by-3 matrix
Default: '[1 0 0; 0 1 0; 0 0 1]'

Measurement bias — Measurement bias

[0 0 0] (default) | three-element vector

Long-term biases along the accelerometer axes, specified as a three-element vector, in the units
specified in the Units parameter.

Programmatic Use
Block Parameter: a_bias
Type: character vector
Values: 3-by-3 matrix
Default: '[0 0 0]'

Update rate (sec) — Update rate

0 (default) | scalar

Update rate of the accelerometer, specified as a double scalar, in seconds. An update rate of 0 creates
a continuous accelerometer. If the Noise on check box is selected and the update rate is 0, the block
updates the noise at a rate of 0.1.

Tip If you:

• Update this parameter value to 0 (continuous)
• Configure a fixed-step solver for the model

you must also select the Automatically handle rate transition for data transfer check box in the
Solver pane. This check box enables the software to handle rate transitions correctly.

Programmatic Use
Block Parameter: a_Ts
Type: character vector
Values: double scalar
Default: '0'

Noise on — White noise

on (default) | off

To apply white noise to acceleration readings, select this check box.
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Programmatic Use
Block Parameter: a_rand
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Noise seeds — Noise seeds

[23093 23094 23095] (default) | three-element vector

Scalar seeds for the Gaussian noise generator for each axis of the accelerometer, specified as a three-
element vector.

Dependencies

To enable this parameter, select Noise on.

Programmatic Use
Block Parameter: a_seeds
Type: character vector
Values: three-element vector
Default: '[23093 23094 23095]'

Noise power — Noise power

[0.001 0.001 0.001] (default) | three-element vector

Height of the power spectral density (PSD) of the white noise for each axis of the accelerometer,
specified as a three-element vector, in:

• (m/s2)/Hz when Units is set to Metric (MKS)
• (ft/s2)/Hz when Units is set to English

Dependencies

To enable this parameter, select Noise on.

Programmatic Use
Block Parameter: a_pow
Type: character vector
Values: three-element vector
Default: '[0.001 0.001 0.001]'

Lower and upper output limits — Minimum and maximum values of acceleration

[-inf -inf -inf inf inf inf] (default) | six-element vector

Three minimum values and three maximum values of acceleration in each of the accelerometer axes,
specified as a six-element vector, in the units specified in the Units parameter.

Programmatic Use
Block Parameter: a_sat
Type: character vector
Values: six-element vector
Default: '[-inf -inf -inf inf inf inf]'
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Algorithms

The ideal measured accelerations (Aimeas) include the acceleration in body axes at the center of
gravity (Ab) and lever arm effects due to the accelerometer not being at the center of gravity.
Optionally, gravity in body axes can be removed. This is represented by the equation:

Aimeas = Ab + ωb × (ωb × d) + ω̇b × d − g

where ωb are body-fixed angular rates, ω̇b are body-fixed angular accelerations, and d is the lever
arm. The lever arm (d) is defined as the distances that the accelerometer group is forward, right, and
below the center of gravity:

d =
dx
dy
dz

=
−(xacc− xCG)

yacc− yCG
−(zacc− zCG)

The orientation of the axes used to determine the location of the accelerometer group (xacc, yacc, zacc)
and center of gravity (xCG, yCG, zCG) is from the zero datum (typically the nose) to aft, to the right of
the vertical centerline and above the horizontal centerline. The x-axis and z-axis of these
measurement axes are opposite the body-fixed axes that produce the negative signs in the lever arms
for the x-axis and z-axis.

Measured accelerations (Ameas) output by this block contain error sources and are defined as

Ameas = Aimeas × ASFCC + Abias + noise,

where ASFCC is a 3-by-3 matrix of scaling factors on the diagonal and misalignment terms in the
nondiagonal, and Abias are the biases.

Version History
Introduced before R2006a

References
[1] Rogers, R. M., Applied Mathematics in Integrated Navigation Systems, AIAA Education Series,

2000.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Three-axis Gyroscope | Three-axis Inertial Measurement Unit | Saturation
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Three-axis Gyroscope
Implement three-axis gyroscope
Library: Aerospace Blockset / GNC / Navigation

Description
The Three-Axis Gyroscope block implements a gyroscope on each of the three axes. For more
information on the measured body angular rates, see “Algorithms” on page 5-892.

Optionally, to apply discretizations to the block inputs and dynamics along with nonlinearizations of
the measured body angular rates, use the Saturation block.

Limitations
• Anisoelastic bias and anisoinertial bias effects are not accounted for in this block.
• This block is not intended to model the internal dynamics of different forms of the instrument.

Ports
Input

ω — Angular rates
three-element vector

Angular rates in the body-fixed axes, specified as a three-element vector, in radians per second.
Data Types: double

G's — Accelerations
three-element vector

Accelerations in the body-fixed axes, specified as a three-element vector, in Gs.
Data Types: double

Output

ωmeas — Measured angular rates
three-element vector

Measured angular rates from the gyroscope, returned as a three-element vector, in radians per
second.
Data Types: double
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Parameters
Second order dynamics — Second-order dynamics

on (default) | off

To apply second-order dynamics to gyroscope readings, select this check box.

Programmatic Use
Block Parameter: dtype_g
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Natural frequency (rad/sec) — Natural frequency

190 (default) | scalar

Natural frequency of the gyroscope, specified as a double scalar, in radians per second.

Programmatic Use
Block Parameter: w_g
Type: character vector
Values: double scalar
Default: '190'

Damping ratio — Damping ratio

0.707 (default) | scalar

Damping ratio of the gyroscope, specified as a double scalar.

Programmatic Use
Block Parameter: z_g
Type: character vector
Values: double scalar
Default: '0.707'

Scale factors and cross-coupling — Scale factors and cross coupling

[1 0 0; 0 1 0; 0 0 1] (default) | 3-by-3 matrix

Scale factors and cross-coupling, specified as a 3-by-3 matrix, to skew the gyroscope from body axes
and to scale accelerations along body axes.

Programmatic Use
Block Parameter: g_sf_cc
Type: character vector
Values: 3-by-3 matrix
Default: '[1 0 0; 0 1 0; 0 0 1]'

Measurement bias — Measurement bias

[0 0 0] (default) | three-element vector
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Long-term biases along the gyroscope axes, specified as a three-element vector, in radians per
second.

Programmatic Use
Block Parameter: g_bias
Type: character vector
Values: 3-by-3 matrix
Default: '[0 0 0]'

G-sensitive bias — Maximum change in rates

[0 0 0] (default) | three-element vector

Maximum change in rates due to linear acceleration, specified as a three-element vector, in radians
per second per g-unit.

Programmatic Use
Block Parameter: g_sen
Type: character vector
Values: three-element vector
Default: '[0 0 0]'

Update rate (sec) — Update rate

0 (default) | scalar

Update rate of the gyroscope, specified as a double scalar, in seconds. An update rate of 0 creates a
continuous gyroscope. If the Noise on check box is selected and the update rate is 0, the block
updates the noise at a rate of 0.1.

Tip If you:

• Update this parameter value to 0 (continuous)
• Configure a fixed-step solver for the model

you must also select the Automatically handle rate transition for data transfer check box in the
Solver pane. This check box enables the software to handle rate transitions correctly.

Programmatic Use
Block Parameter: g_Ts
Type: character vector
Values: double scalar
Default: '0'

Noise on — White noise

on (default) | off

To apply white noise to the gyroscope readings, select this check box.

Programmatic Use
Block Parameter: g_rand
Type: character vector
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Values: 'on' | 'off'
Default: 'on'

Noise seeds — Noise seeds

[23093 23094 23095] (default) | three-element vector

Scalar seeds for the Gaussian noise generator for each axis of the gyroscope, specified as a three-
element vector.
Dependencies

To enable this parameter, select Noise on.
Programmatic Use
Block Parameter: g_seeds
Type: character vector
Values: three-element vector
Default: '[23093 23094 23095]'

Noise power — Noise power

[0.0001 0.0001 0.0001] (default) | three-element vector

Height of the power spectral density (PSD) of the white noise for each axis of the gyroscope, specified
as a three-element vector, in (rad/s)2/Hz.
Dependencies

To enable this parameter, select Noise on.
Programmatic Use
Block Parameter: g_pow
Type: character vector
Values: three-element vector
Default: '[0.0001 0.0001 0.0001]'

Lower and upper output limits — Minimum and maximum values of angular rates

[-inf -inf -inf inf inf inf] (default) | six-element vector

Three minimum values and three maximum values of angular rates in each of gyroscope axes,
specified as a six-element vector, in radians per second.
Programmatic Use
Block Parameter: g_sat
Type: character vector
Values: six-element vector
Default: '[-inf -inf -inf inf inf inf]'

Algorithms
The measured body angular rates (ωmeas) include the body angular rates (ωb), errors, and, optionally,
the discretizations and nonlinearizations of the signals:

ωmeas = ωb × ωSFCC + ωbias + Gs × ωgsens + noise
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where ωSFCC is a 3-by-3 matrix of scaling factors on the diagonal and misalignment terms in the
nondiagonal, ωbias are the biases, (Gs) are the Gs on the gyroscope, and ωgsens are the G-sensitive
biases.

Version History
Introduced before R2006a

References
[1] Rogers, R. M., Applied Mathematics in Integrated Navigation Systems, AIAA Education Series,

2000.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Three-axis Accelerometer | Three-axis Inertial Measurement Unit | Saturation
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Three-axis Inertial Measurement Unit
Implement three-axis inertial measurement unit (IMU)
Library: Aerospace Blockset / GNC / Navigation

Description
The Three-Axis Inertial Measurement Unit block implements an inertial measurement unit (IMU)
containing a three-axis accelerometer and a three-axis gyroscope.

For a description of the equations and application of errors, see Three-axis Accelerometer and Three-
axis Gyroscope.

The Three-axis Inertial Measurement Unit block icon displays the input and output units selected
from the Units parameter.

Limitations
• Vibropendulous error, hysteresis affects, anisoelastic bias, and anisoinertial bias are not accounted

for in this block.
• This block is not intended to model the internal dynamics of different forms of the instrument.

Ports
Input

Ab — Actual accelerations
three-element vector

Actual accelerations in body-fixed axes, specified as a three-element vector, in the units specified in
the Units parameter.
Data Types: double

ω — Angular rates
three-element vector

Angular rates in body-fixed axes, specified as a three-element vector, in radians per second.
Data Types: double

dω/dt — Angular accelerations
three-element vector

Angular accelerations in body-fixed axes, specified as a three-element vector, in radians per second
squared.
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Data Types: double

CG — Location of center of gravity
three-element vector

Location of the center of gravity, specified as a three-element vector, in the units specified in the
Units parameter.
Data Types: double

g — Gravity
three-element vector

Gravity in body axis, specified as a three-element vector, in the units specified in the Units
parameter.
Data Types: double

Output

Ameas — Measured accelerations
three-element vector

Measured accelerations from the accelerometer, returned as a three-element vector, in the units
specified in the Units parameter.
Data Types: double

ωmeas — Measured angular rates
three-element vector

Measured angular rates from the gyroscope, returned as a three-element vector, in radians per
second.
Data Types: double

Parameters
Units — Units

Metric (MKS) (default) | English

Input and output units, specified as:

Units Acceleration Length
Metric (MKS) Meters per second squared Meters
English (British Imperial) Feet per second squared Feet

Programmatic Use
Block Parameter: units
Type: character vector
Values: 'Metric (MKS)' | 'English'
Default: 'Metric (MKS)'

IMU location — IMU location
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[0 0 0] (default) | three-element vector

The location of the IMU, which is also the accelerometer group location, is measured from the zero
datum (typically the nose) to aft, to the right of the vertical centerline, and above the horizontal
centerline. This measurement reference is the same for the center of gravity input. The units are in
the units specified in the Units parameter.

Programmatic Use
Block Parameter: imu
Type: character vector
Values: three-element vector
Default: '[0 0 0]'

Update rate (sec) — Update rate

0 (default) | scalar

Update rate of the accelerometer and gyroscope, specified as a double scalar, in seconds. An update
rate of 0 creates a continuous accelerometer and continuous gyroscope. If the Noise on check box is
selected and the update rate is 0, the block updates the noise at a rate of 0.1.

Tip If you:

• Update this parameter value to 0 (continuous)
• Configure a fixed-step solver for the model

you must also select the Automatically handle rate transition for data transfer check box in the
Solver pane. This check box enables the software to handle rate transitions correctly.

Programmatic Use
Block Parameter: i_Ts
Type: character vector
Values: double scalar
Default: '0'

Second order dynamics for accelerometer — Second-order dynamics

on (default) | off

To apply second-order dynamics to acceleration readings, select this check box.

Programmatic Use
Block Parameter: dtype_a
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Accelerometer natural frequency (rad/sec) — Accelerometer natural frequency

190 (default) | scalar

Natural frequency of the accelerometer, specified as a double scalar, in radians per second.

5 Blocks

5-896



Dependencies

To enable this parameter, select Second order dynamics for accelerometer.

Programmatic Use
Block Parameter: w_a
Type: character vector
Values: double scalar
Default: '190'

Accelerometer damping ratio — Accelerometer damping ratio

0.707 (default) | scalar

Damping ratio of the accelerometer, specified as a double scalar, with no dimensions.

Dependencies

To enable this parameter, select Second order dynamics for accelerometer.

Programmatic Use
Block Parameter: z_a
Type: character vector
Values: double scalar
Default: '0.707'

Accelerometer scale factor and cross-coupling — Scale factors and cross coupling

[1 0 0; 0 1 0; 0 0 1] (default) | 3-by-3 matrix

Scale factors and cross-coupling, specified as a 3-by-3 matrix, to skew the accelerometer from body
axes and to scale accelerations along body axes.

Programmatic Use
Block Parameter: a_sf_cc
Type: character vector
Values: 3-by-3 matrix
Default: '[1 0 0; 0 1 0; 0 0 1]'

Accelerometer measurement bias — Accelerometer measurement bias

[0 0 0] (default) | three-element vector

Long-term biases along the accelerometer axes, specified as a three-element vector, in the units
specified in the Units parameter.

Programmatic Use
Block Parameter: a_bias
Type: character vector
Values: three-element vector
Default: '[0 0 0]'

Accelerometer upper and lower limits — Minimum and maximum values of
acceleration

[-inf -inf -inf inf inf inf] (default) | six-element vector
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Three minimum values and three maximum values of acceleration in each of accelerometer axes,
specified as a six-element vector, in units specified in the Units parameter.

Programmatic Use
Block Parameter: a_sat
Type: character vector
Values: six-element vector
Default: '[-inf -inf -inf inf inf inf]'

Second-order dynamics for gyro — Gyroscope second-order dynamics

on (default) | off

To apply second-order dynamics to gyroscope readings, select this check box.

Programmatic Use
Block Parameter: dtype_g
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Gyro natural frequency (rad/sec) — Gyroscope natural frequency

190 (default) | scalar

Natural frequency of the gyroscope, specified as a double scalar, in radians per second.

Dependencies

To enable this parameter, select Second-order dynamics for gyro.

Programmatic Use
Block Parameter: w_g
Type: character vector
Values: double scalar
Default: '190'

Gyro damping ratio — Gyroscope damping ratio

0.707 (default) | scalar

Damping ratio of the gyroscope, specified as a double scalar.

Dependencies

To enable this parameter, select Second-order dynamics for gyro.

Programmatic Use
Block Parameter: z_g
Type: character vector
Values: double scalar
Default: '0.707'

Gyro scale factors and cross-coupling — Gyroscope scale factors and cross-coupling

[1 0 0; 0 1 0; 0 0 1] (default) | 3-by-3 matrix
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Gyroscope scale factors and cross-coupling, specified as a 3-by-3 matrix, to skew the gyroscope from
body axes and to scale angular rates along body axes.

Programmatic Use
Block Parameter: g_sf_cc
Type: character vector
Values: 3-by-3 matrix
Default: '[1 0 0; 0 1 0; 0 0 1]'

Gyro measurement bias — Gyroscope measurement bias

[0 0 0] (default) | three-element vector

Long-term biases along the gyroscope axes, specified a three-element vector, in radians per second.

Programmatic Use
Block Parameter: g_bias
Type: character vector
Values: three-element vector
Default: '[0 0 0]'

G-sensitive bias — Maximum change in rates

[0 0 0] (default) | three-element vector

Maximum change in rates due to linear acceleration, specified as a three-element vector, in radians
per second per g-unit.

Programmatic Use
Block Parameter: g_sens
Type: character vector
Values: three-element vector
Default: '[0 0 0]'

Gyro upper and lower limits — Minimum and maximum values of angular rates

[-inf -inf -inf inf inf inf] (default) | six-element vector

Three minimum values and three maximum values of angular rates in each of the gyroscope axes,
specified as a six-element vector, in radians per second.

Programmatic Use
Block Parameter: g_sat
Type: character vector
Values: six-element vector
Default: '[-inf -inf -inf inf inf inf]'

Noise on — White noise

on (default) | off

To apply white noise to acceleration and gyroscope readings, select this check box.

Programmatic Use
Block Parameter: i_rand
Type: character vector
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Values: 'on' | 'off'
Default: 'on'

Noise seeds — Noise seeds

[23093 23094 23095 23096 23097 23098] (default) | six-element vector

Scalar seeds for the Gaussian noise generator for each axis of the accelerometer and gyroscope,
specified as a six-element vector.

Dependencies

To enable this parameter, select Noise on.

Programmatic Use
Block Parameter: i_seeds
Type: character vector
Values: six-element vector
Default: '[23093 23094 23095 23096 23097 23098]'

Noise power — Noise power

[0.001 0.001 0.001 0.0001 0.0001 0.0001] (default) | six-element vector

Height of the power spectral density (PSD) of the white noise for each axis of the accelerometer and
gyroscope, specified as a six-element vector, in:

• (m/s2)/Hz when Units is set to Metric (MKS)
• (ft/s2)/Hz when Units is set to English

Dependencies

To enable this parameter, select Noise on.

Programmatic Use
Block Parameter: i_pow
Type: character vector
Values: six-element vector
Default: '[0.001 0.001 0.001 0.0001 0.0001 0.0001]'

Version History
Introduced before R2006a

References
[1] Rogers, R. M., Applied Mathematics in Integrated Navigation Systems, AIAA Education Series,

2000.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.
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See Also
Three-axis Accelerometer | Three-axis Gyroscope | Calculate Range
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Turbofan Engine System
Implement first-order representation of turbofan engine with controller
Library: Aerospace Blockset / Propulsion

Description
The Turbofan Engine System block computes the thrust and the fuel mass flow rate of a turbofan
engine and controller at a specific throttle position, Mach number, and altitude. For more information
on this system, see “Algorithms” on page 5-905.

The Turbofan Engine System block icon displays the input and output units selected from the Units
parameter.

Limitations
• The atmosphere is at standard day conditions and an ideal gas.
• The Mach number is limited to less than 1.0.
• This engine system is for indication purposes only. It is not meant to be used as a reference model.
• This engine system is assumed to have a high bypass ratio.

Ports
Input

Throttle position — Throttle position
scalar | vector

Throttle position, specified as a scalar or vector. This value can vary from zero to one, corresponding
to no and full throttle.
Data Types: double

Mach — Mach number
scalar

Mach number, specified as a scalar.
Data Types: double

Altitude — Altitude
scalar | vector

Altitude, specified as scalar or vector, in the units specified in the Units parameter.
Data Types: double
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Initial thrust — Initial thrust
scalar | vector

Initial thrust, specified as a scalar or vector, in the units specified in the Units parameter.

Dependencies

To enable this port, set Initial thrust source to External.
Data Types: double

Output

Thrust — Thrust
scalar | vector

Thrust, returned as a scalar or vector, in the units specified in the Units parameter.
Data Types: double

Fuel flow — Fuel flow
scalar | vector

Fuel flow, returned as scalar or vector, in the units specified in the Units parameter units per second.
Data Types: double

Parameters
Units — Input and output units

Metric (MKS) (default) | English

Input and output units, specified as:

Units Altitude Thrust Fuel Flow
Metric (MKS) Meters Newtons Kilograms per second
English Feet Pound force Pound mass per second

Programmatic Use
Block Parameter: units
Type: character vector
Values: 'Metric (MKS)' | 'English'
Default: 'Metric (MKS)'

Initial thrust source — Initial thrust source

Internal (default) | External

Initial thrust, specified as:

Internal Use the value of the Initial thrust parameter.
External Use external input for initial thrust value.
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Programmatic Use
Block Parameter: ic_source
Type: character vector
Values: 'Internal' | 'External'
Default: 'Internal'

Initial thrust — Initial

0 (default) | scalar

Initial thrust value, specified as a double scalar.

Programmatic Use
Block Parameter: IC
Type: character vector
Values: double scalar
Default: '0'

Maximum sea-level static thrust — Maximum thrust at sea-level

45000 (default) | scalar

Maximum thrust at sea-level, specified as a double scalar, at a Mach value of 0.

Programmatic Use
Block Parameter: Fmax
Type: character vector
Values: double scalar
Default: '45000'

Fastest engine time constant at sea-level static (sec) — Fastest engine time at
sea level

1 (default) | scalar

Fastest engine time at sea level, specified as a double scalar.

Programmatic Use
Block Parameter: tau
Type: character vector
Values: double scalar
Default: '1'

Sea-level static thrust specific fuel consumption — Thrust-specific fuel
consumption at sea level

0.35 (default) | scalar

Thrust-specific fuel consumption at sea level, specified as a double scalar, in specified mass units per
hour per specified thrust units, at:

• Mach value of 0
• Maximum thrust

5 Blocks

5-904



Programmatic Use
Block Parameter: SFC
Type: character vector
Values: double scalar
Default: '0.35'

Ratio of installed thrust to uninstalled thrust — Coefficient representing loss

0.9 (default) | scalar

Coefficient representing the loss in thrust due to engine installation, specified as a double value.

Programmatic Use
Block Parameter: Nt
Type: character vector
Values: double scalar
Default: '0.9'

Algorithms
This system is represented by a first-order system with unitless heuristic lookup tables for thrust,
thrust specific fuel consumption (TSFC), and the engine time constant. For the lookup table data,
thrust is a function of throttle position and the Mach number, TSFC is a function of thrust and the
Mach number, and engine time constant is a function of thrust. The unitless lookup table outputs are
corrected for altitude using the relative pressure ratio δ and relative temperature ratio θ, and scaled
by maximum sea level static thrust, the fastest engine time constant at the sea level static, sea level
static thrust specific fuel consumption, and the ratio of installed thrust to uninstalled thrust.

Version History
Introduced before R2006a

References
[1] Aeronautical Vestpocket Handbook, United Technologies Pratt & Whitney, August, 1986.

[2] Raymer, D. P., Aircraft Design: A Conceptual Approach, AIAA Education Series, Washington, DC,
1989.

[3] Hill, P. G., and C. R. Peterson, Mechanics and Thermodynamics of Propulsion, Addison-Wesley
Publishing Company, Reading, Massachusetts, 1970.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
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Turn Coordinator
Display measurements on turn coordinator and inclinometer
Library: Aerospace Blockset / Flight Instruments

Description
The Turn Coordinator block displays measurements on a gyroscopic turn rate instrument and on an
inclinometer.

• The gyroscopic turn rate instrument shows the rate of heading change of the aircraft as a tilting of
the aircraft symbol in the gauge.

• The inclinometer shows whether the turn is coordinated, slipping, or skidding by the position of
the ball.

When the ball is centered, the turn is coordinated. When the ball is off center, the turn is slipping or
skidding. The turn rate instrument has marks for wings level and for a standard rate turn. A standard
rate turn is a heading change of 3 degrees per second, also known as a two minute turn.

The input for gyroscopic turn rate instruments and inclinometers is in degrees. The turn rate value is
input as the degrees of tilt of the aircraft symbol in the gauge. The standard rate turn marks are at
angles of ±15 degrees. Tilt angle values are limited to ±20 degrees, whereas inclinometer angles are
limited to ±15 degrees.

Combine the turn indicator and inclinometer signals in a Mux block in order:

1 Turn indicator
2 Inclinometer

For example, turn indicator and inclinometer values of [15 0] indicate a coordinated, standard rate
turn.

Tip To facilitate understanding and debugging your model, you can modify instrument block
connections in your model during normal and accelerator mode simulations.

Parameters
Connection — Connect to signal
signal name | 2-element signal

Connect to 2-element signal for display, selected from a list of signal names. The 2-element signal
consists of turn indicator and inclinometer signals combined in a Mux block, in degrees. You connect
and display this combined signal. This input cannot be a bus signal.
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To view the data from a signal, select a signal in the model. The signal appears in the Connection
table. Select the option button next to the signal you want to display. Click Apply to connect the
signal.

The table has a row for the signal connected to the block. If there are no signals selected in the
model, or the block is not connected to any signals, the table is empty.

Label — Block label location

Top (default) | Bottom | Hide

Block label, displayed at the top or bottom of the block, or hidden.

• Top

Show label at the top of the block.
• Bottom

Show label at the bottom of the block.
• Hide

Do not show the label or instructional text when the block is not connected.

Programmatic Use
Block Parameter: LabelPosition
Type: character vector
Values: 'Top' | 'Bottom' | 'Hide'
Default: 'Top'

Version History
Introduced in R2016a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Airspeed Indicator | Altimeter | Artificial Horizon | Climb Rate Indicator | Exhaust Gas Temperature
(EGT) Indicator | Heading Indicator | Revolutions Per Minute (RPM) Indicator

Topics
“Display Measurements with Cockpit Instruments” on page 2-50
“Flight Instrument Gauges” on page 2-49
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Tustin Pilot Model
Represent Tustin pilot model
Library: Aerospace Blockset / Pilot Models

Description
The Tustin Pilot Model block represents the pilot model that A. Tustin describes in The Nature of the
Operator’s Response in Manual Control, and its Implications for Controller Design [1]. When
modeling human pilot models, use this block for the least accuracy, compared to that provided by the
Crossover Pilot Model and Precision Pilot Model blocks. This block requires less input than those
blocks, and provides better performance. However, the results might be less accurate.

This pilot model is a single input, single output (SISO) model that represents human behavior, and is
based on the transfer function described in “Algorithms” on page 5-909.

This block has nonlinear behavior. If you want to linearize the block (for example, with one of the
linmod functions), you might need to change the Pade approximation order. The Tustin Pilot Model
block implementation incorporates the Transport Delay block with the Pade order (for
linearization) parameter set to 2 by default. To change this value, use the set_param function, for
example:

set_param(gcb,'pade','3')

Ports
Input

x com — Signal command
scalar

Signal command that the pilot model controls, specified as a scalar.
Data Types: double

x — Signal controlled by pilot
scalar

Signal controlled by pilot, specified as a scalar.
Data Types: double

Output

u — Aircraft command
scalar

Aircraft command, returned as a scalar.
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Data Types: double

Parameters
Pilot gain — Pilot gain

1 (default) | scalar

Pilot gain, specified as a double scalar.

Programmatic Use
Block Parameter: Kp
Type: character vector
Values: double scalar
Default: '1'

Pilot time delay(s) — Pilot time delay

0.1 (default) | scalar

Total pilot time delay, specified as a double scalar, in seconds. This value typically ranges from 0.1 s
to 0.2 s.

Programmatic Use
Block Parameter: time_delay
Type: character vector
Values: double scalar
Default: '0.1'

Pilot lead constant — Pilot lead constant

5 (default) | scalar

Pilot lead constant, specified as a double scalar.

Programmatic Use
Block Parameter: T
Type: character vector
Values: double scalar
Default: '5'

Algorithms
This pilot model is a single input, single output (SISO) model that represents human behavior, based
on the transfer function:

u(s)
e(s) =

Kp(1 + Ts)
s e−τs .

In this equation:

Variable Description
K p Pilot gain.
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Variable Description
T Lead constant.
τ Transport delay time caused by the pilot neuromuscular

system.
u(s) Input to the aircraft model and output to the pilot model.
e(s) Error between the desired pilot value and the actual value.

Version History
Introduced in R2012b

References
[1] Tustin, A., The Nature of the Operator’s Response in Manual Control, and its Implications for

Controller Design. Convention on Automatic Regulators and Servo Mechanisms. May, 1947.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Crossover Pilot Model | Precision Pilot Model | Transport Delay | linmod
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Unpack net_ctrl Packet from FlightGear
Unpack net_ctrl variable packet received from FlightGear
Library: Aerospace Blockset / Animation / Flight Simulator Interfaces

Description
The Unpack net_ctrl Packet from FlightGear block unpacks net_ctrl variable packets received from
FlightGear via the Receive net_ctrl Packet from FlightGear block, and makes them available for the
Simulink environment.

The Aerospace Blockset product supports FlightGear versions starting from v2.6. If you are using a
FlightGear version older than 2.6, the model displays a notification from the Simulink Upgrade
Advisor. Consider using the Upgrade Advisor to upgrade your FlightGear version. For more
information, see “Supported FlightGear Versions” on page 2-19.

Ports
Input

net_ctrl — FlightGear packet to be unpacked
array

FlightGear packet to be unpacked, specified as an array.
Data Types: uint8

Output

Environment Outputs

wind_speed_kt — Wind speed
scalar

Wind speed, specified as a scalar, in knots.
Dependencies

To enable this port, select the Show environment outputs check box.
Data Types: double

wind_dir_deg — Wind direction
scalar

Wind direction, specified as a scalar, in deg.
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Dependencies

To enable this port, select the Show environment outputs check box.
Data Types: double

turbulence_norm — Turbulence norm
scalar

Turbulence norm, specified as a scalar.

Dependencies

To enable this port, select the Show environment outputs check box.
Data Types: double

temp_c — Ambient temperature
scalar

Ambient temperature, specified as a scalar, in deg C.

Dependencies

To enable this port, select the Show environment outputs check box.
Data Types: double

press_inhg — Ambient pressure
scalar

Ambient pressure, specified as a scalar, in inHg.

Dependencies

To enable this port, select the Show environment outputs check box.
Data Types: double

hground — Ground elevation
scalar

Ground elevation, specified as a scalar, in m.

Dependencies

To enable this port, select the Show environment outputs check box.
Data Types: double

magvar — Local magnetic variation
scalar

Local magnetic variation, specified as a scalar.

Dependencies

To enable this port, select the Show environment outputs check box.
Data Types: double
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icing — Icing status
scalar

Icing status, specified as a scalar, in deg.
Dependencies

To enable this port, select the Show environment outputs check box.
Data Types: uint32

Control Surface Position Inputs

aileron — Normalized aileron position
1 | scalar

Normalized aileron position [-1,1], specified as a scalar.
Dependencies

To enable this port, select the Show control surface position outputs check box.
Data Types: double

elevator — Normalized elevator position
1 | scalar

Normalized elevator position [-1,1], specified as a scalar.
Dependencies

To enable this port, select the Show control surface position outputs check box.
Data Types: double

rudder — Normalized rudder position
1 | scalar

Normalized rudder position [-1,1], specified as a scalar.
Dependencies

To enable this port, select the Show control surface position outputs check box.
Data Types: double

aileron_trim — Normalized aileron trim position
scalar

Normalized aileron trim position [-1,1], specified as a scalar.
Dependencies

To enable this port, select the Show control surface position outputs check box.
Data Types: double

elevator_trim — Normalized elevator trim position
1 | scalar

Normalized elevator trim position [-1,1], specified as a scalar.
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Dependencies

To enable this port, select the Show control surface position outputs check box.
Data Types: double

rudder_trim — Normalized rudder trim position
1 | scalar

Normalized rudder trim position [-1,1], specified as a scalar.

Dependencies

To enable this port, select the Show control surface position outputs check box.
Data Types: double

flaps — Normalized flaps position
1 | scalar

Normalized flaps position [-0,1], specified as a scalar.

Dependencies

To enable this port, select the Show control surface position outputs check box.
Data Types: double

spoilers — Normalized spoilers position
1 | scalar

Normalized spoilers position [0,1], specified as a scalar.

Dependencies

To enable this port, select the Show control surface position outputs check box.
Data Types: single

speedbrake — Normalized speedbrake position
1 | scalar

Normalized speedbrake position [0,1], specified as a scalar.

Dependencies

To enable this port, select the Show control surface position outputs check box.
Data Types: single

flaps_power — Power for flaps
1 | scalar

Power for flaps, specified as a scalar. A value of 1 indicates that power is available.

Dependencies

To enable this port, select the Show control surface position outputs check box.
Data Types: uint32
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flap_motor_ok — Flap motor powered
scalar

Flap motor powered, specified as a scalar.
Dependencies

To enable this port, select the Show control surface position outputs check box.
Data Types: uint32

Engine/Fuel Outputs

num_engines — Number of valid engines
scalar

Number of valid engines, specified as a scalar.
Dependencies

To enable this port, select the Show engine/fuel outputs check box.
Data Types: uint32

master_bat — Master battery switch
vector

Master battery switch, specified as a vector.
Dependencies

To enable this port, select the Show engine/fuel outputs check box.
Data Types: uint32

master_alt — Master alternator switch
vector

Master alternator switch, specified as a vector.
Dependencies

To enable this port, select the Show engine/fuel outputs check box.
Data Types: uint32

magnetos — Magnetos switch
scalar

Magnetos switch, specified as a scalar.
Dependencies

To enable this port, select the Show engine/fuel outputs check box.
Data Types: uint32

starter_power — Power to start motor
1 | vector

Power to starter motor, specified as a vector. A value of 1 indicates that power is available.
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Dependencies

To enable this port, select the Show engine/fuel outputs check box.
Data Types: uint32

throttle — Normalized throttle position
1 | vector

Normalized throttle position [0,1], specified as a vector.

Dependencies

To enable this port, select the Show engine/fuel outputs check box.
Data Types: double

mixture — Normalized mixture lever position
1 | vector

Normalized mixture lever position [0,1], specified as a vector.

Dependencies

To enable this port, select the Show engine/fuel outputs check box.
Data Types: double

condition — Normalized condition
1 | vector

Normalized condition [0,1], specified as a vector.

Dependencies

To enable this port, select the Show engine/fuel outputs check box.
Data Types: uint32

fuel_pump_power — Normalized speedbrake position
1 | scalar

Power to fuel pump, specified as a vector. A value of 1 indicates that pump is on.

Dependencies

To enable this port, select the Show engine/fuel outputs check box.
Data Types: uint32

prop_advance — Propeller advance
1 | vector

Propeller advance [0,1], specified as a vector.

Dependencies

To enable this port, select the Show engine/fuel outputs check box.
Data Types: double
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feed_tank_to — Feed tank to switch
vector

Feed tank to switch, specified as a vector.

Dependencies

To enable this port, select the Show engine/fuel outputs check box.
Data Types: uint32

reverse — Reverse switch
vector

Reverse switch, specified as a vector.

Dependencies

To enable this port, select the Show engine/fuel outputs check box.
Data Types: uint32

engine_ok — Engine status indicator
vector

Engine status indicator, specified as a vector.

Dependencies

To enable this port, select the Show engine/fuel outputs check box.
Data Types: uint32

mag_left_ok — Left magneto status indicator
vector

Left magneto status indicator, specified as a vector.

Dependencies

To enable this port, select the Show engine/fuel outputs check box.
Data Types: uint32

mag_right_ok — Right magneto status indicator
vector

Right magneto status indicator, specified as a vector.

Dependencies

To enable this port, select the Show engine/fuel outputs check box.
Data Types: uint32

spark_plugs_ok — Normalized speedbrake position
vector

Spark plugs status indicator, specified as a vector. A value of 0 indicates that the plugs have failed.
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Dependencies

To enable this port, select the Show engine/fuel outputs check box.
Data Types: uint32

oil_press_status — Oil pressure status indicator
0 | 1 | 2 | scalar

Oil pressure status indicator, specified as a vector.

• 0 — Normal oil pressure
• 1 — Low oil pressure
• 2 — Failed oil pressure

Dependencies

To enable this port, select the Show engine/fuel outputs check box.
Data Types: uint32

fuel_pump_ok — Fuel management status indicator
vector

Fuel management status indicator, specified as a vector.
Dependencies

To enable this port, select the Show engine/fuel outputs check box.
Data Types: uint32

num_tanks — Number of valid tanks
scalar

Number of valid tanks, specified as a scalar.
Dependencies

To enable this port, select the Show engine/fuel outputs check box.
Data Types: uint32

fuel_selector — Fuel selector
scalar

Fuel selector, specified as a vector.

• 0 — Off
• 1 — On

Dependencies

To enable this port, select the Show engine/fuel outputs check box.
Data Types: single

xfer_pump — Specify transfer
vector
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Specifies transfer from array value to tank, specified by value as a vector.

Dependencies

To enable this port, select the Show engine/fuel outputs check box.
Data Types: uint32

cross_feed — Cross feed valve
scalar

Cross feed valve, specified as a scalar.

• 0 — False
• 1 — On

Dependencies

To enable this port, select the Show engine/fuel outputs check box.
Data Types: single

Landing Gear Outputs

brake_left — Left brake pedal position pilot
scalar

Left brake pedal position pilot, specified as a scalar.

Dependencies

To enable this port, select the Show landing gear outputs check box.
Data Types: double

brake_right — Right brake pedal position pilot
scalar

Right brake pedal position pilot, specified as a scalar.

Dependencies

To enable this port, select the Show landing gear outputs check box.
Data Types: double

copilot_brake_left — Left brake pedal position pilot
scalar

Left brake pedal position pilot, specified as a scalar.

Dependencies

To enable this port, select the Show landing gear outputs check box.
Data Types: double

copilot_brake_right — Right brake pedal position pilot
scalar
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Right brake pedal position pilot, specified as a scalar.

Dependencies

To enable this port, select the Show landing gear outputs check box.
Data Types: double

brake_parking — Brake parking position
scalar

Brake parking position, specified as a scalar.

Dependencies

To enable this port, select the Show landing gear outputs check box.
Data Types: double

gear_handle — Gear handle position
scalar

Gear handle position, specified as a scalar.

• 0 — Gear handle up
• 1 — Gear handle down

Dependencies

To enable this port, select the Show landing gear outputs check box.
Data Types: uint32

Avionic Outputs

master_avionics — Master avionics switch
scalar

Master avionics switch, specified as a scalar.

Dependencies

To enable this port, select the Show avionic outputs check box.
Data Types: uint32

comm_1 — Comm 1 frequency
scalar

Comm 1 frequency, specified as a scalar, in Hz.

Dependencies

To enable this port, select the Show avionic outputs check box.
Data Types: double

comm_2 — Comm 2 frequency
scalar
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Comm 2 frequency, specified as a scalar, in Hz.

Dependencies

To enable this port, select the Show avionic outputs check box.
Data Types: double

nav_1 — Nav 1 frequency
scalar

Nav 1 frequency, specified as a scalar, in Hz.

Dependencies

To enable this port, select the Show avionic outputs check box.
Data Types: double

nav_2 — Nav 2 frequency
scalar

Nav 2 frequency, specified as a scalar, in Hz.

Dependencies

To enable this port, select the Show avionic outputs check box.
Data Types: double

Parameters
Show control surface position outputs — Control surface position outputs

off (default) | on

Select this check box to include the control surface position outputs from the FlightGear net_ctrl
data packet.

Dependencies

Select this check box to enable these input ports.
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Signal Group 1: Control surface position outputs

Name Units Type Width Description
aileron 1 (dimensionless) double 1 Normalized aileron position

[-1,1]
elevator 1 (dimensionless) double 1 Normalized elevator position

[-1,1]
rudder 1 (dimensionless) double 1 Normalized rudder position

[-1,1]
aileron_trim 1 (dimensionless) double 1 Normalized aileron trim

position [-1,1]
elevator_trim 1 (dimensionless) double 1 Normalized elevator trim

position [-1,1]
rudder_trim 1 (dimensionless) double 1 Normalized rudder trim

position [-1,1]
flaps 1 (dimensionless) double 1 Normalized flaps position

[-0,1]
spoilers 1 (dimensionless) double 1 Normalized spoilers position

[0,1]
speedbrake 1 (dimensionless) double 1 Normalized speedbrake

position [0,1]
flaps_power 1 (dimensionless) uint32 1 Power for flaps (1 = power

available)
flap_motor_ok — uint32 1 Flap motor powered

Programmatic Use
Block Parameter: ShowControlSurfacePositionOutputs
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Show engine/fuel outputs — Engine/fuel outputs

off (default) | on

Select this check box to include the engine and fuel outputs from the FlightGear net_ctrl data
packet.

Dependencies

Select this check box to enable these input ports.
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Signal Group 2: Engine/fuel outputs

Name Units Type Width Description
num_engines — uint32 1 Number of valid engines
master_bat — uint32 4 Master battery switch
master_alt — uint32 4 Master alternator switch
magnetos — uint32 4 Magnetos switch
starter_power — uint32 4 Power to starter motor (1

= starter power available)
throttle 1 (dimensionless) double 4 Normalized throttle

position [0,1]
mixture 1 (dimensionless) double 4 Normalized mixture lever

position [0,1]
condition 1 (dimensionless) double 4 Normalized condition [0,1]
fuel_pump_power — uint32 4 Power to fuel pump 1 =

on)
prop_advance 1 (dimensionless) double 4 Propeller advance [0,1]
feed_tank_to — uint32 4 Feed tank to switch
reverse — uint32 4 Reverse switch
engine_ok — uint32 4 Engine status indicator
mag_left_ok — uint32 4 Left magneto status

indicator
mag_right_ok — uint32 4 Right magneto status

indicator
spark_plugs_ok — uint32 4 Spark plugs status

indicator (0 = failed plugs)
oil_press_status — uint32 4 Oil pressure status

indicator (0 = normal, 1 =
low, 2 = full failure)

fuel_pump_ok — uint32 4 Fuel management status
indicator

num_tanks — uint32 1 Number of valid tanks
fuel_selector — uint32 8 Fuel selector. (0 = off, 1 =

on)
xfer_pump — uint32 5 Specifies transfer from

array value to tank
specified by value

cross_feed — uint32 1 Cross feed valve (0 = false,
1 = on)

Programmatic Use
Block Parameter: ShowEngineFuelOutputs
Type: character vector
Values: 'off' | 'on'
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Default: 'off'

Show landing gear outputs — Landing gear outputs

off (default) | on

Select this check box to include the landing gear outputs from the FlightGear net_ctrl data packet.

Dependencies

Select this check box to enable these input ports.

Signal Group 3: Landing gear outputs

Name Units Type Width Description
brake_left — double 1 Left brake pedal position

pilot
brake_right — double 1 Right brake pedal position

pilot
copilot_brake_left — double 1 Left brake pedal position

copilot
copilot_brake_right — double 1 Right brake pedal position

copilot
brake_parking — double 1 Brake parking position
gear_handle — uint32 1 Gear handle position (1 =

gear handle down, 0 = gear
handle up)

Programmatic Use
Block Parameter: ShowLandingGearOutputs
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Show avionic outputs — Avionic outputs

off (default) | on

Select this check box to include the avionic outputs from the FlightGear net_ctrl data packet.

Dependencies

Select this check box to enable these input ports.
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Signal Group 4: Avionics outputs

Name Units Type Width Description
master_avionics — uint32 1 Master avionics switch
comm_1 Hz double 1 Comm 1 frequency
comm_2 Hz double 1 Comm 2 frequency
nav_1 Hz double 1 Nav 1 frequency
nav_2 Hz double 1 Nav 2 frequency

Programmatic Use
Block Parameter: ShowAvionicOutputs
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Show environment outputs — Environment outputs

on (default) | off

Select this check box to include the environment outputs from the FlightGear net_ctrl data packet.

Dependencies

Select this check box to enable these input ports.

Signal Group 5: Environment outputs

Name Units Type Width Description
wind_speed_kt knot double 1 Wind speed
wind_dir_deg deg double 1 Wind direction
turbulence_norm — double 1 Turbulence norm
temp_c deg C double 1 Ambient temperature
press_inhg inHg double 1 Ambient pressure
hground m double 1 Ground elevation
magvar deg double 1 Local magnetic variation
icing – uint32 1 Icing status

Programmatic Use
Block Parameter: ShowEnvironmentOutputs
Type: character vector
Values: 'off' | 'on'
Default: 'on'

Sample time — Sample time

1/30 (default) | scalar

Specify the sample time (-1 for inherited), as a scalar.
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Programmatic Use
Block Parameter: SampleTime
Type: character vector
Values: scalar
Default: '1/30'

Version History
Introduced in R2012a

See Also
FlightGear Preconfigured 6DoF Animation | Generate Run Script | Pack net_fdm Packet for
FlightGear | Receive net_ctrl Packet from FlightGear | Send net_fdm Packet to FlightGear

Topics
“Flight Simulator Interface” on page 2-19
“Work with the Flight Simulator Interface” on page 2-23
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Velocity Conversion
Convert from velocity units to desired velocity units
Library: Aerospace Blockset / Utilities / Unit Conversions

Description
The Velocity Conversion block computes the conversion factor from specified input velocity units to
specified output velocity units and applies the conversion factor to the input signal.

The Velocity Conversion block port labels change based on the input and output units selected from
the Initial unit and the Final unit lists.

Ports
Input

Port_1 — Velocity
scalar | array

Velocity, specified as a scalar or array, in initial velocity units.

Dependencies

The input port label depends on the Initial unit setting.
Data Types: double

Output

Port_1 — Velocity
scalar | array

Velocity, returned as a scalar or array, in final velocity units.

Dependencies

The output port label depends on the Final unit setting.
Data Types: double

Parameters
Initial unit — Input units

ft/s (default) | m/s | km/s | in/s | km/h | mph | kts | ft/min

Input units, specified as:

 Velocity Conversion

5-927



m/s Meters per second
ft/s Feet per second
km/s Kilometers per second
in/s Inches per second
km/h Kilometers per hour
mph Miles per hour
kts Nautical miles per hour
ft/min Feet per minute

Dependencies

The input port label depends on the Initial unit setting.

Programmatic Use
Block Parameter: IU
Type: character vector
Values: 'm/s' | 'ft/s' | 'km/s' | 'in/s' | 'km/h' | 'mph' | 'kts' | 'ft/min'
Default: 'ft/s'

Final unit — Output units

m/s (default) | ft/s | km/s | in/s | km/h | mph | kts | ft/min

Output units, specified as:

m/s Meters per second
ft/s Feet per second
km/s Kilometers per second
in/s Inches per second
km/h Kilometers per hour
mph Miles per hour
kts Nautical miles per hour
ft/min Feet per minute

Dependencies

The output port label depends on the Final unit setting.

Programmatic Use
Block Parameter: OU
Type: character vector
Values: 'm/s' | 'ft/s' | 'km/s' | 'in/s' | 'km/h' | 'mph' | 'kts' | 'ft/min'
Default: 'm/s'

Version History
Introduced before R2006a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Acceleration Conversion | Angle Conversion | Angular Acceleration Conversion | Angular Velocity
Conversion | Density Conversion | Force Conversion | Length Conversion | Mass Conversion |
Pressure Conversion | Temperature Conversion
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Von Karman Wind Turbulence Model (Continuous)
Generate continuous wind turbulence with Von Kármán velocity spectra
Library: Aerospace Blockset / Environment / Wind

Description
The Von Kármán Wind Turbulence Model (Continuous) block uses the Von Kármán spectral
representation to add turbulence to the aerospace model by passing band-limited white noise through
appropriate forming filters. This block implements the mathematical representation in the Military
Specification MIL-F-8785C and Military Handbook MIL-HDBK-1797. For more information, see
“Algorithms” on page 5-935.

Limitations
• The frozen turbulence field assumption is valid for the cases of mean-wind velocity.
• The root-mean-square turbulence velocity, or intensity, is small relative to the aircraft ground

speed.
• The turbulence model describes an average of all conditions for clear air turbulence because the

following factors are not incorporated into the model:

• Terrain roughness
• Lapse rate
• Wind shears
• Mean wind magnitude
• Other meteorological factions (except altitude)

Ports
Input

h — Altitude
scalar

Altitude, specified as a scalar, in selected units.
Data Types: double

V — Aircraft speed
scalar

Aircraft speed, specified as a scalar, in selected units.
Data Types: double

DCM — Direction cosine matrix
3-by-3 matrix
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Direction cosine matrix, specified as a 3-by-3 matrix representing the flat Earth coordinates to body-
fixed axis coordinates.
Data Types: double

Output

Vwind — Turbulence velocities
three-element vector

Turbulence velocities, returned as a three-element vector in the same body coordinate reference as
the DCM input, in specified units.
Data Types: double

ωwind — Turbulence angular rates
three-element vector

Turbulence angular rates, specified as a three-element vector, in radians per second.
Data Types: double

Parameters
Units — Wind speed units

Metric (MKS) (default) | English (Velocity in ft/s) | English (Velocity in kts)

Units of wind speed due to turbulence, specified as:

Units Wind Velocity Altitude Air Speed
Metric (MKS) Meters/second Meters Meters/second
English (Velocity
in ft/s)

Feet/second Feet Feet/second

English (Velocity
in kts)

Knots Feet Knots

Programmatic Use
Block Parameter: units
Type: character vector
Values: 'Metric (MKS)' | 'English (Velocity in ft/s)' | 'English (Velocity in
kts)'
Default: 'Metric (MKS)'

Specification — Military reference

MIL-F-8785C (default) | MIL-HDBK-1797 | MIL-HDBK-1797B

Military reference, which affects the application of turbulence scale lengths in the lateral and vertical
directions, specified as MIL-F-8785C, MIL-HDBK-1797, or MIL-HDBK-1797B.

Programmatic Use
Block Parameter: spec
Type: character vector
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Values: 'MIL-F-8785C' | 'MIL-HDBK-1797' | 'MIL-HDBK-1797B'
Default: 'MIL-F-8785C'

Model type — Turbulence model

Continuous Von Karman (+q -r) (default) | Continuous Von Karman (+q +r) |
Continuous Von Karman (-q +r) | Continuous Dryden (+q -r) | Continuous Dryden
(+q +r) | Continuous Dryden (-q +r) | Discrete Dryden (+q -r) | Discrete Dryden
(+q +r) | Discrete Dryden (-q +r)

Wind turbulence model, specified as:

Continuous Von Karman (+q -r) Use continuous representation of Von Kármán
velocity spectra with positive vertical and
negative lateral angular rates spectra.

Continuous Von Karman (+q +r) Use continuous representation of Von Kármán
velocity spectra with positive vertical and lateral
angular rates spectra.

Continuous Von Karman (-q +r) Use continuous representation of Von Kármán
velocity spectra with negative vertical and
positive lateral angular rates spectra.

Continuous Dryden (+q -r) Use continuous representation of Dryden
velocity spectra with positive vertical and
negative lateral angular rates spectra.

Continuous Dryden (+q +r) Use continuous representation of Dryden
velocity spectra with positive vertical and lateral
angular rates spectra.

Continuous Dryden (-q +r) Use continuous representation of Dryden
velocity spectra with negative vertical and
positive lateral angular rates spectra.

Discrete Dryden (+q -r) Use discrete representation of Dryden velocity
spectra with positive vertical and negative
lateral angular rates spectra.

Discrete Dryden (+q +r) Use discrete representation of Dryden velocity
spectra with positive vertical and lateral angular
rates spectra.

Discrete Dryden (-q +r) Use discrete representation of Dryden velocity
spectra with negative vertical and positive
lateral angular rates spectra.

The Continuous Von Kármán selections conform to the transfer function descriptions.

Programmatic Use
Block Parameter: model
Type: character vector
Values: 'Continuous Von Karman (+q +r)' | 'Continuous Von Karman (-q +r)' |
'Continuous Dryden (+q -r)' | 'Continuous Dryden (+q +r)' | 'Continuous Dryden
(-q +r)' | 'Discrete Dryden (+q -r)' | 'Discrete Dryden (+q +r)' | 'Discrete
Dryden (-q +r)'
Default: 'Continuous Von Karman (+q +r)'
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Wind speed at 6 m defines the low altitude intensity — Measured wind speed

15 (default) | real scalar

Measured wind speed at a height of 20 feet (6 meters), specified as a real scalar, which provides the
intensity for the low-altitude turbulence model.

Programmatic Use
Block Parameter: W20
Type: character vector
Values: real scalar
Default: '15'

Wind direction at 6 m (degrees clockwise from north) — Measured wind direction

0 (default) | real scalar

Measured wind direction at a height of 20 feet (6 meters), specified as a real scalar, which is an angle
to aid in transforming the low-altitude turbulence model into a body coordinates.

Programmatic Use
Block Parameter: Wdeg
Type: character vector
Values: real scalar
Default: '0'

Probability of exceedance of high-altitude intensity — Turbulence intensity

10^-2 - Light (default) | 10^-1 | 2x10^-1 | 10^-3 - Moderate | 10^-4 | 10^-5 - Severe |
10^-6

Probability of the turbulence intensity being exceeded, specified as 10^-2 - Light, 10^-1,
2x10^-1, 10^-3 - Moderate, 10^-4, 10^-5 - Severe, or 10^-6. Above 2000 feet, the
turbulence intensity is determined from a lookup table that gives the turbulence intensity as a
function of altitude and the probability of the turbulence intensity being exceeded.

Programmatic Use
Block Parameter: TurbProb
Type: character vector
Values: '2x10^-1' | '10^-1' | '10^-2 - Light' | '10^-3 - Moderate' | '10^-4' | '10^-5 -
Severe' | '10^-6'
Default: '10^-2 - Light'

Scale length at medium/high altitudes — Turbulence scale length

762 (default) | real scalar

Turbulence scale length above 2000 feet, specified as a real scalar. This length is assumed constant.

From the military specifications, 1750 feet is recommended for the longitudinal turbulence scale
length of the Dryden spectra.

Note An alternate scale length value changes the power spectral density asymptote and gust load.
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Programmatic Use
Block Parameter: L_high
Type: character vector
Values: real scalar
Default: '762'

Wingspan — Wingspan

10 (default) | real scalar

Wingspan, specified as a real scalar, which is required in the calculation of the turbulence on the
angular rates.

Programmatic Use
Block Parameter: Wingspan
Type: character vector
Values: real scalar
Default: '10'

Band limited noise sample time (seconds) — Noise sample time

0.1 (default) | real scalar

Noise sample time, specified as a real scalar, at which the unit variance white noise signal is
generated.

Programmatic Use
Block Parameter: ts
Type: character vector
Values: real scalar
Default: '0.1'

Random noise seeds — Noise seeds [ug vg wg pg]

[23341 23342 23343 23344] (default) | four-element vector

Random noise seeds, specified as a four-element vector, which are used to generate the turbulence
signals, one for each of the three velocity components and one for the roll rate:

The turbulences on the pitch and yaw angular rates are based on further shaping of the outputs from
the shaping filters for the vertical and lateral velocities.

Programmatic Use
Block Parameter: Seed
Type: character vector
Values: four-element vector
Default: '[23341 23342 23343 23344]'

Turbulence on — Turbulence signals

on (default) | off

To generate the turbulence signals, select this check box.
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Programmatic Use
Block Parameter: T_on
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Algorithms
According to the military references, turbulence is a stochastic process defined by velocity spectra.
For an aircraft flying at a speed V through a frozen turbulence field with a spatial frequency of Ω
radians per meter, the circular frequency ω is calculated by multiplying V by Ω. The following table
displays the component spectra functions:

 MIL-F-8785C MIL-HDBK-1797
Longitudinal

Φu ω 2σu
2Lu

πV ⋅ 1

1 + 1.339Lu
ω
V

2 5 6

2σu
2Lu

πV ⋅ 1

1 + 1.339Lu
ω
V

2 5 6

Φp ω
σw

2

VLw
⋅

0.8
πLw
4b

1 3

1 + 4bω
πV

2
σw

2

2VLw
⋅

0.8
2πLw

4b

1 3

1 + 4bω
πV

2

Lateral
Φv ω

σv
2Lv
πV ⋅

1 + 8
3 1.339Lv

ω
V

2

1 + 1.339Lv
ω
V

2 11 6

2σv
2Lv

πV ⋅
1 + 8

3 2.678Lv
ω
V

2

1 + 2.678Lv
ω
V

2 11 6

Φr ω ∓ ω
V

2

1 + 3bω
πV

2 ⋅Φv ω
∓ ω

V
2

1 + 3bω
πV

2 ⋅ Φv ω

Vertical
Φw ω

σw
2 Lw
πV ⋅

1 + 8
3 1.339Lw

ω
V

2

1 + 1.339Lw
ω
V

2 11 6

2σw
2 Lw

πV ⋅
1 + 8

3 2.678Lw
ω
V

2

1 + 2.678Lw
ω
V

2 11 6

Φq ω ± ω
V

2

1 + 4bω
πV

2 ⋅ Φw ω
± ω

V
2

1 + 4bω
πV

2 ⋅ Φw ω

The variable b represents the aircraft wingspan. The variables Lu, Lv, Lw represent the turbulence
scale lengths. The variables σu, σv, σw represent the turbulence intensities:

The spectral density definitions of turbulence angular rates are defined in the references as three
variations, which are displayed in the following table:
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pg =
∂wg
∂y qg =

∂wg
∂x rg = −

∂vg
∂x

pg =
∂wg
∂y qg =

∂wg
∂x rg =

∂vg
∂x

pg = −
∂wg
∂y qg = −

∂wg
∂x rg =

∂vg
∂x

The variations affect only the vertical (qg) and lateral (rg) turbulence angular rates.

Keep in mind that the longitudinal turbulence angular rate spectrum, Фp(ω), is a rational function.
The rational function is derived from curve-fitting a complex algebraic function, not the vertical
turbulence velocity spectrum, Фw(ω), multiplied by a scale factor. Because the turbulence angular
rate spectra contribute less to the aircraft gust response than the turbulence velocity spectra, it may
explain the variations in their definitions.

The variations lead to the following combinations of vertical and lateral turbulence angular rate
spectra.

Vertical Lateral
Фq(ω)

Фq(ω)

−Фq(ω)

−Фr(ω)

Фr(ω)

Фr(ω)

To generate a signal with the correct characteristics, a unit variance, band-limited white noise signal
is passed through forming filters. The forming filters are approximations of the Von Kármán velocity
spectra which are valid in a range of normalized frequencies of less than 50 radians. These filters can
be found in both the Military Handbook MIL-HDBK-1797 and the reference by Ly and Chan.

The following two tables display the transfer functions.

 MIL-F-8785C
Longitudinal

Hu s
σu

2
π ⋅

Lu
V 1 + 0.25

Lu
V s

1 + 1.357
Lu
V s + 0.1987

Lu
V

2
s2

Hp s
σw

0.8
V ⋅

π
4b

1 6

Lw1 3 1 + 4b
πV s

Lateral
Hv s

σv
1
π ⋅

Lv
V 1 + 2.7478

Lv
V s + 0.3398

Lv
V

2
s2

1 + 2.9958
Lv
V s + 1.9754

Lv
V

2
s2 + 0.1539

Lv
V

3
s3
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 MIL-F-8785C
Hr s ∓ s

V

1 + 3b
πV s

⋅ Hv s

Vertical
Hw s

σw
1
π ⋅

Lw
V 1 + 2.7478

Lw
V s + 0.3398

Lw
V

2
s2

1 + 2.9958
Lw
V s + 1.9754

Lw
V

2
s2 + 0.1539

Lw
V

3
s3

Hq s ± s
V

1 + 4b
πV s

⋅ Hw s

 MIL-HDBK-1797
Longitudinal

Hu s
σu

2
π ⋅

Lu
V 1 + 0.25

Lu
V s

1 + 1.357
Lu
V s + 0.1987

Lu
V

2
s2

Hp s
σw

0.8
V ⋅

π
4b

1 6

2Lw
1 3 1 + 4b

πV s

Lateral
Hv s

σv
1
π ⋅

2Lv
V 1 + 2.7478

2Lv
V s + 0.3398

2Lv
V

2
s2

1 + 2.9958
2Lv
V s + 1.9754

2Lv
V

2
s2 + 0.1539

2Lv
V

3
s3

Hr s ∓ s
V

1 + 3b
πV s

⋅ Hv s

Vertical
Hw s

σw
1
π ⋅

2Lw
V 1 + 2.7478

2Lw
V s + 0.3398

2Lw
V

2
s2

1 + 2.9958
2Lw

V s + 1.9754
2Lw

V
2
s2 + 0.1539

2Lw
V

3
s3

Hq s ± s
V

1 + 4b
πV s

⋅ Hw s

Divided into two distinct regions, the turbulence scale lengths and intensities are functions of
altitude.
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Note The same transfer functions result after evaluating the turbulence scale lengths. The
differences in turbulence scale lengths and turbulence transfer functions balance offset.

Low-Altitude Model (Altitude < 1000 feet)

According to the military references, the turbulence scale lengths at low altitudes, where h is the
altitude in feet, are represented in the following table:

MIL-F-8785C MIL-HDBK-1797
Lw = h

Lu = Lv = h
0.177 + 0.000823h 1.2

2Lw = h

Lu = 2Lv = h
0.177 + 0.000823h 1.2

The turbulence intensities are given below, where W20 is the wind speed at 20 feet (6 m). Typically for
light turbulence, the wind speed at 20 feet is 15 knots; for moderate turbulence, the wind speed is 30
knots; and for severe turbulence, the wind speed is 45 knots.

σw = 0.1W20
σu
σw

=
σv
σw

= 1
0.177 + 0.000823h 0.4

The turbulence axes orientation in this region is defined as follows:

• Longitudinal turbulence velocity, ug, aligned along the horizontal relative mean wind vector.
• Vertical turbulence velocity, wg, aligned with vertical relative mean wind vector.

At this altitude range, the output of the block is transformed into body coordinates.

Medium/High Altitudes (Altitude > 2000 feet)

For medium to high altitudes the turbulence scale lengths and intensities are based on the
assumption that the turbulence is isotropic. In the military references, the scale lengths are
represented by the following equations:

MIL-F-8785C MIL-HDBK-1797
L u = L v = L w = 2500 ft L u = 2 L v = 2 L w = 2500 ft

The turbulence intensities are determined from a lookup table that provides the turbulence intensity
as a function of altitude and the probability of the turbulence intensity being exceeded. The
relationship of the turbulence intensities is represented in the following equation: σu=σv=σw.

The turbulence axes orientation in this region is defined as being aligned with the body coordinates:
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Between Low and Medium/High Altitudes (1000 feet < Altitude < 2000 feet)

At altitudes between 1000 feet and 2000 feet, the turbulence velocities and turbulence angular rates
are determined by linearly interpolating between the value from the low altitude model at 1000 feet
transformed from mean horizontal wind coordinates to body coordinates and the value from the high
altitude model at 2000 feet in body coordinates.

Version History
Introduced in R2006b
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Dryden Wind Turbulence Model (Continuous) | Dryden Wind Turbulence Model (Discrete) | Discrete
Wind Gust Model | Wind Shear Model
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WGS84 Gravity Model
Implement 1984 World Geodetic System (WGS84) representation of Earth's gravity
Library: Aerospace Blockset / Environment / Gravity

Description
The WGS84 Gravity Model block implements the mathematical representation of the geocentric
equipotential ellipsoid of the World Geodetic System (WGS84). The block output is the Earth gravity
at a specific location. To control gravity precision, use the Type of gravity model parameter.

The block icon displays the input and output units selected from the Units list.

Limitations
• The WGS84 gravity calculations are based on the assumption of a geocentric equipotential

ellipsoid of revolution. Since the gravity potential is assumed to be the same everywhere on the
ellipsoid, there must be a specific theoretical gravity potential that can be uniquely determined
from the four independent constants defining the ellipsoid.

• Use of the WGS84 Taylor Series model should be limited to low geodetic heights. It is sufficient
near the surface when submicrogal precision is not necessary. At medium and high geodetic
heights, it is less accurate.

• The WGS84 Close Approximation model gives results with submicrogal precision.
• To predict and determine a satellite orbit with high accuracy, use the EGM96 through degree and

order 70.

Ports
Input

μ l h — Position in geodetic latitude, longitude, and altitude
three-element vector | M-by-3 array

Position in geodetic latitude, longitude, and altitude, specified as a three-element vector or M-by-3
array, in selected units. Altitude must be less than 20,000 m (approximately 65,620 feet).
Data Types: double

JD — Julian date
scalar | value greater than 2451545

Julian date, specified as a scalar. The year must be after January 1, 2000 (2451545).
Dependencies

To enable this port, select Input Julian date.
Data Types: double
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Output

Output 1 — Gravity
three-element vector | M-by-3 array

Gravity in the north-east-down (NED) coordinate system.

Gravity Model Method Output
Taylor Series and Close Approximation Output only normal gravity (down in the NED

coordinate system).
Exact Both normal and tangent gravity (down and north

in the NED coordinate system).

Data Types: double

Parameters
Type of gravity model — Gravity model method

WGS84 Taylor Series (default) | WGS84 Close Approximation | WGS84 Exact

Method to calculate gravity, specified as:

Gravity Model Method Output
WGS84 Taylor Series and WGS84 Close
Approximation

Output only normal gravity (down in the NED
coordinate system).

WGS84 Exact Both normal and tangent gravity (down and north
in the NED coordinate system).

Programmatic Use
Block Parameter: model
Type: character vector
Values: 'WGS84 Taylor Series' | 'WGS84 Close Approximation' | 'WGS84 Exact'
Default: 'WGS84 Taylor Series'

Units — Units

Metric (MKS) (default) | English

Input and output units, specified as:

Units Height Gravity
Metric (MKS) Meters Meters per second squared
English Feet Feet per second squared

Programmatic Use
Block Parameter: units
Type: character vector
Values: 'Metric (MKS)' | 'English'
Default: 'Metric (MKS)'
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Exclude Earth's atmosphere — Earth atmosphere

on (default) | off

• To exclude the mass of the atmosphere for the Earth gravitational field, select this check box.
• To include the mass of the atmosphere for the Earth gravitation field, clear this check box.

Dependencies

To enable this check box, set Type of gravity model to Type of gravity model WGS84 Close
Approximation or WGS84 Exact.

Programmatic Use
Block Parameter: no_atmos
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Precessing reference frame — Precessing reference frame

on (default) | off

• To calculate the velocity of the Earth using the International Astronomical Union (IAU) value of
the Earth's angular velocity and the precession rate in right ascension, select this check box.

• To calculate the velocity of the Earth using the angular velocity of the standard Earth rotating at a
constant angular velocity, clear this check box.

To obtain the precession rate in right ascension, the block calculates Julian centuries from Epoch
J2000.0 using Month, Day, and Year.

Dependencies

• To enable this check box, set Type of gravity model to Type of gravity model WGS84
Close Approximation or WGS84 Exact.

• Clearing this check box disables the Input Julian date parameter and the JD input port.

Programmatic Use
Block Parameter: precessing
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Input Julian date — Julian date

off (default) | on

• To specify the Julian date for the block with an input port, select this check box.
• To calculate the Julian date using the values of Month, Day, and Year, clear this check box. The

year must be after January 1, 2000 (2451545).

Dependencies

• To enable the JD port, select this check box.
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Programmatic Use
Block Parameter: jd_loc
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Month — Month

January (default) | February | March | April | May | June | July | August | September |
October | November | December

Month to calculate Julian centuries from Epoch J2000.0.

Dependencies

To enable this parameter:

• Set Type of gravity model to WGS84 Close Approximation or WGS84 Exact.
• Select Precessing reference frame.

To disable this parameter, select Input Julian date.

Programmatic Use
Block Parameter: month
Type: character vector
Values: 'January' | 'February' | 'March' | 'April' | 'May' | 'June' | 'July' | 'August' |
'September' | 'October' | 'November' | 'December'
Default: 'January'

Day — Day

10 (default) | 1 to 31

Day to calculate Julian centuries from Epoch J2000.0.

Dependencies

To enable this parameter:

• Set Type of gravity model to WGS84 Close Approximation or WGS84 Exact.
• Select Precessing reference frame.

To disable this parameter, select Input Julian date.

Programmatic Use
Block Parameter: day
Type: character vector
Values: '1' to '31'
Default: '10'

Year — Year

2004 (default) | any year

Year to calculate Julian centuries from Epoch J2000.0. The year must be 2000 or greater.
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Dependencies

To enable this parameter:

• Set Type of gravity model to WGS84 Close Approximation or WGS84 Exact.
• Select Precessing reference frame.
• To disable this parameter, select Input Julian date.

Programmatic Use
Block Parameter: year
Type: character vector
Values: any year
Default: '2004'

No centrifugal effects — Centrifugal effects

on (default) | off

• To base calculated gravity on pure attraction resulting from the normal gravitational potential,
select this check box.

• To enable the calculated gravity to include the centrifugal force resulting from the Earth's angular
velocity, clear this check box.

This option is available only with Type of gravity model WGS84 Close Approximation or WGS84
Exact.
Programmatic Use
Block Parameter: no_centrifugal
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Action for out-of-range input — Out-of-range block behavior

Warning (default) | Error | None

Out-of-range block behavior, specified as follows.

Value Description
None No action. The block imposes upper and lower limits on an input

signal.
Warning Warning in the Diagnostic Viewer, model simulation continues.

For Accelerator and Rapid Accelerator modes, setting the action
to Warning has no effect and the model behaves as though the
action is set to None.

Error MATLAB returns an exception, model simulation stops. For
Accelerator and Rapid Accelerator modes, setting the action to
Error has no effect and the model behaves as though the action
is set to None.

Programmatic Use
Block Parameter: action
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Type: character vector
Values: 'None' | 'Warning' | 'Error'
Default: 'Warning'

Version History
Introduced before R2006a

References
[1] "Department of Defense World Geodetic System 1984, Its Definition and Relationship with Local

Geodetic Systems." NIMA TR8350.2.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
COESA Atmosphere Model

Topics
“NASA HL-20 Lifting Body Airframe” on page 3-14
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Wind Angles to Direction Cosine Matrix
Convert wind angles to direction cosine matrix
Library: Aerospace Blockset / Utilities / Axes Transformations

Description
The Wind Angles to Direction Cosine Matrix block converts three wind rotation angles into a 3-by-3
direction cosine matrix (DCM). The DCM matrix performs the coordinate transformation of a vector
in earth axes (ox0, oy0, oz0) into a vector in wind axes (ox3, oy3, oz3). For more information on the
direction cosine matrix, see “Algorithms” on page 5-947.

This implementation generates a flight path angle that lies between ±90 degrees, and bank and
heading angles that lie between ±180 degrees.

Ports
Input

μ γ χ — Wind rotation angles
3-by-1 vector

Wind rotation angles, specified as a 3-by-1 vector, in radians.
Data Types: double

Output

DCMwe — Direction cosine matrix
3-by-3 matrix

Direction cosine matrix, returned as a 3-by-3 matrix.
Data Types: double

Algorithms
The DCM matrix performs the coordinate transformation of a vector in earth axes (ox0, oy0, oz0) into a
vector in wind axes (ox3, oy3, oz3). The order of the axis rotations required to bring this about is:

1 A rotation about oz0 through the heading angle (χ) to axes (ox1, oy1, oz1)
2 A rotation about oy1 through the flight path angle (γ) to axes (ox2, oy2, oz2)
3 A rotation about ox2 through the bank angle (μ) to axes (ox3, oy3, oz3)
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ox3
oy3
oz3

= DCMwe

ox0
oy0
oz0

ox3
oy3
oz3

=
1 0 0
0 cosμ sinμ
0 −sinμ cosμ

cosγ 0 −sinγ
0 1 0

sinγ 0 cosγ

cosχ sinχ 0
−sinχ cosχ 0

0 0 1

ox0
oy0
oz0

Combining the three axis transformation matrices defines the following DCM:

DCMwe =
cosγcosχ cosγsinχ −sinγ

(sinμsinγcosχ − cosμsinχ) (sinμsinγsinχ + cosμcosχ) sinμcosγ
(cosμsinγcosχ + sinμsinχ) (cosμsinγsinχ − sinμcosχ cosμcosγ

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Direction Cosine Matrix Body to Wind | Direction Cosine Matrix to Rotation Angles | Direction Cosine
Matrix to Wind Angles | Rotation Angles to Direction Cosine Matrix
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Wind Angular Rates
Calculate wind angular rates from body angular rates, angle of attack, sideslip angle, rate of change
of angle of attack, and rate of change of sideslip
Library: Aerospace Blockset / Flight Parameters

Description
The Wind Angular Rates block supports the equations of motion in wind-fixed frame models by
calculating the wind-fixed angular rates (pw, qw, rw). For more information on the equation used for
the calculation, see “Algorithms” on page 5-950.

Ports
Input

ɑ β — Angles of attack and sideslip
2-by-1 vector

Angle of attack and sideslip, specified as a 2-by-1 vector, in radians.
Data Types: double

dɑ/dt dβ/dt — Rates of change
2-by-1 vector

Rate of change of the angle of attack and rate of change of the sideslip, specified as a 2-by-1 vector, in
radians per second.
Data Types: double

ω — Body angular rates
three-element vector

Body angular rates, specified as a three-element vector, in radians per second.
Data Types: double

Output

ωw — Wind angular rates
three-element vector

Wind angular rates, returned as a three-element vector, in radians per second.
Data Types: double
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Algorithms
The body-fixed angular rates (pb, qb, rb), angle of attack (α), sideslip angle (β), rate of change of angle
of attack (α̇), and rate of change of sideslip (β̇) are related to the wind-fixed angular rates as
illustrated in the following equation:

pw
qw
rw

=
cosαcosβ sinβ sinαcosβ
−cosαsinβ cosβ −sinαsinβ
−sinα 0 cosα

pb− β̇sinα
qb− α̇

rb + β̇cosα

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
3DOF (Body Axes) | 6DOF Wind (Quaternion) | 6DOF Wind (Wind Angles) | Custom Variable Mass
3DOF (Body Axes) | Custom Variable Mass 6DOF Wind (Quaternion) | Custom Variable Mass 6DOF
Wind (Wind Angles) | Simple Variable Mass 3DOF (Body Axes) | Simple Variable Mass 6DOF Wind
(Quaternion) | Simple Variable Mass 6DOF Wind (Wind Angles)
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Wind Shear Model
Calculate wind shear conditions
Library: Aerospace Blockset / Environment / Wind

Description
The Wind Shear Model block adds wind shear to the aerospace model. This implementation is based
on the mathematical representation in the Military Specification MIL-F-8785C [1].

Ports
Input

h — Altitude
scalar

Altitude, specified as a scalar in specified units.
Data Types: double

DCM — Direction cosine matrix
3-by-3 matrix

Direction cosine matrix, specified as a 3-by-3 matrix representing the flat Earth coordinates to body-
fixed axis coordinates.
Data Types: double

Output

Vwind — Mean wind speed
three-element vector

Mean wind speed, returned as a three-element vector in the same body coordinate reference as the
DCM input, in specified units.
Data Types: double

Parameters
Units — Wind shear units

Metric (MKS) (default) | English (Velocity in ft/s) | English (Velocity in kts)

Wind shear units, specified as:
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Units Wind Altitude
Metric (MKS) Meters/second Meters
English (Velocity in ft/s) Feet/second Feet
English (Velocity in kts) Knots Feet

Programmatic Use
Block Parameter: units
Type: character vector
Values: 'Metric (MKS)' | 'English (Velocity in ft/s)' | 'English (Velocity in
kts)'
Default: 'Metric (MKS)'

Flight phase — Flight phase

Category C - Terminal Flight Phase (default) | Other

Flight phase, specified as:

• Category C - Terminal Flight Phase, as specified by Military Specification MIL-F-8785C.
• Other

Programmatic Use
Block Parameter: phase
Type: character vector
Values: 'Category C - Terminal Flight Phase' | 'Other'
Default: 'Category C - Terminal Flight Phase'

Wind speed at 20 ft altitude (kts) — Wind speed

15 (default) | scalar

Measured wind speed at a height of 6 m (20 ft) above the ground, specified as a scalar.

Programmatic Use
Block Parameter: W_20
Type: character vector
Values: scalar
Default: '15'

Wind direction at 20 ft altitude (degrees clockwise from north) — Wind
direction

0 (default) | scalar

Wind direction at a height of 6 m (20 ft) above the ground, specified as a scalar, in degrees clockwise
from the direction of the Earth x-axis (north). The wind direction is defined as the direction from
which the wind is coming.

Programmatic Use
Block Parameter: Wdeg
Type: character vector
Values: scalar
Default: '0'
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Algorithms
The magnitude of the wind shear is given by the following equation for the mean wind profile as a
function of altitude and the measured wind speed at 20 feet (6 m) above the ground.

uw = W20
ln h

z0

ln 20
z0

,  3f t < h < 1000f t

where uw is the mean wind speed, W20 is the measured wind speed at an altitude of 20 feet, h is the
altitude, and z0 is a constant equal to 0.15 feet for Category C flight phases and 2.0 feet for all other
flight phases. Category C flight phases are defined in reference [1] to be terminal flight phases, which
include takeoff, approach, and landing.

The resultant mean wind speed in the flat Earth axis frame is changed to body-fixed axis coordinates
by multiplying by the direction cosine matrix (DCM) input to the block. The block output is the mean
wind speed in the body-fixed axis.

Version History
Introduced before R2006a

References
[1] U.S. Military Specification MIL-F-8785C, November 5, 1980.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Discrete Wind Gust Model | Dryden Wind Turbulence Model (Continuous) | Dryden Wind Turbulence
Model (Discrete) | Von Karman Wind Turbulence Model (Continuous)

Topics
“NASA HL-20 Lifting Body Airframe” on page 3-14
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World Magnetic Model
Calculate Earth's magnetic field at specific location and time using World Magnetic Model
Library: Aerospace Blockset / Environment / Gravity

Description
The World Magnetic Model block implements the mathematical representation of the National
Geospatial Intelligence Agency (NGA) World Magnetic Model. The World Magnetic Model block
calculates the Earth magnetic field vector, horizontal intensity, declination, inclination, and total
intensity at a specified location and time. The reference frame is north-east-down (NED).

Note Use this block to model the Earth magnetic field between altitudes of -1,000 m to 850,000 m
meters.

Limitations
All specifications have these limitations:

• The internal calculation of decimal year does not take into account local time or leap seconds.
• The specifications describe only the long-wavelength spatial magnetic fluctuations in the Earth's

core. Intermediate and short-wavelength fluctuations, contributed from the crustal field (the
mantle and crust), are not included. Also, the substantial fluctuations of the geomagnetic field,
which occur constantly during magnetic storms and almost constantly in the disturbance field
(auroral zones), are not included.

• This block has the limitations of the World Magnetic Model (WMM). WMM2020 is valid between
-1km and 850km, as outlined in the World Magnetic Model 2020 Technical Report.

In addition, each specification has these limitations:

• WMM2015v2 supersedes WMM2015(v1). Consider replacing WMM2015(v1) with WMM2015v2
when used for navigation and other systems. WMM2015v2 was released by National Oceanic and
Atmospheric Administration (NOAA) in February 2019 to correct performance degradation issues
in the Arctic region for January 1, 2015, to December 31, 2019. Therefore, it is still acceptable to
use WMM2015(v1) in systems below 55 degrees latitude in the Northern hemisphere.

• The WMM2020 specification produces data that is reliable five years after the epoch of the model,
which is January 1, 2020.

• The WMM2015 specification produces data that is reliable five years after the epoch of the model,
which is January 1, 2015.

• The WMM2010 specification produces data that is reliable five years after the epoch of the model,
which is January 1, 2010.

• The WMM2005 specification produces data that is reliable five years after the epoch of the model,
which is January 1, 2005.
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• The WMM2000 specification produces data that is reliable five years after the epoch of the model,
which is January 1, 2000.

Ports
Input

h — Height
scalar

Height, specified as a scalar, in selected units.
Data Types: double

μ (deg) — Latitude
scalar

Latitude, specified as a scalar, in degrees. If latitude is out of range, the block wraps it to be within
the range when Action for out-of-range input is set to None or Warning. It does not wrap when
Action for out-of-range is set to Error.
Data Types: double

l (deg) — Longitude
scalar

Longitude, specified as a scalar, in degrees. If longitude is out of range, the block wraps it to be
within the range when Action for out-of-range input is set to None or Warning. It does not wrap
when Action for out-of-range is set to Error.
Data Types: double

Decimal Year — Desired year
scalar

Desired year in a decimal format to include any fraction of the year that has already passed. The
value is the current year plus the number of days that have passed in this year divided by 365.

For example, to calculate the decimal year, dyear, for March 21, 2015:
dyear=decyear('21-March-2015','dd-mmm-yyyy')

dyear =
   2.0152e+03

Data Types: double

Output

Magnetic Field (nT) — Magnetic field
vector

Magnetic field, returned as a vector, in selected units.
Data Types: double

Horizontal Intensity (nT) — Horizontal intensity
scalar
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Horizontal intensity, returned as a scalar, in specified units.
Data Types: double

Declination (deg) — Declination
scalar

Declination, returned as a scalar, in degrees.
Data Types: double

Inclination (deg) — Inclination
scalar

Inclination, returned as a scalar, in degrees.
Data Types: double

Total Intensity (nT) — Total intensity
scalar

Total intensity, returned as a scalar, in selected units.
Data Types: double

Parameters
WMM coefficients — World Magnetic Model coefficient file

WMM2020 (2020-2025) (default) | WMM2015 V2 (2015-2020) | WMM2000 (2000-2005) |
WMM2005 (2005-2010) | WMM2010 (2010-2015) | WMM2015 V1 (2015-2020) | Custom

World Magnetic Model coefficient file, selected from the list.

• WMM2000 (2000-2005) — World Magnetic Model 2000 coefficient file
• WMM2005 (2005-2010) — World Magnetic Model 2005 coefficient file
• WMM2010 (2010-2015) — World Magnetic Model 2010 coefficient file
• WMM2015 V1 (2015-2020) — World Magnetic Model 2015(v1) coefficient file
• WMM2015 V2 (2015-2020) — World Magnetic Model 2015v2 coefficient file
• WMM2020 (2020-2025) — World Magnetic Model 2020 coefficient file
• Custom — Specify your own World Magnetic Model coefficient file. You can download a World

Magnetic Model coefficient file from The NOAA World Magnetic Model.

Dependencies

Selecting Custom enables the Custom .COF file parameter.

Programmatic Use
Block Parameter: model
Type: character vector
Values: 'WMM2020 (2020-2025)' | 'WMM2015 V2 (2015-2020)' | 'WMM2000 (2000-2005)' |
'WMM2005 (2005-2010)' | 'WMM2010 (2010-2015)' | 'WMM2015 V1 (2015-2020)' |
'Custom'
Default: 'WMM2020 (2020-2025)'
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Custom .COF file — Custom World Magnetic Model coefficient file

'WMM2020COF' (default) | any coefficient file name

World Magnetic Model coefficient file, downloaded from The NOAA World Magnetic Model. For
example, if you want to download a coefficient file not yet listed in the WMM coefficients list.

Dependencies

To enable this parameter, select Custom for the WMM coefficients parameter.

Programmatic Use
Block Parameter: customFile
Type: character vector
Values: 'WMM2020.COF' | any coefficient file name
Default: 'WMM2020.COF'

Units — Input and output units

Metric (MKS) (default) | English

Input and output units:

Units Height Magnetic Field Horizontal
Intensity

Total Intensity

Metric (MKS) Meters Nanotesla Nanotesla Nanotesla
English Feet Nanogauss Nanogauss Nanogauss

Programmatic Use
Block Parameter: units
Type: character vector
Values: 'Metric (MKS)' | 'English'
Default: 'Metric (MKS)'

Input decimal year — Input decimal year

on (default) | off

• To specify the decimal year with an input port for the World Magnetic Model 2015 block, select
this check box

• To specify the decimal year using the values of Month, Day, and Year, clear this check box.

Programmatic Use
Block Parameter: time_in
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Month — Input month

January (default) | February | March | April | May | June | July | August | September |
October | November | December

Month to calculate decimal year.
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Dependencies

To enable this parameter, select Input decimal year.

Programmatic Use
Block Parameter: month
Type: character vector
Values: 'January' | 'February' | 'March' | 'April' | 'May' | 'June' | 'July' | 'August' |
'September' | 'October' | 'November' | 'December'
Default: 'January'

Day — Input day

1 (default) | 1 to 31

Day to calculate decimal year.

Dependencies

To enable this parameter, select Input decimal year.

Programmatic Use
Block Parameter: day
Type: character vector
Values: '1' to '31'
Default: '1'

Year — Input year

2020 (default) | any year

Year to calculate decimal year.

Dependencies

To enable this parameter, select Input decimal year.

Programmatic Use
Block Parameter: year
Type: character vector
Values: any year
Default: '2020'

Action for out-of-range input — Out-of-range action

Error (default) | Warning | None

Out-of-range block behavior, specified as follows.

Action Description
None No action.
Warning Warning in the MATLAB Command Window, model simulation

continues.
Error (default) MATLAB returns an exception, model simulation stops.
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If longitude or latitude is out of range, the block wraps it to be within the range when Action for
out-of-range input is set to None or Warning. It does not wrap when Action for out-of-range is set
to Error.

The World Magnetic Model block accepts out-of-range height inputs (less than -1000 m or greater
than 850000 m) when Action for out-of-range is set to None or Warning. However, the block
output might not be accurate or reliable for these values. The World Magnetic Model is valid only
between -1000 m and 850000 m.

Programmatic Use
Block Parameter: action
Type: character vector
Values: 'Error' | 'Warning' | 'None'
Default: 'Error'

Output horizontal intensity — Output horizontal intensity

on (default) | off

To output the horizontal intensity value, select this check box. Otherwise, clear this check box.

Dependencies

To enable the Horizontal Intensity output port, select this check box.

Programmatic Use
Block Parameter: h_out
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Output declination — Output declination

on (default) | off

To output the declination, the angle between true north and the magnetic field vector (positive
eastwards), select this check box. Otherwise, clear this check box.

Dependencies

To enable the Declination output port, select this check box.

Programmatic Use
Block Parameter: dec_out
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Output inclination — Output inclination

on (default) | off

To output the inclination, the angle between the horizontal plane and the magnetic field vector
(positive downwards), select this check box. Otherwise, clear this check box.
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Dependencies

To enable the Inclination output port, select this check box.

Programmatic Use
Block Parameter: inc_out
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Output total intensity — Output total intensity

on (default) | off

To output the total intensity, select this check box. Otherwise, clear this check box.

Dependencies

To enable the Total Intensity output port, select this check box.

Programmatic Use
Block Parameter: ti_out
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
International Geomagnetic Reference Field | decyear

External Websites
The World Magnetic Model
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Zonal Harmonic Gravity Model
Calculate zonal harmonic representation of planetary gravity
Library: Aerospace Blockset / Environment / Gravity

Description
The Zonal Harmonic Gravity Model block calculates the zonal harmonic representation of planetary
gravity at a specific location based on planetary gravitational potential. This block provides a
convenient way to describe the gravitational field of a planet outside its surface.

By default, the block uses the fourth order zonal coefficient for Earth to calculate the zonal harmonic
gravity. It also allows you to specify the second or third zonal coefficient.

For information on the planetary parameter values for each planet in the block implementation, see
“Algorithms” on page 5-964.

Ports
Input

Xecef — Planet-centered planet-fixed coordinates
m-by-3 matrix

Planet-centered planet-fixed coordinates, specified as an m-by-3 matrix, from the center of the planet
in the selected length units. If Planet model has a value of Earth, this matrix contains Earth-
centered Earth-fixed (ECEF) coordinates.
Data Types: double

Output

gecef — Gravity values
m-by-3 array

Gravity values, returned as an m-by-3 array, in the x-axis, y-axis and z-axis of the planet-centered
planet-fixed coordinates, in the selected length units per second squared.
Data Types: double

Parameters
Units — Input units

Metric (MKS) (default) | English

Input units, specified as:
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Units Position Equatorial Radius Gravitational Parameter
Metric (MKS) Meters Meters Meters cubed per second

squared
English Feet Feet Feet cubed per second

squared

Programmatic Use
Block Parameter: units
Type: character vector
Values: 'Metric (MKS)' | 'English'
Default: 'Metric (MKS)'

Degree — Degree of harmonic model

4 (default) | 2 | 3

Degree of harmonic model, specified as.

• 2 — Second degree, J2. Most significant or largest spherical harmonic term, which accounts for
the oblateness of a planet.

• 3 — Third degree, J3.
• 4 — Fourth degree, J4 (default).

Programmatic Use
Block Parameter: degree
Type: character vector
Values: '2' | '3' | '4'
Default: '4'

Action for out-of-range input — Out-of-range input behavior

Warning (default) | ErrorNone

Out-of-range input behavior, specified as:

Value Description
None No action.
Warning Warning in the Diagnostic Viewer, model simulation continues.
Error MATLAB returns an exception, model simulation stops.

Programmatic Use
Block Parameter: action
Type: character vector
Values: 'None' | 'Warning' | 'Error'
Default: 'Warning'

Planet model — Planetary model

Mercury (default) | Venus | Earth | Moon | Mars | Jupiter | Saturn | Uranus | Neptune | Custom

Planetary model, specified as Mercury, Venus, Earth, Moon, Mars, Jupiter, Saturn, Uranus,
Neptune, or Custom.
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Selecting Custom enables you to specify your own planetary model.

• Selecting Mercury, Venus, Moon, Uranus, or Neptune limits the degree to 2.
• Selecting Mars limits the degree to 3.

Dependencies

Selecting Custom enables the Equatorial radius, Gravitational parameter and J values rate
parameters.

Programmatic Use
Block Parameter: ptype
Type: character vector
Values: 'Mercury' | 'Venus' | 'Earth' | 'Moon' | 'Mars' | 'Jupiter' | 'Saturn' | 'Uranus' |
'Neptune' | 'Custom'
Default: 'Earth'

Equatorial radius — Planetary equatorial radius

6378136.3 (default) | scalar

Planetary equatorial radius, specified as a scalar, in the length units that the Units parameter
defines.

Dependencies

To enable this parameter, set Planet model to Custom.

Programmatic Use
Block Parameter: R
Type: character vector
Values: scalar
Default: '6378136.3'

Gravitational parameter — Planetary gravitational parameter

398600441500000 (default) | scalar

Planetary gravitational parameter, specified as a scalar, in the length units cubed per second squared
that the Units parameter defines.

Dependencies

To enable this parameter, set Planet model to Custom.

Programmatic Use
Block Parameter: GM
Type: character vector
Values: scalar
Default: '398600441500000'

J values — Zonal harmonic coefficients

[1.0826269e-03 -2.5323000e-06 -1.6204000e-06] (default) | 3-element array

Zonal harmonic coefficient, specified as a 3-element array.
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Dependencies

To enable this parameter, set Planet model to Custom.

Programmatic Use
Block Parameter: jvalue
Type: character vector
Values: scalar
Default: '[1.0826269e-03 -2.5323000e-06 -1.6204000e-06]'

Algorithms
This block is implemented using the following planetary parameter values for each planet:

Planet Equatorial Radius
(Re) in Meters

Gravitational Parameter
(GM) in m 3 /s 2

Zonal Harmonic Coefficients
(J Values)

Earth 6378.1363e3 3.986004415e14 [ 0.0010826269 -0.0000025323
-0.0000016204 ]

Jupiter 71492e3 1.268e17 [0.01475 0 -0.00058]
Mars 3397.2e3 4.305e13 [ 0.001964 0.000036 ]
Mercury 2439.0e3 2.2032e13 0.00006
Moon 1738.0e3 4902.799e9 0.0002027
Neptune 24764e3 6.809e15 0.004
Saturn 60268e3 3.794e16 [0.01645 0 -0.001]
Uranus 25559e3 5.794e15 0.012
Venus 6052.0e3 3.257e14 0.000027

Version History
Introduced in R2009b

References
[1] Vallado, David, Fundamentals of Astrodynamics and Applications. New York: McGraw-Hill, 1997.

[2] Fortescue, P., J. Stark, G. Swinerd, eds.. Spacecraft Systems Engineering, 3d ed. West Sussex:
Wiley & Sons, 2003.

[3] Tewari, A. Boston: Atmospheric and Space Flight Dynamics Modeling and Simulation with
MATLAB and Simulink. Boston: Birkhäuser, 2007.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

5 Blocks

5-964



See Also
Centrifugal Effect Model | Spherical Harmonic Gravity Model
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asbFlightControlAnalysis
Start flight control analysis template

Syntax
asbFlightControlAnalysis()
asbFlightControlAnalysis(configuration)
asbFlightControlAnalysis(configuration,modelToAnalyze)
asbFlightControlAnalysis(configuration,modelToAnalyze,airframe)

Description
asbFlightControlAnalysis() creates a flight control analysis template for a 3DOF configuration.

asbFlightControlAnalysis(configuration) creates a flight control analysis template for a
specified configuration.

asbFlightControlAnalysis(configuration,modelToAnalyze) creates a flight control
analysis model with the specified model name.

asbFlightControlAnalysis(configuration,modelToAnalyze,airframe) creates a flight
control analysis template for a specified airframe model.

Examples

Start Flight Control Analysis Template for 3DOF Configuration

Start default flight control analysis template for 3DOF configuration.

asbFlightControlAnalysis

Start Flight Control Analysis Template for 6DOF Configuration

Start default flight control analysis template for 6DOF configuration.

asbFlightControlAnalysis('6DOF')

Start Flight Control Analysis Template Using a Different Airframe Model

Start the 3DOF flight control analysis template SkyHoggAnalysisModel and trim the model around
the opSpecDefault operating point specification object. The example then linearizes the airframe
model around the opTrim operating point and calculates the short- and long-period (phugoid) mode
characteristics of linSys.
asbFlightControlAnalysis('3DOF', 'SkyHoggAnalysisModel');
opSpecDefault = SkyHogg3DOFOpSpec('SkyHoggAnalysisModel');
opTrim = trimAirframe('SkyHoggAnalysisModel', opSpecDefault);
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linSys = linearizeAirframe('SkyHoggAnalysisModel', opTrim)
flyingQual = computeLongitudinalFlyingQualities('SkyHoggAnalysisModel', linSys)

Input Arguments
configuration — Configuration for flight control analysis
'3DOF' (default) | '6DOF'

Configuration for flight control analysis
Data Types: char | string

modelToAnalyze — Name for flight control analysis model being created
model name

Name for flight control analysis model being created.
Data Types: char | string

airframe — Airframe to analyze
airframe subsystem specified as a block path (default) | airframe model specified as a model name

Airframe to analyze, specified as an airframe model name (inserted as a referenced model).
Otherwise, the subsystem must be loaded.
Data Types: char | string

Version History
Introduced in R2018b

See Also
computeLateralDirectionalFlyingQualities | computeLongitudinalFlyingQualities |
linearizeAirframe | trimAirframe

Topics
“Analyze Dynamic Response and Flying Qualities of Aerospace Vehicles” on page 2-56
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ASim3dActor
Abstract class to use as a base class for user-defined Unreal Engine C++ or blueprint actors

Description
ASim3dActor is an abstract class that you can use as a base class for user-defined Unreal Engine C+
+ or blueprint actors.

The base classes are inherently synchronized during co-simulation with a Simulink model.
Additionally, the Simulation 3D Actor Transform Set block can control the base class. To extend
behavior of ASim3dActor, you can use the message interface functions to override the class methods
so they send and receive messages to and from a model.

ASim3dActor is included in the Aerospace Blockset Interface for Unreal Engine Projects. For
information about the support package, see “Customize 3D Scenes for Aerospace Blockset
Simulations” on page 4-2.

Properties
Translation — Actor translation
1-by-3 (default) | number of parts per actor-by-3

This property is protected. It is used in the derived C++ class. Value is set by the Simulation 3D Actor
Transform Set block.

Actor translation along world X-, Y, and Z- axes, respectively, in m. Array dimensions are number of
parts per actor-by-3.
Data Types: float

Rotation — Actor rotation
1-by-3 (default) | number of parts per actor-by-3

This property is protected. It is used in the derived C++ class. Value is set by the Simulation 3D Actor
Transform Set block.

Actor rotation across a [-pi/2, pi/2] range about world X-, Y, and Z- axes, respectively, in rad. Array
dimensions are number of parts per actor-by-3.
Data Types: float

Scale — Actor scale
1-by-3 (default) | number of parts per actor-by-3

This property is protected. It is used in the derived C++ class. Value is set by the Simulation 3D Actor
Transform Set block.

Actor scale. Array dimensions are number of parts per actor-by-3.
Data Types: float
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Object Functions
Sim3dSetup C++ method that sets up actor in Unreal Engine 3D simulation
Sim3dStep C++ method that steps actor in Unreal Engine 3D simulation
Sim3dRelease C++ method that releases actor in Unreal Engine 3D simulation

Version History
Introduced in R2021b

See Also
StartSimulation3DMessageReader | ReadSimulation3DMessage |
StopSimulation3DMessageReader | StartSimulation3DMessageWriter |
WriteSimulation3DMessage | StopSimulation3DMessageWriter

External Websites
Unreal Engine 4 Documentation
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computeLateralDirectionalFlyingQualities
Calculate dutch roll mode, roll mode, and spiral mode characteristics of state-space model

Syntax
computeLateralDirectionalFlyingQualities(modelToAnalyze)
lonFQOut = computeLateralDirectionalFlyingQualities(modelToAnalyze,linSys)
lonFQOut = computeLateralDirectionalFlyingQualities(modelToAnalyze,linSys,
generatePlots)
[lonFQOut,varNameOut] = computeLateralDirectionalFlyingQualities( ___ ,
Name,Value)

Description
computeLateralDirectionalFlyingQualities(modelToAnalyze) calculates the lateral-
directional flying qualities (dutch roll mode, roll mode, and spiral mode) characteristics using the
linear system state-space model selected in the input dialog window and compares the results against
the specified source document requirements.

lonFQOut = computeLateralDirectionalFlyingQualities(modelToAnalyze,linSys)
calculates lateral-directional flying quality characteristics (dutch roll mode, roll mode, and spiral
mode) using the linear system state-space model provided as an input to the function.

lonFQOut = computeLateralDirectionalFlyingQualities(modelToAnalyze,linSys,
generatePlots) displays the pole-zero map for the linear system state-space model..

[lonFQOut,varNameOut] = computeLateralDirectionalFlyingQualities( ___ ,
Name,Value) returns the output results structure variable name, varNameOut, for the input
argument combination in the previous syntax, according to the Name,Value arguments.

Examples

Calculate Lateral-Directional Flying Qualities of Simulink Aircraft Model

Calculate the lateral-directional flying qualities of a Simulink aircraft model.
asbFlightControlAnalysis('6DOF', 'DehavillandBeaverAnalysisModel');
opSpecDefault = DehavillandBeaver6DOFOpSpec('DehavillandBeaverAnalysisModel');
opTrim = trimAirframe('DehavillandBeaverAnalysisModel', opSpecDefault);
linSys = linearizeAirframe('DehavillandBeaverAnalysisModel', opTrim);
latFlyingQual = computeLateralDirectionalFlyingQualities('DehavillandBeaverAnalysisModel', linSys)

Operating point search report:
---------------------------------

 Operating point search report for the Model DehavillandBeaverAnalysisModel.
 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States: 
----------
(1.) phi
      x:         0.021      dx:     -1.12e-20 (0)
(2.) theta
      x:        0.0653      dx:      3.91e-22 (0)
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(3.) psi
      x:             0      dx:      -1.7e-20 (0)
(4.) p
      x:        -1e-20      dx:     -7.37e-12 (0)
(5.) q
      x:      3.52e-23      dx:      3.42e-10 (0)
(6.) r
      x:     -1.69e-20      dx:      -1.2e-11 (0)
(7.) U
      x:          67.3      dx:      1.79e-13 (0)
(8.) v
      x:        0.0927      dx:     -4.63e-11 (0)
(9.) w
      x:           4.4      dx:      2.02e-11 (0)
(10.) Xe
      x:     -3.86e-13      dx:          67.5
(11.) Ye
      x:     -1.18e-12      dx:      4.21e-12 (0)
(12.) Ze
      x:      -2.2e+03      dx:      5.97e-11 (0)
(13.) DehavillandBeaverAnalysisModel/Environment Model/Dryden Wind Turbulence Model  (Continuous (+q +r))/Filters on angular rates/Hpgw/pgw_p
      x:             0      dx:             0
      x:             0      dx:             0
(14.) DehavillandBeaverAnalysisModel/Environment Model/Dryden Wind Turbulence Model  (Continuous (+q +r))/Filters on angular rates/Hqgw/qgw_p
      x:             0      dx:             0
      x:             0      dx:             0
(15.) DehavillandBeaverAnalysisModel/Environment Model/Dryden Wind Turbulence Model  (Continuous (+q +r))/Filters on angular rates/Hrgw/rgw_p
      x:             0      dx:             0
      x:             0      dx:             0
(16.) DehavillandBeaverAnalysisModel/Environment Model/Dryden Wind Turbulence Model  (Continuous (+q +r))/Filters on velocities/Hugw(s)/ug_p
      x:             0      dx:             0
      x:             0      dx:             0
(17.) DehavillandBeaverAnalysisModel/Environment Model/Dryden Wind Turbulence Model  (Continuous (+q +r))/Filters on velocities/Hvgw(s)/vg_p1
      x:             0      dx:             0
      x:             0      dx:             0
(18.) DehavillandBeaverAnalysisModel/Environment Model/Dryden Wind Turbulence Model  (Continuous (+q +r))/Filters on velocities/Hvgw(s)/vgw_p2
      x:             0      dx:             0
      x:             0      dx:             0
(19.) DehavillandBeaverAnalysisModel/Environment Model/Dryden Wind Turbulence Model  (Continuous (+q +r))/Filters on velocities/Hwgw(s)/wg_p1
      x:     -8.13e-14      dx:             0
      x:      5.37e-15      dx:             0
(20.) DehavillandBeaverAnalysisModel/Environment Model/Dryden Wind Turbulence Model  (Continuous (+q +r))/Filters on velocities/Hwgw(s)/wg_p2
      x:             0      dx:             0
      x:             0      dx:             0

Inputs: 
----------
(1.) DehavillandBeaverAnalysisModel/AileronCmd
      u:       0.00234    [-0.524 0.524]
(2.) DehavillandBeaverAnalysisModel/ElevatorCmd
      u:        0.0239    [-0.524 0.524]
(3.) DehavillandBeaverAnalysisModel/RudderCmd
      u:       -0.0377    [-1.05 1.05]
(4.) DehavillandBeaverAnalysisModel/ThrottleCmd
      u:         0.493    [0 1]

Outputs: 
----------
(1.) DehavillandBeaverAnalysisModel/StatesOut
      y:     -3.86e-13    [-Inf Inf]
      y:     -1.18e-12    [-Inf Inf]
      y:      -2.2e+03    [-Inf Inf]
      y:         0.021    [-Inf Inf]
      y:        0.0653    [-Inf Inf]
      y:             0    [-Inf Inf]
      y:          67.3    [-Inf Inf]
      y:        0.0927    [-Inf Inf]
      y:           4.4    [-Inf Inf]
      y:        -1e-20    [-Inf Inf]
      y:      3.52e-23    [-Inf Inf]
      y:     -1.69e-20    [-Inf Inf]

latFlyingQual = 

  struct with fields:

    DutchRollMode: [1×1 struct]
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         RollMode: [1×1 struct]
       SpiralMode: [1×1 struct]

Calculate Lateral-Directional Flying Qualities of Aero.FixedWing Object

Calculate the lateral-directional flying qualities of an Aero.FixedWing object.
[aircraft, state] = astDehavillandBeaver();
linSys = linearize(aircraft, state)
latFlyingQual = computeLateralDirectionalFlyingQualities('', linSys)

linSys =
 
  A = 
                  XN          XE          XD           U           V
   XN              0           0           0      0.9896           0
   XE              0           0           0           0           1
   XD              0           0           0     -0.1439           0
   U               0           0           0    -0.01339  -0.0004123
   V               0           0           0   -0.004288    -0.02862
   W               0           0           0     -0.1996    0.001044
   P               0           0           0  -0.0006608    -0.08777
   Q               0           0           0     0.03146   -0.002583
   R               0           0           0   0.0008302    0.003697
   Phi             0           0           0           0           0
   Theta           0           0           0           0           0
   Psi             0           0           0           0           0
 
                   W           P           Q           R         Phi
   XN         0.1439           0           0           0           0
   XE              0           0           0           0       6.475
   XD         0.9896           0           0           0   3.238e-05
   U           0.287           0     -0.2437           0      0.1845
   V       -0.006164     -0.2064           0      -44.39       9.621
   W          -1.262           0       43.92           0     -0.7921
   P       -0.001175      -5.218   -0.003787       1.771      -0.569
   Q         -0.1426  -1.697e-07      -2.947     -0.2721     -0.1121
   R       0.0001093     -0.8464      0.1728     -0.5366     0.02393
   Phi             0           1           0      0.1454   4.142e-22
   Theta           0           0           1           0   -2.99e-19
   Psi             0           0           0       1.011   2.878e-21
 
               Theta         Psi
   XN         -6.476  -0.0002227
   XE              0          45
   XD         -44.53   3.238e-05
   U           -9.89    0.008391
   V         0.03322       1.388
   W           1.043      0.1316
   P         0.00533    -0.08135
   Q         -0.0687      -0.023
   R       -0.005422    0.002902
   Phi     3.053e-19           0
   Theta           0           0
   Psi     4.394e-20           0
 
  B = 
            Aileron       Flap   Elevator     Rudder  Propeller
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   XN             0          0          0          0          0
   XE             0          0          0          0          0
   XD             0          0          0          0          0
   U              0     0.6608          0     0.3456      5.018
   V           -0.3          0          0       1.94          0
   W              0      -15.8     -4.068          0          0
   P         -7.019          0          0      0.491          0
   Q              0      2.163     -10.21          0          0
   R        -0.1925          0          0     -2.509          0
   Phi            0          0          0          0          0
   Theta          0          0          0          0          0
   Psi            0          0          0          0          0
 
  C = 
             XN     XE     XD      U      V      W      P      Q      R
   XN         1      0      0      0      0      0      0      0      0
   XE         0      1      0      0      0      0      0      0      0
   XD         0      0      1      0      0      0      0      0      0
   U          0      0      0      1      0      0      0      0      0
   V          0      0      0      0      1      0      0      0      0
   W          0      0      0      0      0      1      0      0      0
   P          0      0      0      0      0      0      1      0      0
   Q          0      0      0      0      0      0      0      1      0
   R          0      0      0      0      0      0      0      0      1
   Phi        0      0      0      0      0      0      0      0      0
   Theta      0      0      0      0      0      0      0      0      0
   Psi        0      0      0      0      0      0      0      0      0
 
            Phi  Theta    Psi
   XN         0      0      0
   XE         0      0      0
   XD         0      0      0
   U          0      0      0
   V          0      0      0
   W          0      0      0
   P          0      0      0
   Q          0      0      0
   R          0      0      0
   Phi        1      0      0
   Theta      0      1      0
   Psi        0      0      1
 
  D = 
            Aileron       Flap   Elevator     Rudder  Propeller
   XN             0          0          0          0          0
   XE             0          0          0          0          0
   XD             0          0          0          0          0
   U              0          0          0          0          0
   V              0          0          0          0          0
   W              0          0          0          0          0
   P              0          0          0          0          0
   Q              0          0          0          0          0
   R              0          0          0          0          0
   Phi            0          0          0          0          0
   Theta          0          0          0          0          0
   Psi            0          0          0          0          0
 
Continuous-time state-space model.
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latFlyingQual = 

  struct with fields:

    DutchRollMode: [1×1 struct]
         RollMode: [1×1 struct]
       SpiralMode: [1×1 struct]

Input Arguments
modelToAnalyze — Model on which to perform flight control analysis
'' (default) | model name

Model on which to perform flight control analysis using the linear state-space model linSys. To use
a state-space model directly, set the model name to an empty string, ''.
Data Types: char | string

linSys — State-space model object
'' (default) | linear state-space model object name

State-space model object used to perform flight control analysis on modelToAnalyze. To create the
state-space model from the input dialog menu, set linSys to an empty string, ''. To create a valid
state-space model, see linearizeAirframe.

The state-space model must have these state names:

• U
• W
• Q
• theta

Data Types: char | string

generatePlots — Display pole-zero map
off | on

Set to on to display pole-zero map for the linear system state-space model. Otherwise, set to off.
Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'SourceDocument','MIL1797A'

SourceDocument — Document for flying qualities requirements verification
MIL8785C (default) | MIL1797A
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Document for flying qualities requirements verification, specified as:

• MIL8785C — Flying qualities of piloted airlines
• MIL1797A — Flying qualities of piloted aircraft

Data Types: char | string

Level — Flying qualities level
Lowest (default) | All | 1 | 2 | 3

Flying qualities level, specified as:

• Lowest — Returns the verified requirements closest to level 1 for each requirement in the
selected source document.

• All — Returns a struct vector with all requirement levels and their verification status.
• 1, 2, or 3 — Returns the desired requirement level, regardless of the verification status.

Data Types: char | string

Output Arguments
lonFQOut — Dutch roll, roll, and spiral lateral-directional flying qualities
structure vector

Dutch roll, roll, and spiral lateral-directional flying qualities, returned as a structure vector.

varNameOut — Output results structure
scalar string | ''

If a linear system is selected through the input dialog, varNameOut returns the results structure
variable name. Otherwise, varNameOut returns an empty string.

Limitations
This function requires the Simulink Control Design license.

Version History
Introduced in R2019a

See Also
asbFlightControlAnalysis | computeLongitudinalFlyingQualities |
linearizeAirframe | trimAirframe

Topics
“Analyze Dynamic Response and Flying Qualities of Aerospace Vehicles” on page 2-56
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computeLongitudinalFlyingQualities
Calculate short-period and long-period (phugoid) mode characteristics of specified state-space model

Syntax
lonFQOut = computeLongitudinalFlyingQualities(modelToAnalyze)
lonFQOut = computeLongitudinalFlyingQualities(modelToAnalyze,linSys)
lonFQOut = computeLongitudinalFlyingQualities(modelToAnalyze,linSys,
generatePlots)
[lonFQOut,varNameOut] = computeLongitudinalFlyingQualities( ___ ,Name,Value)

Description
lonFQOut = computeLongitudinalFlyingQualities(modelToAnalyze) calculates
longitudinal flying qualities (short-period and phugoid mode) using the linear system state-space
model selected in the input dialog window and compares the results against the specified source
document requirements.

lonFQOut = computeLongitudinalFlyingQualities(modelToAnalyze,linSys) calculates
longitudinal flying qualities (short-period and phugoid mode) using the linear system state-space
model selected in the input dialog window.

To create a usable state-space model, use the linearizeAirframe function.

lonFQOut = computeLongitudinalFlyingQualities(modelToAnalyze,linSys,
generatePlots) calculates longitudinal flying qualities (short-period and phugoid mode) using
linear system state-space model linSys.

[lonFQOut,varNameOut] = computeLongitudinalFlyingQualities( ___ ,Name,Value)
returns the output results structure variable name, varNameOut, for the input argument combination
in the previous syntax, according to the Name,Value arguments.

Examples

Calculate Longitudinal Flying Qualities of Simulink Aircraft Model

Calculate the longitudinal flying qualities of a Simulink aircraft model.
asbFlightControlAnalysis('3DOF', 'SkyHoggAnalysisModel');
opSpecDefault = SkyHogg3DOFOpSpec('SkyHoggAnalysisModel');
opTrim = trimAirframe('SkyHoggAnalysisModel', opSpecDefault);
linSys = linearizeAirframe('SkyHoggAnalysisModel', opTrim)
flyingQual = computeLongitudinalFlyingQualities('SkyHoggAnalysisModel', linSys)

 Operating point search report:
---------------------------------

 Operating point search report for the Model SkyHoggAnalysisModel.
 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
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States: 
----------
(1.) Xe
      x:     -4.45e-14      dx:           129
(2.) Ze
      x:        -2e+03      dx:     -1.69e-07 (0)
(3.) theta
      x:       0.00619      dx:             0 (0)
(4.) u
      x:           129      dx:      -7.9e-08 (0)
(5.) w
      x:         0.802      dx:     -5.24e-07 (0)
(6.) q
      x:             0      dx:     -8.41e-08 (0)

Inputs: 
----------
(1.) SkyHoggAnalysisModel/ElevatorCmd
      u:        0.0125    [-0.349 0.349]
(2.) SkyHoggAnalysisModel/ThrottleCmd
      u:         0.929    [-Inf Inf]

Outputs: 
----------
(1.) SkyHoggAnalysisModel/LonStatesBus
      y:     -4.45e-14    [-Inf Inf]
      y:        -2e+03    [-Inf Inf]
      y:       0.00619    [-Inf Inf]
      y:           129    [-Inf Inf]
      y:         0.802    [-Inf Inf]
      y:             0    [-Inf Inf]

linSys =
 
  A = 
                 u         w         q     theta
   u      -0.05768   0.04733   -0.8016    -9.806
   w       -0.1149    -5.532     129.4  -0.06073
   q      0.001031   -0.1665         0         0
   theta         0         0         1         0
 
  B = 
          ElevatorCmd  ThrottleCmd
   u           0.4828         0.36
   w            30.57            0
   q           -15.86            0
   theta            0            0
 
  C = 
              u      w      q  theta
   q          0      0      1      0
   theta      0      0      0      1
 
  D = 
          ElevatorCmd  ThrottleCmd
   q                0            0
   theta            0            0
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Continuous-time state-space model.

flyingQual = 

  struct with fields:

        PhugoidMode: [1×1 struct]
    ShortPeriodMode: [1×1 struct]

Calculate Longitudinal Flying Qualities of Aero.FixedWing Object

Calculate the longitudinal flying qualities of an Aero.FixedWing object.
[aircraft, state] = astSkyHogg();
linSys = linearize(aircraft, state)
flyingQual = computeLongitudinalFlyingQualities('', linSys)

linSys =
 
  A = 
                 XN         XD          U          W          Q      Theta
   XN             0          0     0.9999     0.0154          0  5.186e-05
   XD             0          0    -0.0154     0.9999          0     -1.719
   U              0          0   -0.04342     0.1119   -0.02653    -0.1712
   W              0          0    -0.1286     -4.082      1.719  -0.002637
   Q              0          0     0.1083     -7.037          0          0
   Theta          0          0          0          0          1          0
 
  B = 
           Elevator  Propeller
   XN             0          0
   XD             0          0
   U      -0.002381      8.837
   W        -0.2997          0
   Q         -8.908          0
   Theta          0          0
 
  C = 
             XN     XD      U      W      Q  Theta
   XN         1      0      0      0      0      0
   XD         0      1      0      0      0      0
   U          0      0      1      0      0      0
   W          0      0      0      1      0      0
   Q          0      0      0      0      1      0
   Theta      0      0      0      0      0      1
 
  D = 
           Elevator  Propeller
   XN             0          0
   XD             0          0
   U              0          0
   W              0          0
   Q              0          0
   Theta          0          0
 
Continuous-time state-space model.

flyingQual = 

  struct with fields:

        PhugoidMode: [1×1 struct]
    ShortPeriodMode: [1×1 struct]

Input Arguments
modelToAnalyze — Model on which to perform flight control analysis
'' (default) | model name
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Model on which to perform flight control analysis using the linear state-space model linSys. To use
a state-space model directly, set the model name to an empty string, ''.
Data Types: char | string

linSys — Linear state-space model object
'' (default) | linear state-space model object name

Linear state-space model object used to perform flight control analysis on modelToAnalyze. To
create the state-space model from the input dialog menu, set linSys to an empty string, ''. To
create a valid state-space model, see linearizeAirframe.

The state-space model must have these state names:

• U
• W
• Q
• theta

Data Types: char | string

generatePlots — Display pole-zero map
off | on

Set to on to display pole-zero map for the linear system state-space model. Otherwise, set to off.
Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'SourceDocument','MIL1797A'

SourceDocument — Document for flying qualities requirements verification
MIL8785C (default) | MIL1797A

Document for flying qualities requirements verification, specified as:

• MIL8785C — Flying qualities of piloted airlines
• MIL1797A — Flying qualities of piloted aircraft

Data Types: char | string

Level — Flying qualities level
Lowest (default) | All | 1 | 2 | 3

Flying qualities level, specified as:

• Lowest — Returns the verified requirements closest to level 1 for each requirement in the
selected source document.
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• All — Returns a struct vector with all requirement levels and their verification status.
• 1, 2, or 3 — Returns the desired requirement level, regardless of the verification status.

Data Types: char | string

Output Arguments
lonFQOut — Phugoid and short-period longitudinal flying qualities
structure vector

Phugoid and short-period longitudinal flying qualities, returned as a structure vector.

varNameOut — Output results structure
scalar string | ''

If a linear system is selected through the input dialog, varNameOut returns the results structure
variable name. Otherwise, varNameOut returns an empty string.

Limitations
This function requires the Simulink Control Design license.

Version History
Introduced in R2018b

See Also
asbFlightControlAnalysis | computeLateralDirectionalFlyingQualities |
linearizeAirframe | trimAirframe

Topics
“Analyze Dynamic Response and Flying Qualities of Aerospace Vehicles” on page 2-56
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sim3d.Editor
Interface to the Unreal Engine project

Description
Use the sim3d.Editor class to interface with the Unreal Editor.

To develop scenes with the Unreal Editor and co-simulate with Simulink, you need the support
package. The support package contains an Unreal Engine project that allows you to customize the
scenes. For information about the support package, see “Customize 3D Scenes for Aerospace
Blockset Simulations” on page 4-2.

Creation

Syntax
sim3d.Editor(project)

Description

MATLAB creates an sim3d.Editor object for the Unreal Editor project specified in sim3d.Editor(
project).

Input Arguments

project — Project path and name
string array

Project path and name.
Example: "C:\Local\AutoVrtlEnv\AutoVrtlEnv.uproject"
Data Types: string

Properties
Uproject — Project path and name
string array

This property is read-only.

Project path and name with Unreal Engine project file extension.
Example: "C:\Local\AutoVrtlEnv\AutoVrtlEnv.uproject"
Data Types: string
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Object Functions
open Open the Unreal Editor

Examples

Open Project in Unreal Editor

Open an Unreal Engine project in the Unreal Editor.

Create an instance of the sim3d.Editor class for the Unreal Engine project located in C:\Local
\AutoVrtlEnv\AutoVrtlEnv.uproject.
editor = sim3d.Editor(fullfile("C:\Local\AutoVrtlEnv\AutoVrtlEnv.uproject"))

Open the project in the Unreal Editor.
editor.open();

Version History
Introduced in R2021b

See Also
Topics
“Customize 3D Scenes for Aerospace Blockset Simulations” on page 4-2
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linearizeAirframe
Linearize airframe model around operating points

Syntax
linSys = linearizeAirframe(modelToAnalyze)
linSys = linearizeAirframe(modelToAnalyze)
linSys = linearizeAirframe(modelToAnalyze,opPoint)
linSys = linearizeAirframe(modelToAnalyze,opPoint,generatePlots)

Description
linSys = linearizeAirframe(modelToAnalyze) linearizes an airframe model around a
specified operating point or operating point specification object and generates an output state-space
model that contains only longitudinal states. A Linearize Airframe dialog window prompts you to
select an operating point or operating point specification object from the base workspace. If an
operating point or operating point specification object does not exist in the base workspace, click the
Launch Trim Tool button in the Linearize Airframe dialog window. This button starts the Simulink
Control Design Model Linearizer in which you can create the operating point specification object. The
linearizeAirframe function uses this object as the operating condition around which to linearize
the airframe model.

linSys = linearizeAirframe(modelToAnalyze) linearizes an airframe model around the
specified operating point object or operating point specification object.

linSys = linearizeAirframe(modelToAnalyze,opPoint) linearizes an airframe model
around the specified operating point object or operating point specification object.

linSys = linearizeAirframe(modelToAnalyze,opPoint,generatePlots) displays bode
and step plot results of longitudinal linearization.

Examples

Linearize Model Around a Provided Operating Point Specification Object

Linearize the model SkyHoggAnalysisModel around the operating point, opTrim. This example
starts the flight control analysis template using asbFlightControlAnalysis and trims the model
around the opSpecDefault operating point specification object. It then linearizes the airframe
model around the opTrim operating point and calculates the short- and long-period (phugoid) mode
characteristics of linSys.
asbFlightControlAnalysis('3DOF', 'SkyHoggAnalysisModel');
opSpecDefault = SkyHogg3DOFOpSpec('SkyHoggAnalysisModel');
opTrim = trimAirframe('SkyHoggAnalysisModel', opSpecDefault);

 linearizeAirframe

6-19



linSys = linearizeAirframe('SkyHoggAnalysisModel', opTrim)
flyingQual = computeLongitudinalFlyingQualities('SkyHoggAnalysisModel', linSys)

Input Arguments
modelToAnalyze — Model on which to perform flight control analysis
model name

Model on which to perform flight control analysis. This model must be previously created with the
asbFlightControlAnalysis function.
Data Types: char | string

opPoint — Operating point object
operating point object

Operating point object used to linearize the model modelToAnalyze.
Data Types: char | string

generatePlots — Display pole-zero map
model name

Display pole-zero map for the linear system state-space model.
Data Types: char | string

Output Arguments
linSys — State-space model object
linear state-space model object name

State space model object representing the linearized airframe model at a specified operating point.
Data Types: char | string

Limitations
This function requires the Simulink Control Design license.

Version History
Introduced in R2018b

See Also
asbFlightControlAnalysis | computeLateralDirectionalFlyingQualities |
computeLongitudinalFlyingQualities | trimAirframe | Model Linearizer

Topics
“Analyze Dynamic Response and Flying Qualities of Aerospace Vehicles” on page 2-56

6 Functions

6-20



linearizeLongitudinalAirframe
Linearize airframe model around operating points

Note This function is not recommended. Use linearizeAirframe instead.

Syntax
linearizeLongitudinalAirframe(modelToAnalyze)
linearizeLongitudinalAirframe(modelToAnalyze,opPoint)
linearizeLongitudinalAirframe(modelToAnalyze,opPoint,generatePlots)

Description
linearizeLongitudinalAirframe(modelToAnalyze) linearizes an airframe model around a
specified operating point or operating point specification object and generates an output state-space
model that contains only longitudinal states. A Linearize Airframe dialog window prompts you to
select an operating point or operating point specification object from the base workspace. If an
operating point or operating point specification object does not exist in the base workspace, click the
Launch Trim Tool button in the Trim Airframe dialog window. This button starts the Simulink
Control Design Model Linearizer in which you can create the operating point specification object.
From this object, the linearizeLongitudinalAirframe function creates the operating point.

linearizeLongitudinalAirframe(modelToAnalyze,opPoint) linearizes an airframe model
around the specified operating point object or operating point specification object.

linearizeLongitudinalAirframe(modelToAnalyze,opPoint,generatePlots) displays
bode and step plot results of longitudinal linearization.

Examples

Linearize Model While Specifying an Operating Point Specification Object

Linearize the model SkyHoggAnalysisModel and specify an operating point, opTrim. This example
starts the flight control analysis template using asbFlightControlAnalysis and trims the model
around the opSpecDefault operating point specification object. It then linearizes the airframe
model around the opTrim operating point and calculates the short- and long-period (phugoid) mode
characteristics of linSys.
asbFlightControlAnalysis('3DOF', 'SkyHoggAnalysisModel');
opSpecDefault = SkyHogg3DOFOpSpec('SkyHoggAnalysisModel');
opTrim = trimAirframe('SkyHoggAnalysisModel', opSpecDefault);
linSys = linearizeLongitudinalAirframe('SkyHoggAnalysisModel', opTrim)
flyingQual = computeLongitudinalFlyingQualities('SkyHoggAnalysisModel', linSys)

Input Arguments
modelToAnalyze — Model on which to perform flight control analysis
model name
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Model on which to perform flight control analysis using the linear state-space model linSys. This
model must be previously created with the asbFlightControlAnalysis function.
Data Types: char | string

opPoint — Linear state-space model
linear state-space model name

Linear state-space model used to perform flight control analysis on modelToAnalyze.
Data Types: char | string

generatePlots — Display pole-zero map
model name

Display pole-zero map for the linear system state-space model.
Data Types: char | string

Limitations
This function requires the Simulink Control Design license.

Version History
Introduced in R2018b

linearizeLongitudinalAirframe not recommended
Behavior changed in R2019a

This function is not recommended. Use linearizeAirframe instead.

See Also
linearizeAirframe | asbFlightControlAnalysis |
computeLongitudinalFlyingQualities | trimAirframe | Model Linearizer

Topics
“Analyze Dynamic Response and Flying Qualities of Aerospace Vehicles” on page 2-56
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open
Open the Unreal Editor

Syntax
[status,result] = open(sim3dEditorObj)

Description
[status,result] = open(sim3dEditorObj) opens the Unreal Engine project in the Unreal
Editor.

To develop scenes with the Unreal Editor and co-simulate with Simulink, you need the Aerospace
Blockset Interface for Unreal Engine Projects support package. The support package contains an
Unreal Engine project that allows you to customize the scenes. For information about the support
package, see “Customize 3D Scenes for Aerospace Blockset Simulations” on page 4-2.

Input Arguments
sim3dEditorObj — sim3d.Editor object
sim3d.Editor object

sim3d.Editor object for the Unreal Engine project.

Output Arguments
status — Command exit status
0 | nonzero integer

Command exit status, returned as either 0 or a nonzero integer. When the command is successful,
status is 0. Otherwise, status is a nonzero integer.

• If command includes the ampersand character (&), then status is the exit status when command
starts

• If command does not include the ampersand character (&), then status is the exit status upon
command completion.

result — Output of operating system command
character vector

Output of the operating system command, returned as a character vector. The system shell might not
properly represent non-Unicode® characters.

Version History
Introduced in R2021b
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See Also
sim3d.Editor

Topics
“Customize 3D Scenes for Aerospace Blockset Simulations” on page 4-2
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ReadSimulation3DMessage
Receives message from Simulink model using a message reader object

Syntax
status=ReadSimulation3DMessage(MessageReader, dataSize, data)

Description
status=ReadSimulation3DMessage(MessageReader, dataSize, data) receives a message
from a Simulink model using a message reader object.

The C++ syntax is
int ReadSimulation3DMessage(void *MessageReader, uint32 dataSize, void *data);

Input Arguments
MessageReader — Pointer to message reader object
object pointer

Pointer to message reader object, ReadSimulation3DMessage.
Data Types: void *

dataSize — Size of data
number of bytes | scalar

Size of data, that is, data (sizeof(datatype) *num_of_elements). For example, if you want to
read a vector of 3 floats, the data size is sizeof(float)*3.
Data Types: uint32

data — Pointer to data object
object pointer

Pointer to data object.
Data Types: void *

Output Arguments
status — Operation exit status
0 | nonzero integer

Status, returned as either 0 or a nonzero integer. When the operation is successful, status is 0.
Otherwise, status is a nonzero integer.

Version History
Introduced in R2021b
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See Also
ASim3dActor

External Websites
Unreal Engine 4 Documentation

6 Functions
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Sim3dRelease
C++ method that releases actor in Unreal Engine 3D simulation

Syntax
void ASetGetActorLocation::Sim3dRelease()

Description
The C++ method void ASetGetActorLocation::Sim3dRelease() releases an actor in the
Unreal Engine 3D simulation environment. The Unreal Engine AActor::EndPlay class calls the
Sim3dRelease method when the 3D simulation ends.

Examples

Release Actor
void ASetGetActorLocation::Sim3dRelease()
{
   Super::Sim3dRelease();
   if (MessageReader) {
          StopSimulation3DMessageReader (SignalReader);
   }
   MessageReader = nullptr;   

   if (MessageWriter) {
          StopSimulation3DMessageWriter (SignalWriter);
   }
   MessageWriter = nullptr;
}

Version History
Introduced in R2021b

See Also
ASim3dActor

External Websites
Unreal Engine 4 Documentation

 Sim3dRelease
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Sim3dSetup
C++ method that sets up actor in Unreal Engine 3D simulation

Syntax
void ASetGetActorLocation::Sim3dSetup()

Description
The C++ method void ASetGetActorLocation::Sim3dSetup() sets up an actor in the Unreal
Engine 3D simulation environment. The Unreal Engine AActor::BeginPlay class calls the
Sim3dSetup method every frame.

Examples

Set Up Actor
void ASetGetActorLocation::Sim3dSetup()
{
       Super::Sim3dSetup();
              if (Tags.Num() != 0) {
                  FString tagName = Tags.Top().ToString();

                  FString MessageReaderTag = tagName;
                  MessageReaderTag.Append(TEXT("SimulinkMessage_OUT")); // a message from Simulink model
                  MessageReader = StartSimulation3DMessageReader (TCHAR_TO_ANSI(*MessageReaderTag), MAX_MESSAGE_SIZE);

                  FString MessageWriterTag = tagName;
                  MessageWriterTag.Append(TEXT("SimulinkMessage_IN")); // a message to Simulink model
                  MessageWriter = StartSimulation3DMessageWriter (TCHAR_TO_ANSI(*MessageWriterTag) ), MAX_MESSAGE_SIZE);
              }
}

Version History
Introduced in R2021b

See Also
ASim3dActor

External Websites
Unreal Engine 4 Documentation

6 Functions

6-28

https://docs.unrealengine.com/API/Runtime/Engine/GameFramework/AActor/index.html
https://docs.unrealengine.com


Sim3dStep
C++ method that steps actor in Unreal Engine 3D simulation

Syntax
void ASetGetActorLocation::Sim3dStep(float DeltaSeconds)

Description
The C++ method void ASetGetActorLocation::Sim3dStep(float DeltaSeconds) steps an
actor in the Unreal Engine 3D simulation environment. The Unreal Engine AActor::Tick class calls
the Sim3dStep method.

Examples

Step Actor
void ASetGetActorLocation::Sim3dStep(float DeltaSeconds)
{
       Super::Sim3dStep(DeltaSeconds);
       uint32 messageSize = MAX_MESSAGE_SIZE;
       int statusR = ReadSimulation3DMessage (MessageReader, &messageSize, message);
       ...
       int statusW = WriteSimulation3DMessage (MessageWriter, messageSize, message);
}

Input Arguments
DeltaSeconds — Elapsed time
.01

Time elapsed since Unreal Engine modified the frame.
Data Types: float

Version History
Introduced in R2021b

See Also
ASim3dActor

External Websites
Unreal Engine 4 Documentation
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StartSimulation3DMessageReader
Constructs a message reader object in the Unreal Editor

Syntax
MessageReader = StartSimulation3DMessageReader(topicName, maxDataSize)

Description
MessageReader = StartSimulation3DMessageReader(topicName, maxDataSize)
constructs a message reader object in the Unreal Editor.

The C++ syntax is
void *StartSimulation3DMessageReader(const char* topicName,uint32 maxDataSize);

Input Arguments
topicName — Simulink signal topic name
mySignal

Name of the Simulink signal with the message topic.
Data Types: char *

maxDataSize — Maximum size of data
number of bytes | scalar

Maximum size of the data, in bytes.
Data Types: uint32

Output Arguments
MessageReader — Pointer to message reader object
object pointer

Pointer to message reader object, ReadSimulation3DMessage.
Data Types: void *

Version History
Introduced in R2021b

See Also
ASim3dActor

External Websites
Unreal Engine 4 Documentation

6 Functions

6-30

https://docs.unrealengine.com


StartSimulation3DMessageWriter
Constructs a message writer object in the Unreal Editor

Syntax
MessageWriter = StartSimulation3DMessageWriter(topicName, maxDataSize)

Description
MessageWriter = StartSimulation3DMessageWriter(topicName, maxDataSize)
constructs a message writer object in the Unreal Editor.

The C++ syntax is
void *StartSimulation3DMessageWriter(const char* topicName, uint32 maxDataSize);

Input Arguments
topicName — Simulink signal topic name
mySignal

Name of the Simulink signal with the message topic.
Data Types: char *

maxDataSize — Maximum size of data
number of bytes | scalar

Maximum size of the data, in bytes.
Data Types: uint32

Output Arguments
MessageWriter — Pointer to message writer object
object pointer

Pointer to message writer object, WriteSimulation3DMessage.
Data Types: void *

Version History
Introduced in R2021b

See Also
ASim3dActor

External Websites
Unreal Engine 4 Documentation
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StopSimulation3DMessageReader
Deletes message reader object in the Unreal Editor

Syntax
status=StopSimulation3DMessageReader(MessageReader)

Description
status=StopSimulation3DMessageReader(MessageReader) deletes the Unreal Editor 3D
message reader object.

The C++ syntax is
int StopSimulation3DMessageReader(void * MessageReader);

Input Arguments
MessageReader — Pointer to message reader object
object pointer

Pointer to message reader object, ReadSimulation3DMessage.
Data Types: void *

Output Arguments
status — Operation exit status
0 | nonzero integer

Status, returned as either 0 or a nonzero integer. When the operation is successful, status is 0.
Otherwise, status is a nonzero integer.

Version History
Introduced in R2021b

See Also
ASim3dActor

External Websites
Unreal Engine 4 Documentation
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StopSimulation3DMessageWriter
Deletes message writer object in the Unreal Editor

Syntax
status=StopSimulation3DMessageWriter(MessageWriter)

Description
status=StopSimulation3DMessageWriter(MessageWriter) deletes the Unreal Editor 3D
message writer object.

The C++ syntax is
int StopSimulation3DMessageWriter(void *MessageWriter);

Input Arguments
MessageWriter — Pointer to message writer object
object pointer

Pointer to message writer object, WriteSimulation3DMessage.
Data Types: void *

Output Arguments
status — Operation exit status
0 | nonzero integer

Status, returned as either 0 or a nonzero integer. When the operation is successful, status is 0.
Otherwise, status is a nonzero integer.

Version History
Introduced in R2021b

See Also
ASim3dActor

External Websites
Unreal Engine 4 Documentation
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trimAirframe
Trim airframe around operating point specification object

Syntax
trimAirframe(modelToAnalyze)
trimAirframe(modelToAnalyze,opSpec)

Description
trimAirframe(modelToAnalyze) trims the airframe around an operating point specification
object. A Trim Airframe dialog window prompts you to select an operating point specification object
from the base workspace. If an operating point specification object does not exist in the base
workspace, click the Launch Trim Tool button in the Trim Airframe dialog window. This button
starts the Simulink Control Design Model Linearizer in which you can create the operating point
specification object. From this object, the trimAirframe function trims the airframe.

trimAirframe(modelToAnalyze,opSpec) trims the airframe model around the specified
operating point specification object.

Examples

Trim Model While Specifying an Operating Point Specification Object

Trim the model SkyHoggAnalysisModel around an operating point specification object,
opSpecDefault. This example starts the flight control analysis template using
asbFlightControlAnalysis and trims the model around the opSpecDefault operating point. It
then linearizes the airframe model around the opTrim operating point specification object and
calculates the short- and long-period (phugoid) mode characteristics of linSys.
asbFlightControlAnalysis('3DOF', 'SkyHoggAnalysisModel');
opSpecDefault = SkyHogg3DOFOpSpec('SkyHoggAnalysisModel');
opTrim = trimAirframe('SkyHoggAnalysisModel', opSpecDefault);
linSys = linearizeAirframe('SkyHoggAnalysisModel', opTrim)
flyingQual = computeLongitudinalFlyingQualities('SkyHoggAnalysisModel', linSys)

Input Arguments
modelToAnalyze — Model on which to perform flight control analysis
model name

Model on which to perform flight control analysis using the linear state-space model linSys. This
model must be previously created with the asbFlightControlAnalysis function.
Data Types: char | string

opSpec — Linear state-space model
linear state-space model name

Linear state-space model used to perform flight control analysis on modelToAnalyze.
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Data Types: char | string

Limitations
This function requires the Simulink Control Design license.

Version History
Introduced in R2018b

See Also
asbFlightControlAnalysis | computeLateralDirectionalFlyingQualities |
computeLongitudinalFlyingQualities | linearizeAirframe | Model Linearizer

Topics
“Analyze Dynamic Response and Flying Qualities of Aerospace Vehicles” on page 2-56
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WriteSimulation3DMessage
Sends message to Simulink model using a message writer object

Syntax
status=WriteSimulation3DMessage(MessageWriter, dataSize, data)

Description
status=WriteSimulation3DMessage(MessageWriter, dataSize, data) sends a message to
a Simulink model using a message writer object.

The C++ syntax is
int WriteSimulation3DMessage(void * MessageWriter, uint32 dataSize, void *data);

Input Arguments
MessageWriter — Pointer to message writer object
object pointer

Pointer to message writer object, WriteSimulation3DMessage.
Data Types: void *

dataSize — Size of data
number of bytes | scalar

Size of data, that is, data (sizeof(datatype) *num_of_elements). For example, if you want to
read a vector of 3 floats, the data size is sizeof(float)*3.
Data Types: uint32

data — Pointer to data object
object pointer

Pointer to data object.
Data Types: void *

Output Arguments
status — Operation exit status
0 | nonzero integer

Status, returned as either 0 or a nonzero integer. When the operation is successful, status is 0.
Otherwise, status is a nonzero integer.

Version History
Introduced in R2021b
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See Also
ASim3dActor

External Websites
Unreal Engine 4 Documentation
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sim3d.maps
Access additional scenes from the server

Description
Use the sim3d.maps to download and access additional scenes from the server so that they can be
automatically available in the Simulation 3D Scene Configuration block.

Object Functions
sim3d.maps.Map.download Download maps from the server
sim3d.maps.Map.server List of maps available for download from the server
sim3d.maps.Map.delete Delete local maps downloaded from the server
sim3d.maps.Map.local List of locally available maps

Troubleshooting
• If you cannot reach the server, the download will fail due to a timeout.
• If the download fails while updating an existing map, the existing outdated file will remain

functional.
• If you delete the CSV file, you will lose automatic tracking of updates for the existing maps.

Version History
Introduced in R2022b

See Also
Simulation 3D Scene Configuration
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sim3d.maps.Map.delete
Delete local maps downloaded from the server

Syntax
sim3d.maps.Map.delete(Scene)

Description
sim3d.maps.Map.delete(Scene) deletes the map Scene from your local system.

Examples

Download Suburban Scene Map

This example shows how to download and access the Suburban scene map from the Simulation 3D
Scene Configuration block.

To begin, check the maps available in the server.

Add the Simulation 3D Scene Configuration block to your model.

Open the block mask and select the suburban scene from Scene name.

 sim3d.maps.Map.delete
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Run the model.

Delete the model and check if the map is till available locally.

sim3d.maps.Map.delete('Suburban scene')

Suburban scene was successfully deleted

Input Arguments
Scene — Name of scene
string | character array

Name of the map being deleted, specified as a string or character array. Once the map is deleted, it
automatically disappears from the Simulation 3D Scene Configuration block mask menu.
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Version History
Introduced in R2022b

See Also
sim3d.maps | sim3d.maps.Map.download | sim3d.maps.Map.server |
sim3d.maps.Map.local
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sim3d.maps.Map.download
Download maps from the server

Syntax
sim3d.maps.Map.download(Scene)

Description
sim3d.maps.Map.download(Scene) downloads the map Scene from the server.

Examples

Download Suburban Scene Map

This example shows how to download and access the Suburban scene map from the Simulation 3D
Scene Configuration block.

To begin, check the maps available in the server.

sim3d.maps.Map.server

        MapName                        Description                    Version    MinimumRelease    ReleaseUpdate
    ________________    __________________________________________    _______    ______________    _____________

    "Suburban scene"    "a suburban area beyond the city's border"      "1"         "R2022b"           "[]"     

Download the Suburban scene from the server.

sim3d.maps.Map.download('Suburban scene')

Map is susccesfully downloaded and is up-to-date

Check if the downloaded maps are available in your local machine.

sim3d.maps.Map.local

        MapName                        Description                    Version    MinimumRelease    ReleaseUpdate
    ________________    __________________________________________    _______    ______________    _____________

    "Suburban scene"    "a suburban area beyond the city's border"      "1"         "R2022b"           "[]"     

Add the Simulation 3D Scene Configuration block to your model.
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Open the block mask and select the suburban scene from Scene name.

Run the model.

Input Arguments
Scene — Name of scene
string | character array

Name of the map being downloaded from the server, specified as a string or character array. Maps
are downloaded in the default folder that is added to MATLAB search path at startup.

Maps are stored by user profile. For multiuser setup with a single MATLAB installation, the maps will
be downloaded multiple times.

 sim3d.maps.Map.download
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If a new version of the map is available on the server, you will see a warning message asking you to
download the map again to get the recent version.

Version History
Introduced in R2022b

See Also
sim3d.maps | sim3d.maps.Map.server | sim3d.maps.Map.delete | sim3d.maps.Map.local
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sim3d.maps.Map.local
List of locally available maps

Syntax
sim3d.maps.Map.local

Description
sim3d.maps.Map.local lists the locally available maps.

Examples

Download Suburban Scene Map

This example shows how to download and access the Suburban scene map from the Simulation 3D
Scene Configuration block.

To begin, check the maps available in the server.

sim3d.maps.Map.server

        MapName                        Description                    Version    MinimumRelease    ReleaseUpdate
    ________________    __________________________________________    _______    ______________    _____________

    "Suburban scene"    "a suburban area beyond the city's border"      "1"         "R2022b"           "[]"     

Download the Suburban scene from the server.

sim3d.maps.Map.download('Suburban scene')

Map is susccesfully downloaded and is up-to-date

Check if the downloaded maps are available in your local machine.

sim3d.maps.Map.local

        MapName                        Description                    Version    MinimumRelease    ReleaseUpdate
    ________________    __________________________________________    _______    ______________    _____________

    "Suburban scene"    "a suburban area beyond the city's border"      "1"         "R2022b"           "[]"     

Add the Simulation 3D Scene Configuration block to your model.
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Open the block mask and select the suburban scene from Scene name.

Run the model.

Version History
Introduced in R2022b

See Also
sim3d.maps | sim3d.maps.Map.download | sim3d.maps.Map.server |
sim3d.maps.Map.delete
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sim3d.maps.Map.server
List of maps available for download from the server

Syntax
sim3d.maps.Map.server

Description
sim3d.maps.Map.server lists the available maps in the server.

Examples

Download Suburban Scene Map

This example shows how to download and access the Suburban scene map from the Simulation 3D
Scene Configuration block.

To begin, check the maps available in the server.

sim3d.maps.Map.server

        MapName                        Description                    Version    MinimumRelease    ReleaseUpdate
    ________________    __________________________________________    _______    ______________    _____________

    "Suburban scene"    "a suburban area beyond the city's border"      "1"         "R2022b"           "[]"     

Download the Suburban scene from the server.

sim3d.maps.Map.download('Suburban scene')

Map is susccesfully downloaded and is up-to-date

Check if the downloaded maps are available in your local machine.

sim3d.maps.Map.local

        MapName                        Description                    Version    MinimumRelease    ReleaseUpdate
    ________________    __________________________________________    _______    ______________    _____________

    "Suburban scene"    "a suburban area beyond the city's border"      "1"         "R2022b"           "[]"     

Add the Simulation 3D Scene Configuration block to your model.

 sim3d.maps.Map.server
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Open the block mask and select the suburban scene from Scene name.

Run the model.

Version History
Introduced in R2022b

See Also
sim3d.maps | sim3d.maps.Map.download | sim3d.maps.Map.delete |
sim3d.maps.Map.local
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copyExampleSim3dProject
Copy support package files and plugins to specified folder

Syntax
sim3d.utils.copyExampleSim3dProject(DestFldr)
sim3d.utils.copyExampleSim3dProject(DestFldr,Name=Value)

Description
sim3d.utils.copyExampleSim3dProject(DestFldr) copies the Aerospace Blockset Interface
for Unreal Engine Projects support package files to the destination folder, DestFldr.

sim3d.utils.copyExampleSim3dProject(DestFldr,Name=Value) copies support package
files to the destination with additional options specified by name-value arguments.

Running the sim3d.utils.copyExampleSim3dProject function configures your environment so
that you can customize scenes. The destination folder contains these Aerospace Blockset Interface for
Unreal Engine Projects support package components.

• An Unreal project, defined in AutoVrtlEnv.uproject, and its associated files. The project
includes editable versions of the prebuilt 3D scenes that you can select from the Scene
description parameter of the Simulation 3D Scene Configuration block.

• Three plugins: MathWorkSimulation, RoadRunnerMaterials, and
MathWorksAerospaceContent. These plugins establish the connection between MATLAB and
the Unreal Editor and are required for co-simulation.

Input Arguments
DestFldr — Destination folder
character vector

Destination folder name, specified as a character vector.

Note You must have write permission for the destination folder.

Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Source — Support package source folder
character vector
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Support package source folder, specified as a character vector. The folder contains the downloaded
support packages files.

By default, if you do not specify the source folder, copyExampleSim3dProject copies the file from
the support package installation folder, matlabshared.supportpkg.getSupportPackageRoot().
Example: Source="shared\sim3dprojects\spkg\"
Data Types: char | string

VerboseOutput — Option to enable verbose logging
0 or false (default) | 1 or true

Option to enable verbose logging, specified as a logical 0 (false) or 1 (true). Verbose logging displays
intermediate iteration information on the MATLAB command line.
Example: VerboseOutput=true
Data Types: logical

Examples

Copy Support Package Files to Destination Folder

Copy the support package files to C:\project.

sim3d.utils.copyExampleSim3dProject("C:\project");

Copy the support package files to C:\project with VerboseOutput set to true.

sim3d.utils.copyExampleSim3dProject("C:\project", VerboseOutput=true)

Copying ...\spkg\project\AutoVrtlEnv to C:\project\AutoVrtlEnv
Creating C:\project\AutoVrtlEnv\Plugins
Copying ...\spkg\plugins\mw_aerospace\MathWorksAerospace to C:\project\AutoVrtlEnv\Plugins\MathWorksAerospace
Copying ...\spkg\plugins\mw_automotive\MathWorksAutomotiveContent to C:\project\AutoVrtlEnv\Plugins\MathWorksAutomotiveContent
Copying ...\spkg\plugins\mw_simulation\MathWorksSimulation to C:\project\AutoVrtlEnv\Plugins\MathWorksSimulation
Copying ...\spkg\plugins\mw_uav\MathWorksUAVContent to C:\project\AutoVrtlEnv\Plugins\MathWorksUAVContent
Copying ...\spkg\plugins\rr_materials\RoadRunnerMaterials to C:\project\AutoVrtlEnv\Plugins\RoadRunnerMaterials
Ensuring C:\project\AutoVrtlEnv\AutoVrtlEnv.uproject is writable
Enabling plugin MathWorksSimulation in C:\project\AutoVrtlEnv\AutoVrtlEnv.uproject
Enabling plugin MathWorksUAVContent in C:\project\AutoVrtlEnv\AutoVrtlEnv.uproject
Enabling plugin MathWorksAutomotiveContent in C:\project\AutoVrtlEnv\AutoVrtlEnv.uproject
Enabling plugin RoadRunnerMaterials in C:\project\AutoVrtlEnv\AutoVrtlEnv.uproject

Version History
Introduced in R2022b

See Also
Topics
“Install Support Package and Configure Environment” on page 4-3
“How 3D Simulation for Aerospace Blockset Works” on page 2-39
“Unreal Engine Simulation Environment Requirements and Limitations” on page 2-36
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External Websites
Unreal Engine
Using Unreal Engine with Simulink
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Airport
Generic airport

Description
The Airport scene is a 3D environment of a generic airport. The scene is rendered with Unreal
Engine.

Setup
To use this scene:

1 Add a Simulation 3D Scene Configuration block to your Simulink model.
2 In the Block Parameters dialog box, set the Scene source parameter to Default Scenes.
3 Set the enabled Scene name parameter to Airport.

Layout
Blocks in the Aerospace Simulation 3D library require dimensions in meters. For convenience, this
section also provides dimensions in feet.
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Scene Dimensions

This table provides the runway dimensions.

Overall Dimensions Length Width
Feet 9900 150
Meters 3318 46

The entire scene dimension is [0, 0, 0] to [10082.5, 0, 0] m.

Taxiway Width

This table provides the taxiway widths.

Taxiway Width Width
Feet 100
Meters 30

Elevation

The elevation of the airport runway is 0.01 meters.

Runway End Coordinates

The runway end coordinates at the centerline are [3532.49, 0, 0.01] to [6550.01, 0, 0.01] m.

Tips
• If you have the Aerospace Blockset Interface for Unreal Engine Projects support package, then

you can modify this scene. In the Unreal Engine project file that comes with the support package,
this scene is named Airport.

For more details on customizing scenes, see “Customize 3D Scenes for Aerospace Blockset
Simulations” on page 4-2.

Version History
Introduced in R2021b

See Also
Griffiss Airport | Simulation 3D Scene Configuration

Topics
“Unreal Engine Simulation Environment Requirements and Limitations” on page 2-36
“Customize 3D Scenes for Aerospace Blockset Simulations” on page 4-2
“How 3D Simulation for Aerospace Blockset Works” on page 2-39
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Griffiss Airport
Griffiss International Airport in Rome, NY

Description
The Griffiss Airport scene is a 3D environment of the Griffiss Airport in Rome, New York. The scene
is rendered with Unreal Engine.

Setup
This scene is available only in the Aerospace Blockset Interface for Unreal Engine Projects support
package. After installing this support package, follow these steps to use the scene:

1 Add a Simulation 3D Scene Configuration block to your Simulink model.
2 In the Block Parameters dialog box, set the Scene source parameter to Unreal Editor.
3 Set the Project parameter to your project file.
4 Click the Open Unreal Editor button.
5 In the Unreal Editor, load the Griffiss Airport map by double-clicking

MathWorksAerospaceContent Content > Maps > GriffissAirport.
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Layout
The Griffiss Airport scene coordinate directions align with positive X pointing North and positive Y
pointing East. blocks in the Aerospace Simulation 3D library require dimensions in meters. For
convenience, this section also provides dimensions in feet.

Scene Dimensions

This table provides the relevant dimensions for runway 15/33.

Overall Dimensions Length Width
Feet 11,820 200
Meters 3603 61

The entire scene dimension is [-2122.57, -5544.71, 132.01] to [5732.00, 2623.05, 323.99] m.

Location

Location Runway 15 Runway 33
Latitude 43-14.704480N 43-13.351312N
Longitude 075-25.377805W 075-23.465642W
Elevation 504 ft/153.6 m 498 ft/151.8 m
Runway heading 147 degrees magnetic, 134

degrees true
327 degrees magnetic, 314
degrees true

Visual slope indicator  4-light PAPI on left (3.00° glide
path)

Approach lights  Medium Intensity Approach
Lighting System with Runway
Alignment Indicator Lights
(MALSR): 1400 ft/426.72 m
medium intensity

Runway 33 Touchdown Point

The runway 33 touchdown point is [200.1, -194.7, 147.4] m.

Runway 15 Touchdown Point

The runway 15 touchdown point is [2663.36, -2741.67, 149.52] m.

More About
Lighting

The primary lights of the airport use Niagara particle lighting:

• Runway threshold lights
• Runway edge lights
• Taxiway edge lights

 Griffiss Airport
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• Precision approach path indicator (PAPI) lights

All Niagara light coding and settings, except those in the level blueprint are located in the
Environment > GriffissAssets > Niagara folder.

Light Mesh Object Name in Scene
Runway Runway_and_Taxi_Edge_Lights_LoD0Node
Taxiway Runway_and_Taxi_Edge_Lights_LoD0Node
MALSR SM_MALSR_Single_LoD0Node
Runway threshold None
Precision approach path indicator (PAPI) None

Runway 33 uses the precision approach path indicator (PAPI) lights, which are always on and guide
aircraft during landing. The Griffiss Airport map does not contain static mesh models for the PAPI
lights to the left of the touchdown point on runway 33.

For more information on how turn on and off the lights for the runway, taxiway, threshold, and
MALSR, see “Turn Airport Lights On and Off” on page 4-32.

Runway Threshold Lights

The runway threshold lights are at each end of the runway where the landing area begins. The map
embeds these lights in the pavement so they are visible to approaching aircraft at night. The Griffiss
Airport map models these lights with Niagara particle lights.

The Griffiss Airport map runway threshold lights change color depending on the direction in which
you view them. The lighting color change is coded in the material function MF_RunwayColorLogic.

On approach to landing:

• The lights at the threshold at the beginning of the runway are green.
• The lights at the threshold at the end of the runway are red.

PAPI Lights

PAPI lights help pilots keep their aircraft on a recommended glide slope for the runway. The Griffiss
Airport map models the PAPI lights using Niagara particle lights. PAPI lights are always on.

The Griffiss Airport map sets the PAPI lights to a glide slope of three degrees.

• When an aircraft is on the glide slope:

• The two outer lights (farthest from the runway edge) are white.
• The two inner lights are red.

• When an aircraft is above the glide slope, the three or four outer lights are white.
• When an aircraft is below the glide slope, the three or four inner lights are red.

To set the angle of each of the four lights individually, see the material function
MF_PAPIColorLogic.

Set the actual light angles, light intensity factors, and other light parameters in these eight material
instances:
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• MI_BloomBoost_PAPI1
• MI_BloomBoost_PAPI2
• MI_BloomBoost_PAPI3
• MI_BloomBoost_PAPI4
• MI_ParticleBloom_PAPI1
• MI_ParticleBloom_PAPI2
• MI_ParticleBloom_PAPI3
• MI_ParticleBloom_PAPI4

Tips
• The Aerospace Blockset Interface for Unreal Engine Projects support package is required to use

this scene. You can also modify this scene.

For more details on customizing scenes, see “Customize 3D Scenes for Aerospace Blockset
Simulations” on page 4-2.

Version History
Introduced in R2022b

See Also
Airport | Griffiss Airport | Simulation 3D Scene Configuration

Topics
“Griffiss Airport Lighting” on page 4-32
“Unreal Engine Simulation Environment Requirements and Limitations” on page 2-36
“Customize 3D Scenes for Aerospace Blockset Simulations” on page 4-2
“How 3D Simulation for Aerospace Blockset Works” on page 2-39

External Websites
https://www.airnav.com/airport/KRME
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Airliner
Generic airliner

Description
Airliner is one of the aircraft that you can use within the 3D simulation environment. This
environment is rendered using the Unreal Engine from Epic Games. For detailed views of the Airliner,
see “Views” on page 8-2.

To add this type of vehicle to the 3D simulation environment:

1 Add a Simulation 3D Aircraft block to your Simulink model.
2 In the Block Parameters dialog box, , on the Aircraft Parameters tab, set the Type parameter to

Airliner.
3 On the Initial Values tab, set the Initial translation (in meters) and Initial rotation (in

radians) parameters to an array size that matches the Airliner aircraft, for example,
zeros(12,3).

Landing Gear

The airliner landing gear is retractable. It retracts and extends automatically at a preset height of
100 feet above the terrain. You can change this height in the animation blueprint, located at
MathWorksAerospaceContent Content > Vehicles > Aircraft > MWAirliner > Animation >
MWAirlinerAnimBP.

Views
Top-down view — Airliner top-down view
diagram
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Side view — Airliner side view
diagram

Front view — Airliner front view
diagram

 Airliner
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Back view — Airliner back view
diagram

Lights and Skeleton
Lights

Light Bone Location in SK_MWAirliner
Mesh

Left landing MWAirliner_Aircraft_Land
ing_Lights_Wing_L

Left wing root

Right landing MWAirliner_Aircraft_Land
ing_Lights_Wing_R

Right wing root

Taxi MWAirliner_Aircraft_Land
ing_Lights_F

Nose gear strut

Red navigation MWAirliner_Aircraft_RedN
avigationLight

Left wingtip

Green navigation MWAirliner_Aircraft_Gree
nNavigationLight

Right wingtip
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8-4



Light Bone Location in SK_MWAirliner
Mesh

Left wingtip strobe MWAirliner_Aircraft_Navi
gationLight_L

Left wingtip

Right wingtip strobe MWAirliner_Aircraft_Navi
gationLight_R

Right wingtip

Tail strobe MWAirliner_Aircraft_Navi
gationLightFin

Top of vertical stabilizer,
pointing aft

Beacon #1 MWAirliner_Aircraft_RedA
ntiCollisionLight1

Top of fuselage

Beacon #2 MWAirliner_Aircraft_RedA
ntiCollisionLight2

Bottom of fuselage

Skeleton

• MWAirliner

• MWAirliner_Aircraft_Body_Cap_Left

• MWAirliner_Aircraft_Body_Cap_Element_L
• MWAirliner_Aircraft_Body_Cap_Right

• MWAirliner_Aircraft_Body_Cap_Element_R
• MWAirliner_Aircraft_RedAntiCollisionLight1
• MWAirliner_Aircraft_NavigationLightFin
• MWAirliner_Aircraft_NavigationLight_R
• MWAirliner_Aircraft_GreenNavigationLight
• MWAirliner_Aircraft_NoseWheelStrut_Front

• MWAirliner_Aircraft_Tire_F

• MWAirliner_Aircraft_Wheels_F
• MWAirliner_Aircraft_Body_Elements02
• MWAirliner_Aircraft_NoseWheelStruct_Left

• MWAirliner_Aircraft_Tires_L

• MWAirliner_Aircraft_Wheels_L
• MWAirliner_Aircraft_NoseWheelStrut_Element_L

• MWAirliner_Aircraft_Elevator_R
• MWAirliner_Aircraft_Body_Fin
• MWAirliner_Aircraft_NoseWheelStrut_Right

• MWAirliner_Aircraft_NoseWheelStrut_Element_R
• MWAirliner_Aircraft_Tires_R

• MWAirliner_Aircraft_Wheels_R
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• MWAirliner_Aircraft_RedAntiCollisionLight2
• MWAirliner_Aircraft_JetEngineFan_L
• MWAirliner_Aircraft_JetEngineFan_R
• MWAirliner_Aircraft_Landing_Lights_Wing_L
• MWAirliner_Aircraft_NavigationLight_L
• MWAirliner_Aircraft_Aircraft_Cap_L
• MWAirliner_Aircraft_Aircraft_Cap_R
• MWAirliner_Aircraft_RedNavigationLight
• MWAirliner_Aircraft_Flaps_1_R
• MWAirliner_Aircraft_Ailerons_R
• MWAirliner_Aircraft_JetEngine_R
• MWAirliner_Aircraft_Flaps_2_R
• MWAirliner_Aircraft_Rudder
• MWAirliner_Aircraft_Ailerons_L
• MWAirliner_Aircraft_Flaps_1_L
• MWAirliner_Aircraft_Flaps_2_L
• MWAirliner_Aircraft_Body_Elements01
• MWAirliner_Aircraft_Vertical_Element
• MWAirliner_Aircraft_JetEngine_L
• MWAirliner_Aircraft_Wing_R
• MWAirliner_Aircraft_Landing_Lights_F
• MWAirliner_Aircraft_Body
• MWAirliner_Aircraft_Elevator_L
• MWAirliner_Aircraft_Landing_Lights_Wing_R
• MWAirliner_Aircraft_Glass

See Also
Simulation 3D Aircraft | Air Transport | Custom | Airliner | General Aviation | Sky Hogg

Topics
“Unreal Engine Simulation Environment Requirements and Limitations” on page 2-36
“Customize 3D Scenes for Aerospace Blockset Simulations” on page 4-2
“How 3D Simulation for Aerospace Blockset Works” on page 2-39
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Custom
Customizable generic fixed-wing aircraft, including vertical takeoff and landing (VTOL) aircraft

Description
Custom is one of the aircraft that you can use within the 3D simulation environment. This
environment is rendered using the Unreal Engine from Epic Games. This aircraft is designed to be
customized with a user-supplied skeletal mesh. Two sample skeletal meshes are provided, one of
which is shown in “Views” on page 8-2.

To add this type of vehicle to the 3D simulation environment:

1 Add a Simulation 3D Aircraft block to your Simulink model.
2 In the Block Parameters dialog box, in the Aircraft Parameters tab, set the Type parameter to

Custom.
3 On the Aircraft Parameters tab, set the Path to air transport mesh parameter to either the

sample mesh path or to your own air transport skeletal mesh path. The two sample skeletal mesh
paths are /MathWorksAerospaceContent/Vehicles/Aircraft/Custom/Mesh/
SK_Aircraft.SK_ and /MathWorksAerospaceContent/Vehicles/Aircraft/Custom/
Mesh/SK_HL20.SK_HL20.

4 On the Initial Values tab, set the Initial translation (in meters) and Initial rotation (in
radians) parameters to an array size that matches the Custom aircraft, for example,
zeros(57,3).

Views
Top-down view — Custom aircraft top-down view
diagram
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Side view — Custom aircraft side view
diagram

Front view — Custom aircraft front view
diagram
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Back view — Custom aircraft back view
diagram

Lights and Skeleton
Lights

Light Bone Location in SK_Aircraft
Mesh

Left landing LandingLight_L Left of nose
Right landing LandingLight_R Right of nose
Taxi NoseGear_Light Nose gear strut
Red navigation Wing1_RedNavLight Left wingtip of WING1
Green navigation Wing1_GreenNavLight Right wingtip of WING1
Left wingtip strobe Wing1_StrobeLight_L Left wingtip of WING1
Right wingtip strobe Wing1_StrobeLight_R Right wingtip of WING1
Tail strobe StrobeLight Top of vertical stabilizer,

pointing aft
Position #1 PosititionLight1 Left wingtip of WING2
Position #2 PosititionLight2 Right wingtip of WING2
Beacon #1 BeaconLight1 Top of vertical stabilizer
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Light Bone Location in SK_Aircraft
Mesh

Beacon #2 BeaconLight2 Bottom of fuselage

Skeleton

• FixedWing

• Engine1

• Engine1_Prop
• Engine2

• Engine2_Prop
• Engine3

• Engine3_Prop
• Engine4

• Engine4_Prop
• Engine5

• Engine5_Prop
• Engine6

• Engine6_Prop
• Engine7

• Engine7_Prop
• Engine8

• Engine8_Prop
• Engine9

• Engine9_Prop
• Engine10

• Engine10_Prop
• Engine11

• Engine11_Prop
• Engine12

• Engine12_Prop
• Engine13

• Engine13_Prop
• Engine14

• Engine14_Prop
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• Engine15

• Engine15_Prop
• Engine16

• Engine16_Prop
• Wing1

• Wing1_Aileron_L
• Wing1_Aileron_R
• Wing1_Flap_L
• Wing1_Flap_R
• Wing1_Spoiler_L
• Wing1_Spoiler_R
• Wing1_RedNavLight
• Wing1_GreenNavLight
• Wing1_StrobeLight_L
• Wing1_StrobeLight_R

• Wing2

• Wing2_Flap_L
• Wing2_Flap_R

• Rudder_L
• Rudder_R
• HorizStab

• HorizStab_Elevator_L
• HorizStab_Elevator_R

• NoseGear

• NoseGear_Wheel
• NoseGear_Light

• NoseGear_Door
• MainGear_L

• MainGear_L_Wheel
• MainGear_R

• MainGear_R_Wheel
• MainGearDoor_L
• MainGearDoor_R
• LandingLight_L
• LandingLight_R
• BeaconLight1
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• BeaconLight2
• StrobeLight
• PositionLight1
• PositionLight2

See Also
Simulation 3D Aircraft | Airliner | Air Transport | Airliner | General Aviation | Sky Hogg

Topics
“Unreal Engine Simulation Environment Requirements and Limitations” on page 2-36
“Customize 3D Scenes for Aerospace Blockset Simulations” on page 4-2
“How 3D Simulation for Aerospace Blockset Works” on page 2-39
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General Aviation
Customizable general aviation aircraft

Description
General Aviation is one of the aircraft that you can use within the 3D simulation environment. This
environment is rendered using the Unreal Engine from Epic Games. This aircraft is designed to be
customized with a user-supplied skeletal mesh; a sample skeletal mesh is provided in “Views” on
page 8-13.

To add this type of vehicle to the 3D simulation environment:

1 Add a Simulation 3D Aircraft block to your Simulink model.
2 In the Block Parameters dialog box, on the Aircraft Parameters tab, set the Type parameter to

General aviation.
3 On the Aircraft Parameters tab, set the Path to general aviation mesh parameter to either

the sample mesh path or to your own general aviation skeletal mesh path. The sample skeletal
mesh path is /MathWorksAerospaceContent/Vehicles/Aircraft/GeneralAviation/
Mesh/SK_GeneralAviation.SK_GeneralAviation”.

4 On the Initial Values tab, set the Initial translation (in meters) and Initial rotation (in
radians) parameters to an array size that matches the general aviation aircraft, for example,
zeros(15,3).

Views
Top-down view — General Aviation top-down view
diagram
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Side view — General Aviation side view
diagram
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Front view — General Aviation front view
diagram

Back view — General Aviation back view
diagram

Lights and Skeleton
Lights

Light Bone Location in
SK_GeneralAviation Mesh

Left landing LandingLight_L Nose cowling
Right landing LandingLight_R Nose cowling
Taxi NoseGear_Light N/A
Red navigation RedNavLight Left wingtip
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Light Bone Location in
SK_GeneralAviation Mesh

Green navigation GreenNavLight Right wingtip
Left wingtip strobe StrobeLight_L Left wingtip
Right wingtip strobe StrobeLight_R Right wingtip
Tail strobe StrobeLight Top of vertical stabilizer,

pointing aft
Position PositionLight1 N/A
Beacon BeaconLight1 Top of vertical stabilizer

Skeleton

• GA

• Engine1
• Aileron_L
• Aileron_R
• Flap_L
• Flap_R
• Spoiler_L
• Spoiler_R
• Elevator_L
• Elevator_R
• Rudder
• NoseGear

• NoseGear_Wheel
• NoseGear_Light

• MainGear_L

• MainGear_L_Wheel
• MainGear_R

• MainGear_R_Wheel
• RedNavLight
• GreenNavLight
• StrobeLight_L
• StrobeLight_R
• LandingLight_L
• LandingLight_R
• BeaconLight1
• StrobeLight
• PositionLight1
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See Also
Simulation 3D Aircraft | Airliner | Air Transport | Airliner | Custom | Sky Hogg

Topics
“Unreal Engine Simulation Environment Requirements and Limitations” on page 2-36
“Customize 3D Scenes for Aerospace Blockset Simulations” on page 4-2
“How 3D Simulation for Aerospace Blockset Works” on page 2-39
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Sky Hogg
Sky Hogg aircraft

Description
Sky Hogg is one of the aircraft that you can use within the 3D simulation environment. This
environment is rendered using the Unreal Engine from Epic Games. For detailed views of the Sky
Hogg, see “Views” on page 8-18.

To add this type of vehicle to the 3D simulation environment:

1 Add a Simulation 3D Aircraft block to your Simulink model.
2 In the Block Parameters dialog box, in the Aircraft Parameters tab, set the Type parameter to

Sky Hogg.
3 On the Initial Values tab, set the Initial translation (in meters) and Initial rotation (in

radians) parameters to an array size that matches the Sky Hogg aircraft, for example,
zeros(11,3).

Views
Top-down view — Sky Hogg top-down view
diagram
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Side view — Sky Hogg side view
diagram
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Front view — Sky Hogg front view
diagram

Back view — Sky Hogg back view
diagram

Lights and Skeleton
Lights

Light Bone Location in SK_SkyHogg Mesh
Landing SkyHogg_Landing_Light Nose cowling
Red navigation SkyHogg_RedNavigationLig

ht
Left wingtip
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Light Bone Location in SK_SkyHogg Mesh
Green navigation SkyHogg_GreenNavigationL

ight
Right wingtip

Tail strobe SkyHogg_NavigationLight Top of vertical stabilizer,
pointing aft

Beacon SkyHogg_AntiCollisionBea
con

Top of vertical stabilizer

Skeleton

• SkyHogg

• SkyHogg_LandingLight_Glass
• SkyHogg_Wheel_R
• SkyHogg_Component_Vertical
• SkyHogg_Component_L
• SkyHogg_Glass
• SkyHogg_Body
• SkyHogg_Wing_R
• SkyHogg_Component_R
• SkyHogg_NavigationLight
• SkyHogg_Ailerons_R
• SkyHogg_Flaps_R
• SkyHogg_Flaps_L
• SkyHogg_Ailerons_L
• SkyHogg_Elevator_R
• SkyHogg_Elevator_L
• SkyHogg_Rudder
• SkyHogg_PropellerSpinner

• SkyHogg_Propeller
• SkyHogg_Tire_R
• SkyHogg_Tire_L
• SkyHogg_NoseWheelStrut_R
• SkyHogg_NoseWheelStrut_L
• SkyHogg_NoseWheelStrut_F

• SkyHogg_Wheel_Pants_F
• SkyHogg_Tire_F
• SkyHogg_Wheel_F

• SkyHogg_LandingLight_Reflector
• SkyHogg_RedNavigationLight
• SkyHogg_GreenNavigationLight
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• SkyHogg_NavigationLight_Glass
• SkyHogg_AntiCollisionBeacon
• SkyHogg_Wheel_L
• SkyHogg_Wheel_Pants_R
• SkyHogg_Wing_L
• SkyHogg_Landing_Light

See Also
Simulation 3D Aircraft | Airliner | Air Transport | Airliner | Custom | General Aviation

Topics
“Unreal Engine Simulation Environment Requirements and Limitations” on page 2-36
“Customize 3D Scenes for Aerospace Blockset Simulations” on page 4-2
“How 3D Simulation for Aerospace Blockset Works” on page 2-39
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Air Transport
Customizable air transport aircraft

Description
Air Transport is one of the aircraft that you can use within the 3D simulation environment. This
environment is rendered using the Unreal Engine from Epic Games. This aircraft is designed to be
customized with a user-supplied skeletal mesh. A sample skeletal mesh is provided in “Views” on
page 8-2.

To add this type of vehicle to the 3D simulation environment:

1 Add a Simulation 3D Aircraft block to your Simulink model.
2 In the Block Parameters dialog box, on the Aircraft Parameters tab, set the Type parameter to

Air transport.
3 On the Aircraft Parameters tab, set the Path to air transport mesh parameter to either the

sample mesh path or to your own air transport skeletal mesh path. The sample skeletal mesh
path is /MathWorksAerospaceContent/Vehicles/Aircraft/AirTransport/Mesh/
SK_AirTransport.SK_AirTransport.

4 On the Initial Values tab, set the Initial translation (in meters) and Initial rotation (in
radians) parameters to an array size that matches the Air Transport aircraft, for example,
zeros(30,3).

Views
Top-down view — Air Transport top-down view
diagram
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Side view — Air Transport side view
diagram

Front view — Air Transport front view
diagram
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Back view — Air Transport back view
diagram

Lights and Skeleton
Lights

Light Bone Location in SK_AirTransport
Mesh

Left landing LandingLight_L Left wing root
Right landing LandingLight_R Right wing root
Taxi NoseGear_Light Nose gear strut
Red navigation RedNavLight Left wingtip
Green navigation GreenNavLight Right wingtip
Left wingtip strobe StrobeLight_L Left wingtip
Right wingtip strobe StrobeLight_R Right wingtip
Tail strobe StrobeLight Top of vertical stabilizer,

pointing aft
Position #1 PositionLight1 N/A
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Light Bone Location in SK_AirTransport
Mesh

Position #2 PositionLight2 N/A
Position #2 Beacon #1 Top of fuselage
Position #2 Beacon #2 Bottom of fuselage

Skeleton

• AirTransport

• Engine1
• Engine2
• Engine3
• Engine4
• Aileron_L
• Aileron_R
• Flap1_L
• Flap1_R
• Flap2_L
• Flap2_R
• Spoiler_L
• Spoiler_R
• HorizStab

• HorizStab_Elevator_L
• HorizStab_Elevator_R

• Rudder
• NoseGear

• NoseGear_Wheel
• NoseGear_Light

• NoseGearDoor1
• NoseGearDoor2
• MainGear_L

• MainGear_L_Wheel
• MainGear_L_Link

• MainGear_L_Door1
• MainGear_L_Door2

• MainGear_L_Door2_2
• MainGear_R

• MainGear_R_Wheel
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• MainGear_R_Link
• MainGear_R_Door1
• MainGear_R_Door2

• MainGear_R_Door2_2
• RedNavLight
• GreenNavLight
• StrobeLight_L
• StrobeLight_R
• LandingLight_L
• LandingLight_R
• BeaconLight1
• BeaconLight2
• StrobeLight
• PositionLight1
• PositionLight2

See Also
Simulation 3D Aircraft | Airliner | Custom | Airliner | General Aviation | Sky Hogg

Topics
“Unreal Engine Simulation Environment Requirements and Limitations” on page 2-36
“Customize 3D Scenes for Aerospace Blockset Simulations” on page 4-2
“How 3D Simulation for Aerospace Blockset Works” on page 2-39
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Examples

• “1903 Wright Flyer and Pilot with Scopes for Data Visualization” on page 9-2
• “1903 Wright Flyer and Pilot with Simulink 3D Animation” on page 9-4
• “Fly the De Havilland Beaver” on page 9-7
• “Lightweight Airplane Design” on page 9-9
• “Multiple Aircraft with Collaborative Control” on page 9-25
• “HL-20 with Flight Instrumentation Blocks” on page 9-27
• “HL-20 with Flight Instrument Blocks and Visualization Using Unreal Engine” on page 9-32
• “HL-20 Project with Optional FlightGear Interface” on page 9-42
• “Quaternion Estimate from Measured Rates” on page 9-44
• “Indicated Airspeed from True Airspeed Calculation” on page 9-45
• “Six Degree of Freedom Motion Platform” on page 9-47
• “Gravity Models with Precessing Reference Frame” on page 9-50
• “True Airspeed from Indicated Airspeed Calculation” on page 9-53
• “Airframe Trim and Linearize with Simulink Control Design” on page 9-55
• “Airframe Trim and Linearize with Control System Toolbox” on page 9-59
• “Self-Conditioned Controller Comparison” on page 9-63
• “Quadcopter Project” on page 9-65
• “Electrical Component Analysis for Hybrid and Electric Aircraft” on page 9-72
• “Constellation Modeling with the Orbit Propagator Block” on page 9-81
• “Mission Analysis with the Orbit Propagator Block” on page 9-93
• “Getting Started with the Spacecraft Dynamics Block” on page 9-104
• “Using Unreal Engine Visualization for Airplane Flight” on page 9-126
• “Developing the Apollo Lunar Module Digital Autopilot” on page 9-132
• “Transition from Low- to High-Fidelity UAV Models in Three Stages” on page 9-140
• “Lunar Mission Analysis with the Orbit Propagator Block” on page 9-147
• “Analyzing Spacecraft Attitude Profiles with Satellite Scenario” on page 9-156
• “Model-Based Systems Engineering for Space-Based Applications” on page 9-168
• “High Precision Orbit Propagation of the International Space Station” on page 9-185
• “Convert Pressure” on page 9-197
• “Fly the De Havilland Beaver with Unreal Engine Visualization” on page 9-198
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1903 Wright Flyer and Pilot with Scopes for Data Visualization

This model shows how to model the Wright Brothers' 1903 Flyer modeled in Simulink®, and
Aerospace Blockset™ software. This model simulates the longitudinal motion of the Flyer in response
to the pitch commands of a simulated pilot.

December 17, 2003 marked the centennial of the first powered, heavier-than-air controlled flight.
This first flight happened at Kitty Hawk, North Carolina, on December 17, 1903 at 10:30 am. With a
flight lasting only 12 seconds and traveling a distance of 120 feet, Orville Wright piloted his way into
flight history. Three other flights occurred that day with Wilbur and Orville taking turns at the
controls. Each of the flights was of increasing distance. The fourth and final flight of the day
completed by Wilbur was an impressive 59 seconds traveling 852 feet. The 1903 Flyer would not take
to the skies again. After the last flight of the day, the Flyer was damaged beyond repair when it was
caught by a gust of wind and rolled over.

Additional information about the 1903 Flyer can be found at NASA Web Site: Re-Living The Wright
Way and on MathWorks® web site: The Wright Stuff Celebrating The 1903 Flyer

A technical reference is Hooven, Frederick J., "Longitudinal Dynamics of the Wright Brothers' Early
Flyers 'A Study in Computer Simulation of Flight', from The Wright Flyer An Engineering Perspective
edited by Howard S. Wolko, 1987.

Note that the following warning messages are from a Simulink assertion block, used to determine if
the Flyer has landed or stalled.

Landing

Warning: Assertion detected in 'aeroblk_wf_3dof_noVR/Airframe/Touch Down?/Check Touch Down/
Land?' at time 2.529176.

Hitting Ground

Warning: Assertion detected in 'aeroblk_wf_3dof_noVR/Airframe/Touch Down?/Altitude?' at time
2.529176.

9 Examples
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1903 Wright Flyer and Pilot with Simulink 3D Animation

This model shows how to model the Wright Brothers' 1903 Flyer modeled in Simulink®, Aerospace
Blockset™ and Simulink® 3D Animation™ software. This model simulates the longitudinal motion of
the Flyer in response to the pitch commands of a simulated pilot.

December 17, 2003 marked the centennial of the first powered, heavier-than-air controlled flight.
This first flight happened at Kitty Hawk, North Carolina, on December 17, 1903 at 10:30 am. With a
flight lasting only 12 seconds and traveling a distance of 120 feet, Orville Wright piloted his way into
flight history. Three other flights occurred that day with Wilbur and Orville taking turns at the
controls. Each of the flights was of increasing distance. The fourth and final flight of the day
completed by Wilbur was an impressive 59 seconds traveling 852 feet. The 1903 Flyer would not take
to the skies again. After the last flight of the day, the Flyer was damaged beyond repair when it was
caught by a gust of wind and rolled over.

Additional information about the 1903 Flyer can be found at NASA Web Site: Re-Living The Wright
Way and on MathWorks® web site: The Wright Stuff Celebrating The 1903 Flyer

A technical reference is Hooven, Frederick J., "Longitudinal Dynamics of the Wright Brothers' Early
Flyers 'A Study in Computer Simulation of Flight', from The Wright Flyer An Engineering Perspective
edited by Howard S. Wolko, 1987.

Note that the following warning messages are from a Simulink assertion block, used to determine if
the Flyer has landed or stalled.

Landing

Warning: Assertion detected in 'aeroblk_wf_3dof/Airframe/Touch Down?/Check Touch Down/Land?' at
time 2.529176.

Hitting Ground

Warning: Assertion detected in 'aeroblk_wf_3dof/Airframe/Touch Down?/Altitude?' at time 2.529176.

9 Examples
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See Also
3DOF (Body Axes) | Incidence & Airspeed | COESA Atmosphere Model | Dynamic Pressure | WGS84
Gravity Model

Related Examples
• “1903 Wright Flyer” on page 3-7
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Fly the De Havilland Beaver

This model shows how to model the De Havilland Beaver using Simulink® and Aerospace Blockset™
software. It also shows how to use a pilot's joystick to fly the De Havilland Beaver. This model has
been color-coded to aid in locating Aerospace Blockset blocks. The red blocks are Aerospace Blockset
blocks, the orange blocks are subsystems containing additional Aerospace Blockset blocks, and the
white blocks are Simulink blocks.

The De Havilland Beaver model includes the airframe dynamics and aerodynamics. Effects of the
environment are also modeled, such as wind profiles for the landing phase. Visualization for this
model is done via an interface to FlightGear, a open source flight simulator package.

For more information on the FlightGear interface, read these documentation topics:

“Flight Simulator Interface” on page 2-19

“Work with the Flight Simulator Interface” on page 2-23

“Run the HL-20 Example with FlightGear” on page 2-31

The De Havilland Beaver was first flown in 1947. Today it is still prized by pilots for its reliability and
versatility. The De Havilland Beaver can be operated on wheels, skis or float landing gear.
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Speed maximum: 110 kts, Altitude maximum: 10,000 ft, Range maximum: 400 nm, Load: 6
passengers, Crew: 1 member.
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Lightweight Airplane Design

This model shows how to use MathWorks® products to address the technical and process challenges
of aircraft design using the design of a lightweight aircraft.

To run this example model, you need Aerospace Blockset™ software and its required products.
Additional products you will need to explore this model further are:

• Control System Toolbox™
• Simulink® Control Design™
• Simulink® Design Optimization™

The design process is iterative; you will try many vehicle configurations before selecting the final one.
Ideally, you perform iterations before building any hardware. The challenge is to perform the
iterations quickly. Typically, different groups work on different steps of the process. Effective
collaboration among these groups and the right set of tools are essential to addressing this challenge.

Defining Vehicle Geometry

The geometry of this lightweight aircraft is from reference 1. The original design objective for this
geometry was a four-seat general aviation aircraft that was safe, simple to fly, and easily maintainable
with specific mission and performance constraints. For more details on these constraints, see
reference 1.

Potential performance requirements for this aircraft include:

• Level cruise speed
• Acceptable rate of climb
• Acceptable stall speed.

For the aircraft flight control, rate of climb is the design requirement and assumed to be greater than
2 meters per second (m/s) at 2,000 meters.

Figure 1: Lightweight four-seater monoplane [1].

Determining Vehicle Aerodynamic Characteristics

The aircraft's geometrical configuration determines its aerodynamic characteristics, and therefore its
performance and handling qualities. Once you choose the geometric configuration, you can obtain the
aerodynamic characteristics by means of:
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• Analytical prediction
• Wind tunnel testing of the scaled model or a full-sized prototype
• Flight tests.

While wind tunnel tests and flight tests provide high-fidelity results, they are expensive and time-
consuming, because they must be performed on the actual hardware. It is best to use these methods
when the aircraft's geometry is finalized. Note: Analytical prediction is a quicker and less expensive
way to estimate aerodynamic characteristics in the early stages of design.

In this example, we will use Digital Datcom, a popular software program, for analytical prediction.
The U.S. Air Force developed it as a digital version of its Data Compendium (DATCOM). This software
is publicly available.

To start, create a Digital Datcom input file that defines the geometric configuration of our aircraft and
the flight conditions that we will need to obtain the aerodynamic coefficients.

 $FLTCON NMACH=4.0,MACH(1)=0.1,0.2,0.3,0.35$                                    
 $FLTCON NALT=8.0,ALT(1)=1000.0,3000.0,5000.0,7000.0,9000.0,                    
   11000.0,13000.0,15000.0$                                                      
 $FLTCON NALPHA=10.,ALSCHD(1)=-16.0,-12.0,-8.0,-4.0,-2.0,0.0,2.0,               
   ALSCHD(8)=4.0,8.0,12.0,LOOP=2.0$                                              
 $OPTINS SREF=225.8,CBARR=5.75,BLREF=41.15$                                     
 $SYNTHS XCG=7.9,ZCG=-1.4,XW=6.1,ZW=0.0,ALIW=1.1,XH=20.2,                       
    ZH=0.4,ALIH=0.0,XV=21.3,ZV=0.0,VERTUP=.TRUE.$                                
 $BODY NX=10.0,                                                                 
    X(1)=-4.9,0.0,3.0,6.1,9.1,13.3,20.2,23.5,25.9,                               
    R(1)=0.0,1.0,1.75,2.6,2.6,2.6,2.0,1.0,0.0$                                   
 $WGPLNF CHRDTP=4.0,SSPNE=18.7,SSPN=20.6,CHRDR=7.2,SAVSI=0.0,CHSTAT=0.25,       
    TWISTA=-1.1,SSPNDD=0.0,DHDADI=3.0,DHDADO=3.0,TYPE=1.0$                       
 $HTPLNF CHRDTP=2.3,SSPNE=5.7,SSPN=6.625,CHRDR=0.25,SAVSI=11.0,                 
    CHSTAT=1.0,TWISTA=0.0,TYPE=1.0$                                              
 $VTPLNF CHRDTP=2.7,SSPNE=5.0,SSPN=5.2,CHRDR=5.3,SAVSI=31.3,                    
    CHSTAT=0.25,TWISTA=0.0,TYPE=1.0$                                             
 $SYMFLP NDELTA=5.0,DELTA(1)=-20.,-10.,0.,10.,20.,PHETE=.0522,                  
    CHRDFI=1.3,                                                                  
    CHRDFO=1.3,SPANFI=.1,SPANFO=6.0,FTYPE=1.0,CB=1.3,TC=.0225,                   
    PHETEP=.0391,NTYPE=1.$                                                       
NACA-W-4-0012                                                                   
NACA-H-4-0012                                                                   
NACA-V-4-0012                                                                   
CASEID SKYHOGG BODY-WING-HORIZONTAL TAIL-VERTICAL TAIL CONFIG                   
DAMP                                                                            
NEXT CASE                                                                       

Digital Datcom provides the vehicle's aerodynamic stability and control derivatives and coefficients at
specified flight conditions. Flight control engineers can gain insight into the vehicle's performance
and handling characteristics by examining stability and control derivatives. We must import this data
into the MATLAB® technical computing environment for analysis. Normally, this is a manual process.

With the Aerospace Toolbox software, we can bring multiple Digital Datcom output files into the
MATLAB technical computing environment with just one command. There is no need for manual
input. Each Digital Datcom output is imported into the MATLAB technical computing environment as
a cell array of structures, with each structure corresponding to a different Digital Datcom output file.
After importing the Digital Datcom output, we can run multiple configurations through Digital
Datcom and compare the results in the MATLAB technical computing environment.
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In our model, we need to check whether the vehicle is inherently stable. To do this, we can use Figure
2 to check whether the pitching moment described by the corresponding coefficient, Cm, provides a
restoring moment for the aircraft. A restoring moment returns the aircraft angle of attack to zero.

In configuration 1 (Figure 2), Cm is negative for some angles of attack less than zero. This means that
this configuration will not provide a restoring moment for those negative angles of attack and will not
provide the flight characteristics that are desirable. Configuration 2 fixes this problem by moving the
center of gravity rearward. Shifting the center of gravity produces a Cm that provides a restoring
moment for all negative angles of attack.

Figure 2: Visual analysis of Digital Datcom pitching moment coefficients.

Creating Flight Vehicle Simulation

Once we determine aerodynamic stability and control derivatives, we can build an open-loop plant
model to evaluate the aircraft longitudinal dynamics. Once the model is complete, we can show it to
colleagues, including those who do not have Simulink® software, by using Simulink® Report
Generator™ software to export the model to a Web view. A Web view is an interactive HTML replica
of the model that lets you navigate model hierarchy and check the properties of subsystems, blocks,
and signals.

A typical plant model includes the following components:

• Equations of motion: calculate vehicle position and attitude from forces and moments
• Forces and moments: calculate aerodynamic, gravity, and thrust forces and moments
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• Actuator positions: calculate displacements based on actuator commands
• Environment: include environmental effects of wind disturbances, gravity, and atmosphere
• Sensors: model the behavior of the measurement devices

We can implement most of this functionality using Aerospace Blockset™ blocks. This model highlights
subsystems containing Aerospace Blockset blocks in orange. It highlights Aerospace Blockset blocks
in red.

Figure 3: Top Level of Lightweight Aircraft Model

We begin by building a plant model using a 3DOF block from the Equations of Motion library in the
Aerospace Blockset library (Figure 4). This model will help us determine whether the flight vehicle is
longitudinally stable and controllable. We design our subsystem to have the same interface as a six
degrees-of-freedom (DOF) version. When we are satisfied with three DOF performance, stability, and
controllability, we can implement the six DOF version, iterating on the other control surface
geometries until we achieve the desired behavior from the aircraft.
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Figure 4: Equations of Motion implemented using 3DoF Euler block from the Aerospace Blockset
library.

To calculate the aerodynamic forces and moments acting on our vehicle, we use a Digital Datcom
Forces and Moments block from the Aerospace Blockset library (Figure 5). This block uses a
structure that Aerospace Toolbox creates when it imports aerodynamic coefficients from Digital
Datcom.

For some Digital Datcom cases, dynamic derivative have values for only the first angle of attack. The
missing data points can be filled with the values for the first angle of attack, since these derivatives
are independent of angle of attack. To see example code of how to fill in missing data in Digital
Datcom data points, you can examine the asbPrepDatcom function.
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Figure 5: Aerodynamic Forces and Moments implemented in part with the Aerospace Blockset
Digital Datcom Forces and Moment block.

We also use Aerospace Blockset blocks to create actuator, sensor, and environment models (Figures 6,
7, and 8, respectively). Note: In addition to creating the following parts of the model, we use
standard Aerospace Blockset blocks to ensure that we convert from body axes to wind axes and back
correctly.

9 Examples

9-14



Figure 6: Implementation of actuator models using Aerospace Blockset blocks.

Figure 7: Implementation of flight sensor model using Aerospace Blockset blocks.
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Figure 8: Environmental effects of wind, atmosphere, and gravity using Aerospace Blockset blocks.

Designing Flight Control Laws

Once we have created the Simulink plant model, we design a longitudinal controller that commands
elevator position to control altitude. The traditional two-loop feedback control structure chosen for
this design (Figure 9) has an outer loop for controlling altitude (compensator C1 in yellow) and an
inner loop for controlling pitch angle (compensator C2 in blue). Figure 10 shows the corresponding
controller configuration in our Simulink model.

Figure 9: Structure of the longitudinal controller.
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Figure 10: Longitudinal controller in Simulink model.

With Simulink® Control Design™ software, we can tune the controllers directly in Simulink using a
range of tools and techniques.

Using the Simulink Control Design interface, we set up the control problem by specifying:

• Two controller blocks
• Closed-loop input or altitude command
• Closed-loop output signals or sensed altitude
• Steady-state or trim condition.

Using this information, Simulink Control Design software automatically computes linear
approximations of the model and identifies feedback loops to be used in the design. To design the
controllers for the inner and outer loops, we use root locus and bode plots for the open loops and a
step response plot for the closed-loop response (Figure 11).
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Figure 11: Design plots before controller tuning.

We then interactively tune the compensators for the inner and outer loops using these plots. Because
the plots update in real time as we tune the compensators, we can see the coupling effects that these
changes have on other loops and on the closed-loop response.

To make the multi-loop design more systematic, we use a sequential loop closure technique. This
technique lets us incrementally take into account the dynamics of the other loops during the design
process. With Simulink Control Design, we configure the inner loop to have an additional loop
opening at the output of the outer loop controller (C1 in Figure 12). This approach decouples the
inner loop from the outer loop and simplifies the inner-loop controller design. After designing the
inner loop, we design the outer loop controller. Figure 13 shows the resulting tuned compensator
design at the final trimmed operating point.
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Figure 12: Block diagram of inner loop, isolated by configuring an additional loop opening.
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Figure 13: Design plots at trim condition after controller tuning.

You can tune the controller in Simulink Control Design software in several ways. For example:

• You can use a graphical approach, and interactively move controller gain, poles, and zeros until
you get a satisfactory response (Figure 13).

• You can use Simulink® Design Optimization™ software within Simulink Control Design software
to tune the controller automatically.

After you specify frequency domain requirements, such as gain margin and phase margin and time
domain requirements, Simulink Design Optimization software automatically tunes controller
parameters to satisfy those requirements. Once we have developed an acceptable controller design,
the control blocks in the Simulink model are automatically updated. See the examples “Getting
Started with the Control System Designer” (Control System Toolbox) in Control Systems Toolbox
examples and “Tune Simulink Blocks Using Compensator Editor” (Simulink Control Design) in
Simulink Control Design examples for more information on tuning controllers.

We can now run our nonlinear simulation with flight control logic and check that the controller
performance is acceptable. Figure 15 shows the results from a closed-loop simulation of our
nonlinear Simulink model for a requested altitude increase from 2,000 meters to 2,050 meters
starting from a trimmed operating point. Although a pilot requests a step change in altitude, the
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actual controller altitude request rate is limited to provide a comfortable and safe ride for the
passengers.

Figure 14: The final check is to run nonlinear simulation with our controller design and check that
altitude (purple) tracks altitude request (yellow) in the stable and acceptable fashion.

We can now use these simulation results to determine whether our aircraft design meets its
performance requirements. The requirement called for the climb rate to be above 2 m/s. As we can
see, the aircraft climbed from 2,000 to 2,050 meters in less than 20 seconds, providing a climb rate
higher than 2.5 m/s. Therefore, this particular geometric configuration and controller design meets
our performance requirements.

In addition to traditional time plots, we can visualize simulation results using the Aerospace Blockset
interface to FlightGear (Figure 15).
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Figure 15: Visualizing simulation results using the Aerospace Blockset interface to FlightGear.

We can also use the Aerospace Toolbox interface to FlightGear to play back MATLAB data using
either simulation results or actual flight test data.

Completing the Design Process

The next steps involve

• Building a hardware-in-the-loop system to test real-time performance
• Building the actual vehicle hardware and software
• Conducting the flight test
• Analyzing and visualizing the flight test data.

Because these steps are not the focus of this example, we will not describe them here. Instead, we
will simply mention that they can all be streamlined and simplified using the appropriate tools, such
as Embedded Coder®, Simulink® Real-Time™, and Aerospace Toolbox software.

Summary

In this example we showed how to:

• Use Digital Datcom and Aerospace Toolbox software to rapidly develop the initial design of your
flight vehicle and evaluate different geometric configurations.

• Use Simulink and Aerospace Blockset software to rapidly create a flight simulation of your vehicle.
• Use Simulink Control Design software to design flight control laws.

This approach enables you to determine the optimal geometrical configuration of your vehicle and
estimate its performance and handling qualities well before any hardware is built, reducing design
costs and eliminating errors. In addition, using a single tool chain helps facilitate communication
among different groups and accelerates design time.
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Multiple Aircraft with Collaborative Control

This model shows the simulation of multiple aircraft in formation flight, with emphasis on the
necessary requirements and the realized benefits in making the simulation vectorized so that it can
easily be updated for an arbitrary number of vehicles. To perform their avoidance task, this set of
aircraft uses cooperative control.

This model uses color coding to aid in locating Aerospace Blockset™ blocks. The red blocks are
Aerospace Blockset blocks, the orange blocks are subsystems that contain additional Aerospace
Blockset blocks, and the white blocks are Simulink® blocks.

The simulation uses Simulink and Aerospace Blockset software, which allow for a hierarchal block
diagram representation to include the control laws, vehicle models and visualization.

The MATLAB® Animation Display subsystem contains the MATLAB® Animation block from
Aerospace Blockset to visualize the simulation. There are three types of bodies. The blue body is the
first body in the formation. It is the target of the camera. The second and third bodies in the
formation are red. The two black bodies represent the obstacles.

The basis of this simulation comes from previous research performed in the study of aircraft
formation flight in the context of cooperative game theory and the natural aggregate motion of
flocking birds, schooling fish, and the herding of land animals.
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HL-20 with Flight Instrumentation Blocks

This model shows NASA's HL-20 lifting body and controller modeled in Simulink® and Aerospace
Blockset™ software. This model simulates approach and landing flight phases using an auto-landing
controller. The Visualization subsystem uses aircraft-specific gauges from the Aerospace Blockset™
Flight Instrumentation library.

The HL-20 also known as personnel launch system (PLS) is a lifting body re-entry vehicle that was
designed to complement the Space Shuttle orbiter. Designed to carry up to ten people and very little
cargo[1], the HL-20 lifting body was to be placed in orbit either launched vertically via booster
rockets or transported in the payload bay of the Space Shuttle orbiter. HL-20 lifting body was
designed to have a powered deorbiting accomplished with an onboard propulsion system while its
reentry was to be nose-first, horizontal and unpowered.

The HL-20 lifting body was developed as a low cost solution for getting to and from low Earth orbit.
The proposed benefits of the HL-20 were reduced operating costs due to rapid turnaround between
landing and launch, improved flight safety, and ability to land conventionally on runways. Potential
scenarios for the HL-20 were orbital rescue of stranded astronauts, International Space Station crew
exchange if the Space Shuttle orbiter was not available, observation missions, and satellite servicing
missions.

Additional information about HL-20

[1] Jackson E. B., Cruz C. L., "Preliminary Subsonic Aerodynamic Model for Simulation Studies of the
HL-20 Lifting Body," NASA TM4302 (August 1992)
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HL-20 with Flight Instrument Blocks and Visualization Using
Unreal Engine

This model shows NASA's HL-20 lifting body and controller modeled in Simulink® and Aerospace
Blockset™, using Unreal Engine® for visualization. This model simulates approach and landing flight
phases using an auto-landing controller. The Instrument Panel subsystem uses aircraft-specific
gauges from the Aerospace Blockset™ Flight Instrumentation library.

The HL-20, also known as personnel launch system (PLS), is a lifting body reentry vehicle designed to
complement the Space Shuttle orbiter. Designed to carry up to ten people and very little cargo[1], the
HL-20 lifting body was to be placed in orbit either launched vertically via booster rockets or
transported in the payload bay of the Space Shuttle orbiter. HL-20 lifting body was designed to have a
powered deorbiting accomplished with an onboard propulsion system while its reentry was to be
nose-first, horizontal, and unpowered.

The HL-20 lifting body was developed as a low cost solution for getting to and from low Earth orbit.
The proposed benefits of the HL-20 were reduced operating costs due to rapid turnaround between
landing and launch, improved flight safety, and ability to land conventionally on runways. Potential
scenarios for the HL-20 were orbital rescue of stranded astronauts, International Space Station crew
exchange if the Space Shuttle orbiter was not available, observation missions, and satellite servicing
missions.

Create HL-20 Skeletal Mesh

To prepare a new aircraft for use in Aerospace Blockset™ with Unreal Engine® (UE) visualization,
create a skeletal mesh that uses one of the custom skeletons. This was done for HL-20 using the
Custom aircraft skeleton and the following workflow.

1 Get the AC3D file from ~/matlab/toolbox/aeroblks/aerodemos/asbhl20.zip/support/HL20/Models/
HL20.ac.

2 If using Blender for the conversion, set it up to import AC3D files (cf. https://wiki.flightgear.org/
Howto:Work_with_AC3D_files_in_Blender).

3 Follow the seven steps in “Prepare Custom Aircraft Mesh for the Unreal Editor” on page 4-33 to
convert file “HL20.ac” to “HL20.fbx”, and then import that skeletal mesh into UE.

For HL-20, many of the bones are unnecessary and therefore are not connected to any mesh object.
For example, there is no second wing or any propellers. However, you must still create all the bones.
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The HL-20 model in Aerospace Blockset has the following skeletal bone connections.

Use Unreal Engine Visualization

Once the custom mesh is available as an aerospace asset for UE, the Aerospace Blockset >
Animation > Simulation 3D > Simulation 3D Aircraft block can use it to implement the HL-20
airframe.

NASA HL-20 Lifting Body Airframe Example

Open the example model.

mdl = "aeroblk_HL20_UE";
open_system(mdl);

The model appears as follows.
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The UE Visualization subsystem (shown below) sends the body location (Xe) and rotation ([phi,
theta, psi]) to the Simulation 3D Aircraft block to position the HL-20 model. For more realism,
this model adds the rotations of the control surfaces as well as landing gear retraction and extension.
These rotations are calculated in the Actuator Breakout subsystem.
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To place the HL-20 correctly in this airport scene, the Custom Translation subsystem (shown below)
adds an offset to the incoming location. The rest of the bones (e.g. engines, control surfaces, and
landing gear) do not need any translation, so their translation components are set to zero. The
Custom Rotation subsystem (not shown) is similar to Custom Translation without the offset but
replaces the zeros(56,3) Constant block with the incoming part angles.

The Actuator Breakout subsystem (shown below) sets the position for all the control surfaces as
well as for the landing gear. The landing gear is initialized in the retracted state and set to extend
when the height above ground level (AGL) is below a certain number (e.g. 300 feet). The actuator
commands cannot all be directly applied to the control surfaces, since the HL-20 is an unusual
aircraft with high-dihedral wings with single flaps, no tail, and four body flaps, two on the top and two
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on the bottom. The wing flaps are used for both aileron and elevator actions, whereas the body flaps
are used as conventional flaps, spoilers, and in differential mode to assist the ailerons.

Before running the model, note that Simulation Pacing has been turned on so that the simulation
clock matches the rate at which the model data was taken.

• After clicking the Run button, allow a few seconds for the 3D visualization window to initialize.
• You should now see the HL-20 descending towards the airport, initially with the landing gear

retracted.
• Once it is simulating, you can switch between camera views by first left-clicking inside the 3D

window, then using the keys 0 through 9 to choose between ten preconfigured camera positions.
For more information on camera views, see the Run Simulation section in Customize Scenes
Using Simulink and Unreal Editor.
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To see the flight instrument gauges during the run, open the Instrument Panel.
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HL-20 Project with Optional FlightGear Interface

This project shows how to model NASA's HL-20 lifting body with Simulink®, Stateflow® and
Aerospace Blockset™ software. The vehicle model includes the aerodynamics, control logic, fault
management systems (FDIR), and engine controls (FADEC). It also includes effects of the
environment, such as wind profiles for the landing phase. The entire model simulates approach and
landing flight phases using an auto-landing controller. To analyze the effects of actuator failures and
wind gust variation on the stability of the vehicle, use the "Run Failure Analysis in Parallel" project
shortcut. If Parallel Computing Toolbox™ is installed, the analysis is run in parallel. If Parallel
Computing Toolbox™ is not installed, the analysis is run in serial. Visualization for this model is done
via an interface to FlightGear, an open source flight simulator package. If the FlightGear interface is
unavailable, you can simulate the model by closing the loop using the alternative data sources
provided in the Variant block. In this block, you can choose a previously saved data file, a Signal
Editor block, or a set of constant values. This example requires Control System Toolbox™.

FlightGear Interface

For more information on the FlightGear interface, read these documentation topics:

• “Flight Simulator Interface” on page 2-19
• “Work with the Flight Simulator Interface” on page 2-23
• “Run the HL-20 Example with FlightGear” on page 2-31

For a more detailed description of this model components, view a recorded navigation through the
model using this link:

• Spacecraft Automated Landing System

NASA HL-20 Background

The HL-20, also known as personnel launch system (PLS), is a lifting body re-entry vehicle that was
designed to complement the Space Shuttle orbiter. Designed to carry up to ten people and very little
cargo[1], the HL-20 lifting body was to be placed in orbit either launched vertically via booster
rockets or transported in the payload bay of the Space Shuttle orbiter. HL-20 lifting body was
designed to have a powered deorbiting accomplished with an onboard propulsion system while its
reentry was to be nose-first, horizontal and unpowered.

The HL-20 lifting body was developed as a low cost solution for getting to and from low Earth orbit.
The proposed benefits of the HL-20 were reduced operating costs due to rapid turnaround between
landing and launch, improved flight safety, and ability to land conventionally on runways. Potential
scenarios for the HL-20 were orbital rescue of stranded astronauts, International Space Station crew
exchange if the Space Shuttle orbiter was not available, observation missions, and satellite servicing
missions.

Opening HL-20 Project

Run the following command to create and open a working copy of the project files for this example.

asbhl20
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For more information on using Simulink Projects and HL-20, see:

• Tamayo S., Gage S., Walker G., "Integrated Project Management Tool for Modeling Simulation of
Complex Systems", AIAA Modeling and Simulation Technologies Conference (August 2012)

Additional Information About NASA HL-20

[1] Jackson E. B., Cruz C. L., "Preliminary Subsonic Aerodynamic Model for Simulation Studies of the
HL-20 Lifting Body," NASA TM4302 (August 1992)

 HL-20 Project with Optional FlightGear Interface

9-43

https://www.mathworks.com/content/dam/mathworks/tag-team/Objects/a/73194-integrated-project-management-tool-final.pdf
https://www.mathworks.com/content/dam/mathworks/tag-team/Objects/a/73194-integrated-project-management-tool-final.pdf


Quaternion Estimate from Measured Rates

This model shows how to estimate a quaternion and model the equations in the following ways:

*Using Simulink® and Aerospace Blockset™ software to implement the equations.

*Using MATLAB® Function block to incorporate an Aerospace Toolbox quaternion function.

This model has been color coded to aid in locating Aerospace Blockset blocks.

The red blocks are Aerospace Blockset blocks, the orange block is a MATLAB Function block
containing a function with MATLAB function block support provided by Aerospace Blockset and the
white blocks are Simulink blocks.
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Indicated Airspeed from True Airspeed Calculation

This model shows how to compute the indicated airspeed from true airspeed using the Ideal Airspeed
Correction block. The Aerospace Blockset™ blocks are indicated in red.

True airspeed is the airspeed that we would read ideally (and the airspeed value easily calculated
within a simulation). However there are errors introduced through the pitot-static airspeed indicators
used to determine airspeed. These measurement errors are density error, compressibility error and
calibration error. Applying these errors to true airspeed will result in indicated airspeed. (the ideal
airspeed correction block can handle the density error and compressibility error)

Density Error -- It is a fact that an airspeed indicator reads lower than true airspeed at higher
altitudes. This is due to lower air density at altitude. When the difference or error in air density at
altitude from air density on a standard day at sea level is applied to true airspeed, it results in
equivalent airspeed (EAS). Equivalent airspeed is true airspeed modified with the changes in
atmospheric density which affect the airspeed indicator.

Compressibility Error -- Air has a limited ability to resist compression. This ability is reduced by an
increase in altitude, an increase in speed, or a restricted volume. Within the airspeed indicator, there
is a certain amount of trapped air. When flying at high altitudes and higher airspeeds, calibrated
airspeed (CAS) is always higher than equivalent airspeed. Calibrated airspeed is equivalent airspeed
modified with compressibility effects of air which affect the airspeed indicator.

Calibration Error -- The airspeed indicator has static vent(s) to maintain a pressure equal to
atmospheric pressure inside the instrument. Position and placement of the static vent along with
angle of attack and velocity of the aircraft will determine the pressure inside the airspeed indicator
and thus the amount of calibration error of the airspeed indicator. Needless to say, calibration error is
specific to a given aircraft design. A calibration table is usually given in the pilot operating handbook
(POH) or in other aircraft specifications. Using this calibration table, the indicated airspeed (IAS) is
determined from calibrated airspeed by modifying it with calibration error of the airspeed indicator.
Indicated airspeed is displayed in the cockpit instrumentation.
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See Also
Ideal Airspeed Correction | COESA Atmosphere Model

Related Examples
• “Ideal Airspeed Correction” on page 3-2
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Six Degree of Freedom Motion Platform

This model shows how to connect an Aerospace Blockset™ six degree of freedom equation of motion
block.

 Six Degree of Freedom Motion Platform

9-47



9 Examples

9-48



 Six Degree of Freedom Motion Platform

9-49



Gravity Models with Precessing Reference Frame

This model shows how to implement various gravity models with precessing reference frames using
Aerospace Blockset™ blocks. The Aerospace Blockset blocks are shown in red.
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True Airspeed from Indicated Airspeed Calculation

This model shows how to compute true airspeed from indicated airspeed using the Ideal Airspeed
Correction block. The Aerospace Blockset™ blocks are indicated in red.

True airspeed is the airspeed that we would read ideally (and the airspeed value easily calculated
within a simulation). However there are errors introduced through the pitot-static airspeed indicators
used to determine airspeed. These measurement errors are density error, compressibility error and
calibration error. Applying these errors to true airspeed will result in indicated airspeed. (the ideal
airspeed correction block can handle the density error and compressibility error)

Density Error -- It is a fact that an airspeed indicator reads lower than true airspeed at higher
altitudes. This is due to lower air density at altitude. When the difference or error in air density at
altitude from air density on a standard day at sea level is applied to true airspeed, it results in
equivalent airspeed (EAS). Equivalent airspeed is true airspeed modified with the changes in
atmospheric density which affect the airspeed indicator.

Compressibility Error -- Air has a limited ability to resist compression. This ability is reduced by an
increase in altitude, an increase in speed, or a restricted volume. Within the airspeed indicator, there
is a certain amount of trapped air. When flying at high altitudes and higher airspeeds, calibrated
airspeed (CAS) is always higher than equivalent airspeed. Calibrated airspeed is equivalent airspeed
modified with compressibility effects of air which affect the airspeed indicator.

Calibration Error -- The airspeed indicator has static vent(s) to maintain a pressure equal to
atmospheric pressure inside the instrument. Position and placement of the static vent along with
angle of attack and velocity of the aircraft will determine the pressure inside the airspeed indicator
and thus the amount of calibration error of the airspeed indicator. Needless to say, calibration error is
specific to a given aircraft design. A calibration table is usually given in the pilot operating handbook
(POH) or in other aircraft specifications. Using this calibration table, the indicated airspeed (IAS) is
determined from calibrated airspeed by modifying it with calibration error of the airspeed indicator.
Indicated airspeed is displayed in the cockpit instrumentation.

 True Airspeed from Indicated Airspeed Calculation
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See Also
Ideal Airspeed Correction | COESA Atmosphere Model

Related Examples
• “Ideal Airspeed Correction” on page 3-2
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Airframe Trim and Linearize with Simulink Control Design

This example shows how to trim and linearize an airframe using Simulink® Control Design™
software

Designing an autopilot with classical design techniques requires linear models of the airframe pitch
dynamics for several trimmed flight conditions. The MATLAB® technical computing environment can
determine the trim conditions and derive linear state-space models directly from the nonlinear
Simulink® and Aerospace Blockset™ model. This step saves time and helps to validate the model.
The Simulink Control Design functions allow you to visualize the motion of the airframe in terms of
open-loop frequency or time responses.

Initialize Guidance Model

The first problem is to find the elevator deflection, and the resulting trimmed body rate (q), which will
generate a given incidence value when the missile is traveling at a set speed. Once the trim condition
is found, a linear model can be derived for the dynamics of the perturbations in the states around the
trim condition.

open_system('aeroblk_guidance_airframe');

Define State Values

h_ini     = 10000/m2ft;      % Trim Height [m]
M_ini     = 3;               % Trim Mach Number
alpha_ini = -10*d2r;         % Trim Incidence [rad]
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theta_ini = 0*d2r;           % Trim Flightpath Angle [rad]
v_ini = M_ini*(340+(295-340)*h_ini/11000);      % Total Velocity [m/s]

q_ini = 0;               % Initial pitch Body Rate [rad/sec]

Set Operating Point and State Specifications

The first state specifications are Position states. The second state specification is Theta. Both are
known, but not at steady state. The third state specifications are body axis angular rates, of which the
variable w is at steady state.

opspec = operspec('aeroblk_guidance_airframe');
opspec.States(1).Known = [1;1];
opspec.States(1).SteadyState = [0;0];
opspec.States(2).Known = 1;
opspec.States(2).SteadyState = 0;
opspec.States(3).Known = [1 1];
opspec.States(3).SteadyState = [0 1];

Search for Operating Point, Set I/O, Then Linearize

op = findop('aeroblk_guidance_airframe',opspec);

io(1) = linio('aeroblk_guidance_airframe/Fin Deflection',1,'input');
io(2) = linio('aeroblk_guidance_airframe/Selector',1,'output');
io(3) = linio(sprintf(['aeroblk_guidance_airframe/Aerodynamics &\n', ...
                       'Equations of Motion']),3,'output');

sys = linearize('aeroblk_guidance_airframe',op,io);

 Operating point search report:
---------------------------------

opreport = 

 Operating point search report for the Model aeroblk_guidance_airframe.
 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States: 
----------
   Min         x         Max       dxMin        dx       dxMax   
__________ __________ __________ __________ __________ __________
                                                                 
(1.) aeroblk_guidance_airframe/Aerodynamics & Equations of Motion/3DOF (Body Axes)/Position
    0          0          0         -Inf     967.6649     Inf    
-3047.9999 -3047.9999 -3047.9999    -Inf    -170.6254     Inf    
(2.) aeroblk_guidance_airframe/Aerodynamics & Equations of Motion/3DOF (Body Axes)/Theta
    0          0          0         -Inf     -0.21604     Inf    
(3.) aeroblk_guidance_airframe/Aerodynamics & Equations of Motion/3DOF (Body Axes)/U,w
 967.6649   967.6649   967.6649     -Inf     -14.0977     Inf    
-170.6254  -170.6254  -170.6254      0      -7.439e-08     0     
(4.) aeroblk_guidance_airframe/Aerodynamics & Equations of Motion/3DOF (Body Axes)/q
   -Inf     -0.21604     Inf         0      3.3582e-08     0     

Inputs: 
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----------
  Min      u      Max  
_______ _______ _______
                       
(1.) aeroblk_guidance_airframe/Fin Deflection
 -Inf   0.13615   Inf  

Outputs: 
----------
   Min         y         Max    
__________ __________ __________
                                
(1.) aeroblk_guidance_airframe/q
   -Inf     -0.21604     Inf    
(2.) aeroblk_guidance_airframe/az
   -Inf    -7.439e-08    Inf    

Select Trimmed States, Create LTI Object, and Plot Bode Response

% find index of desired states in the state vector
names = sys.StateName;
q_idx = find(strcmp('q',names));
az_idx = find(strcmp('U,w(2)',names));

airframe = ss(sys.A([az_idx q_idx],[az_idx q_idx]),sys.B([az_idx q_idx],:),sys.C(:,[az_idx q_idx]),sys.D);

set(airframe,'inputname',{'Elevator'}, ...
             'outputname',[{'az'} {'q'}]);

ltiview('bode',airframe);
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Airframe Trim and Linearize with Control System Toolbox

This example shows how to trim and linearize an airframe in the Simulink® environment using
Control System Toolbox™.

Designing an autopilot with classical design techniques requires linear models of the airframe pitch
dynamics for several trimmed flight conditions. The MATLAB® technical computing environment can
determine the trim conditions and derive linear state-space models directly from the nonlinear model.
This step saves time and helps to validate the model. The Control System Toolbox functions allow you
to visualize the motion of the airframe in terms of open-loop frequency or time responses.

Initialize Guidance Model

Find the elevator deflection and the resulting trimmed body rate (q). These calculations generate a
given incidence value when the airframe is traveling at a set speed. Once the trim condition is found,
a linear model can be derived for the dynamics of the perturbations in the states around the trim
condition.

open_system('aeroblk_guidance_airframe');
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Define State Values

Define the state values for trimming:

• Height [m]
• Mach Number
• Incidence [rad]
• Flightpath Angle [rad]
• Total Velocity [m/s]
• Initial pitch Body Rate [rad/sec]

heightIC    = 10000/m2ft;
machIC      = 3;
alphaIC     = -10*d2r;
thetaIC     = 0*d2r;
velocityIC  = machIC*(340+(295-340)*heightIC/11000);
pitchRateIC = 0;

Find Names and Ordering of States

Find the names and the ordering of states from the model.

[sizes,x0,names]=aeroblk_guidance_airframe([],[],[],'sizes');

state_names = cell(1,numel(names));
for i = 1:numel(names)
    n = max(strfind(names{i},'/'));
    state_names{i}=names{i}(n+1:end);
end

Specify States

Specify which states to trim and which states remain fixed.

fixed_states            = [{'U,w'} {'Theta'} {'Position'}];
fixed_derivatives       = [{'U,w'} {'q'}];
fixed_outputs           = [];
fixed_inputs            = [];

n_states=[];n_deriv=[];
for i = 1:length(fixed_states)
    n_states=[n_states find(strcmp(fixed_states{i},state_names))]; %#ok<AGROW>
end
for i = 1:length(fixed_derivatives)
    n_deriv=[n_deriv find(strcmp(fixed_derivatives{i},state_names))]; %#ok<AGROW>
end
n_deriv=n_deriv(2:end);                          % Ignore U

Trim Model

Trim the model.

[X_trim,U_trim,Y_trim,DX]=trim('aeroblk_guidance_airframe',x0,0,[0 0 velocityIC]', ...
                               n_states,fixed_inputs,fixed_outputs, ...
                               [],n_deriv)  %#ok<NOPTS>
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X_trim = 6×1
103 ×

   -0.0002
         0
    0.9677
   -0.1706
         0
   -3.0480

U_trim = 0.1362

Y_trim = 2×1

   -0.2160
         0

DX = 6×1

         0
   -0.2160
  -14.0977
         0
  967.6649
 -170.6254

Linear Model and Frequency Response

Derive the linear model and view the frequency response.

[A,B,C,D]=linmod('aeroblk_guidance_airframe',X_trim,U_trim);
if exist('control','dir')
    airframe = ss(A(n_deriv,n_deriv),B(n_deriv,:),C([2 1],n_deriv),D([2 1],:));
    set(airframe,'StateName',state_names(n_deriv), ...
                 'InputName',{'Elevator'}, ...
                 'OutputName',[{'az'} {'q'}]);

    zpk(airframe)
    ltiview('bode',airframe)
end

ans =
 
  From input "Elevator" to output...
          -170.45 s (s+1133)
   az:  ----------------------
        (s^2 + 30.04s + 288.9)
 
         -194.66 (s+1.475)
   q:  ----------------------
       (s^2 + 30.04s + 288.9)
 
Continuous-time zero/pole/gain model.
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Self-Conditioned Controller Comparison

This model shows how to compare the implementation of a state-space controller [A,B,C,D] in a self-
conditioned form versus a typical state-space controller [A,B,C,D]. This model requires Control
System Toolbox™ software.

For the self-conditioned state-space controller, if measured control value is equal to the demanded
control value (u_meas = u_dem), then the controller implementation is the typical state-space
controller [A,B,C,D]. However if measured control value (u_meas) is limited, e.g., rate limiting, then
the poles of the controller become those defined in the mask dialog box.

The results of a typical state-space controller [A,B,C,D] and a self-conditioned state-space controller
with a limited measured control value are shown below.

 Self-Conditioned Controller Comparison
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Quadcopter Project

This example shows how to use Simulink® to model a quadcopter, based on the Parrot® series of
mini-drones.

• To manage the model and source files, it uses “Project Management”.
• To show the quadcopter in a three-dimensional environment, it uses Simulink 3D Animation.
• For the collaborative development of a flight simulation application, it provides an implementation

of the Flight Simulation application template.

This example works with the Simulink Support Package for Parrot Minidrones.

Note: To successfully run this example you must have a C/C++ compiler installed.

Open the Quadcopter Project

Run the following command to create and open a working copy of the project files for this example:

asbQuadcopterStart

Quadcopter Physical Characteristics

The following schematic shows the quadcopter physical characteristics:

• Axis
• Mass and Inertia
• Rotors

Axis

The quadcopter body axis is centered in the center of gravity.

 Quadcopter Project
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• The x-axis starts at the center of gravity and points in the direction along the nose of the
quadcopter.

• The y-axis starts at the center of gravity and points to the right of the quadcopter.
• The z-axis starts at the center of gravity and points downward from the quadcopter, following the

right-hand rule.

Mass and Inertia

We assume that the whole body works as a particle. The file vehicleVars contains the values for the
inertia and mass.

Rotors

• Rotor #1 rotates positively with respect to the z-axis. It is located parallel to the xy-plane, -45
degrees from the x-axis.

• Rotor #2 rotates negatively with respect to the body's z-axis. It is located parallel to the xy-plane,
-135 degrees from the x-axis.

• Rotor #3 has the same rotation direction as rotor #1. It is located parallel to the xy-plane, 135
degrees from the x-axis.

• Rotor #4 has the same rotation direction as rotor #2. It is located parallel to the xy-plane, 45
degrees from the x-axis.

This example uses the approach defined by Prouty[1] and adapted to a heavy-lift quadcopter by
Pounds et al[2].

Control

For control, the quadcopter uses a complementary filter to estimate attitude, and Kalman filters to
estimate position and velocity. The example implements:

• A PID controller for pitch/roll control
• A PD controller for yaw
• A PD controller for position control in North-East-Down coordinates

The controllerVars file contains variables pertinent to the controller. The estimatorVars file
contains variables pertinent to the estimator.

The example implements the controller and estimators as model subsystems, enabling several
combinations of estimators and controllers to be evaluated for design.

To provide inputs to the quadcopter (in pitch, roll, yaw, North (X), East (Y), Down (Z) coordinates ),
use one of the following and change the VSS_COMMAND variable in the workspace:

• A Signal Editor block
• A joystick
• Previously saved data
• Spreadsheet data

Sensors

The example uses a set of sensors to determine its states:
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• An Inertial Measurement Unit (IMU) to measure the angular rates and translational accelerations.
• A camera for optical flow estimation.
• A sonar for altitude measurement.

The example stores the characteristics for the sensors in the file sensorVars. To include sensor
dynamics with these measurements, you can change the VSS_SENSORS variable in the workspace.

Environment

The models implement several Aerospace Blockset™ environment blocks, including those for
atmosphere and gravity models. To include these models, you can change the VSS_ENVIRONMENT
variable in the workspace to toggle between variable and fixed environment models.

Linearization

The model uses the trimLinearizeOpPoint to linearize the nonlinear model of the quadcopter
using Simulink Control Design (R).

Testing

To make sure that the trajectory generation tool works properly, the example implements a test in the
trajectoryTest file. For more information on how to do this, see the Simulink Control Design “Get
Started with Simulink Control Design” (Simulink Control Design)).

Visualization

You can visualize the variables for the quadcopter in one of the following ways:

• Using Simulation Data Inspector.
• Using the flight instrument blocks.
• Toggling between the different visualization variant subsystems. You can toggle between the
different variant subsystems by changing the VSS_VISUALIZATION variable. Note that one of
these variants is a FlightGear animation. To use this animation, you must add a FlightGear
compatible model of the quadcopter to the project. The software does not include this model.

Trajectory Generation

A trajectory generation tool, using the Dubin method, creates a set of navigational waypoints. To
create a trajectory with a set of waypoints this method uses a set of poses defined by position,
heading, turn curvature, and turn direction.

To start the tool, ensure that the project is open and run:

asbTrajectoryTool

The following interface displays:
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The interface has several panels:

Waypoints

This panel describes the poses the trajectory tool requires. To define these poses, the panel uses text
boxes:

• North and East (position in meters)
• Heading (degrees from North)
• Curvature (turning curvature in meters^-1)
• Turn (direction clockwise or counter-clockwise)

A list of poses appears in the waypoint list to the right of the text boxes.

To add a waypoint, enter pose values in the edit boxes and click Add. The new waypoint appears in
the waypoint list in the same panel.

To edit the characteristics of a waypoint, select the waypoint in the list and click Edit. The
characteristics of the waypoints display in the edit boxes. Edit the characteristics as desired, then
click OK. To cancel the changes click Cancel.

To delete a waypoint, in the waypoint list, select the waypoint and click Delete.

No-Fly Zone
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The panel defines the location and characteristics of the no-fly zones. To define the no-fly zone, the
panel uses text boxes:

• North and East (position in meters)
• Radius (distance in meters)
• Margin (safety margin in meters)

Use the Add, Delete, Edit, OK, and Cancel buttons in the same way as for the Waypoints panel.

Mapped Trajectory

This panel plots the trajectory over the Apple Hill campus aerial schematic based on the waypoints
and no-fly zone characteristics.

To generate the trajectory, add the waypoint and no-fly zone characteristics to the respective panels,
then click Generate Trajectory.

To save the trajectory that is currently in your panel, click the Save button. This button only saves
your last trajectory.

To load the last saved trajectory, click Load.

To load the default trajectory, press the Load Default button.

To clear the values in the waypoint and no-fly zone panel, click Clear.

The default data contains poses for specific locations at which the toy quadcopter uses its cameras so
the pilot on the ground can estimate the height of the snow on the roof. Three no-fly zones were
defined for each of the auxiliary power generators, so in case there is a failure in the quadcopter, it
does not cause any damage to the campus infrastructure.

When the example generates the trajectory for the default data, the plot should appear as follows:
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The red line represents the trajectory, black x markers determine either a change in the trajectory or
a specific pose. Blue lines that represent the heading for that specific waypoint accompany specific
poses. No-fly zones are represented as green circles.

If you have a Simulink 3D Animation license, you can also view the trajectory in a 3-D representation
of the Apple Hill campus:
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Note: For visualization reasons the 3D representation of the quadcopter is not at the same scale as
the environment and the rotor speeds have been lowered to removing aliasing.

References

[1] Prouty, R. Helicopter Performance, Stability, and Control. PWS Publishers, 2005.
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Electrical Component Analysis for Hybrid and Electric Aircraft

This example illustrates how to use modeling for rapid exploration of design space in the hybrid and
electric aircraft area and compare the results to design criteria. This process can reduce the number
of design iterations and ensure that the final design meets system-level requirements.

Hybrid and electric aircraft are areas of aggressive development in the aerospace industry. To
accelerate the process of choosing between hybrid and pure electric power systems, select power
network architectures, and size electrical components, consider using simulation with MathWorks
products.

Using preconfigured simulation configurations, this example shows the tradeoffs between battery
sizes for a pure electric or hybrid electric power system, with and without payloads. It includes the
Pipistrel Alpha Electro and NASA X-57 Maxwell aircraft. Implemented as a project, the example
provides various shortcuts that you can use to experiment with simulation.

Model Components

The Aircraft block specifies the aircraft compared in the project:

• Pipistrel Alpha Electro[1], a preconfigured model of the world's first two-seat pure electric
training aircraft.

• NASA X-57 Maxwell[2], a preconfigured model of the NASA X-57 Maxwell aircraft, an
experimental electric aircraft.

• Custom, an aircraft that you can model according to your specifications.

In the Aircraft block, each aircraft is modeled as a 4th Order Point Mass (Longitudinal) in flight, with
the required thrust output as a load on the motor. This abstract model assumes that the pilot takes
the actions necessary to follow the mission.

You can specify several aerodynamic characteristics for the selected aircraft, including empty and
maximum mass, wing area and lift curve values, a drag coefficient, and target speeds for the climb,
cruise, and descent portions of the mission. The block uses these values, along with the mission
altitudes, to create lookup tables for angle of attack (alpha) and thrust, given atmospheric density,
target speed, and flight profile angle (gamma). At every point along the flight, the lookup tables
return alpha and thrust for input into the 4th-order Point Mass block, which calculates the
accelerations. By holding alpha and thrust at the calculated, steady-state values, the actual speed
quickly reaches the desired speed. The Aircraft block also defines the climb and descent rates for the
mission.

The Mission Profile block sets the airport and cruise altitudes and the total flight distance. If entered
values are not feasible, such as a distance too short for the aircraft to climb to and descend from the
requested cruise altitude, then the values are adjusted, and a message describes the change. To see
how far the aircraft can fly until it runs out of battery power, enter a long total flight distance.

The Environment block calculates the air density at the chosen altitudes using the COESA
Atmosphere Model.

Run the Model with Default Settings

By default, the Aircraft block is configured for the Pipistrel Alpha Electro aircraft. To see the
performance of this aircraft with default settings, run the model using the "Single Run" project
shortcut. The Pipistrel is run with no payload.
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Two figures display showing the battery states, current, and power levels during the flight. Two scope
windows show the mission progress (altitude and airspeed), power output, and energy used. Note,
the battery runs out of capacity (reaches 20 amp-hours) before the entire mission is completed.

To capture the data created by a simulation, the example uses the Simscape “Data Logging”
(Simscape) capability. The various simulation cases provided by the project shortcuts run scripts that
run the desired cases and then extract the results from the Simscape log to create the figures. For
aircraft with more than one electric motor, the total required torque calculated by the Aircraft
subsystem is divided by the number of motors before being passed to the Power subsystem. The
criteria to stop the simulation, batteryCapacityMin, is adjusted up from 20 amp-hours accordingly.

Run the Model with Cruise at 3000 Feet

The Pipistrel is designed as a primary flight trainer. The default mission configured for the model
might not be the typical mission for the Pipistrel. Modify the mission to cruise at 3000 instead of 9000
feet, and then make a single run to see the effect of this change (duration decreases).

Run the Model with a Payload

To run the Pipistrel with a 165 pound payload, use the "Set Payload Mass" shortcut, then run the
model again. To see the effect of a range of payload values, use the "Sweep Payload Mass" shortcut.
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This shortcut varies the payload from 0 to 330 pounds. The sweeps produce different figures, showing
the flight time and range for the swept parameter. Each marker represents one simulation. Hover
your mouse over a marker to see its payload mass ("X") and flight range or duration ("Y") values.

Run the Model with Various Battery Sizes

To see how the flight range is affected by the battery size, use the "Sweep Battery Size" shortcut. The
shortcut varies the capacity from 60 to 160 amp-hours (or 100 to 200 amp-hours if the X-57 is
selected). The example assumes the battery mass to be linearly proportional to its capacity, so
increasing its capacity increases its mass as well. If the payload is set large enough (over 183 pounds
for the Pipistrel), this increase in battery mass can cause the largest battery in the sweep to put the
aircraft over its maximum mass value (e.g. 1212 pounds for the Pipistrel). The total_mass variable
in the base workspace stores the total mass of each case in the sweep. If the battery capacity is
enough to complete the mission, a filled marker indicates this. Note that pure electric aircraft, such
as the Pipistrel, have no fuel burn, resulting in no change in mass throughout a flight.
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Run the Model with Maximum Payload

The battery capacity sweep in "Run the Model with Various Battery Sizes" yields the flight range for a
fixed payload. To find the flight range for the maximum payload, use the "Sweep Range at Max
Payload" shortcut. This sweeps the battery capacity with the payload set such that the total mass
equals the maximum mass in every case (unless payload becomes negative, in which case payload is
set to zero and the model goes overweight). From these results, you can choose the maximum battery
size for a given payload requirement.

 Electrical Component Analysis for Hybrid and Electric Aircraft

9-75



Run the Model with Various Battery and Payload Sizes

To simultaneously see the flight range distance dependence on both battery size and payload mass,
use the "Sweep Battery & Payload" shortcut, which produces a contour plot. Areas where the aircraft
is over the maximum weight are denoted with a red and white "Overweight" overlay.
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Run the Model with the Hybrid Electric Option

Since battery power density is much less than that of aviation fuel, pure electric aircraft have less
distance range than their fuel-powered counterparts. To bridge this gap, consider a hybrid electric
power system. To recharge the batteries, the hybrid power subsystem variant in this example adds a
130 pound, 50 kW, two-stroke piston engine and generator to the pure electric power subsystem
components.

To try a hybrid power system, perform one of these workflows:

Change Power Subsystem Variant and Run the Battery Range Sweep

1. Use the "Hybrid Electric" shortcut. This shortcut changes the Power subsystem variant.

2. To repeat the sweep previously done for pure electric power, use "Sweep Range at Max Payload".
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In this case the larger battery sizes are capable of longer missions than what is currently defined
(120 NM). Try entering a longer total flight distance (e.g. 200 NM) in the Mission Profile and then
rerun this sweep.

Run the Battery Range Sweep for Both Power Variants

1. Use the "Hybrid/Electric Range Comparison" shortcut to run the sweep for both power variants.

2. Compare the results in a single figure. The results show that a hybrid power system can improve
range, but at the expense of payload.
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Explore How the Mission Affects Range and Endurance

To explore how the mission affects the range and endurance, select the Custom aircraft model in the
Aircraft block. The default configuration values for this aircraft are the same as for the Pipistrel, with
the exception of the speeds. Adjust the speeds and mission altitudes as desired, then run and
compare the results to those for the Pipistrel with default settings.

If the custom aircraft being evaluated is significantly different from the Pipistrel, then accordingly
adjust the CustomAircraft values in the "asbHybridAircraftDefaults.m" file.

Additional Model Details

Power Subsystem

The power subsystem is modeled with two variant models: Pure Electric and Hybrid Electric,
controlled by the variable POWER_MODE in the base workspace.

The Pure Electric model includes a battery, high- and low-voltage DC networks, and a mechanical
model of the aircraft. The mechanical model acts as a load on the high-voltage DC network. The low-
voltage DC network includes a set of loads that turn on and off during the flight mission.

The series Hybrid Electric model contains all the components in the Pure Electric model, plus a 50
kW engine, a generator, and fuel. The Generic Engine (Simscape Driveline) drives a generator that
supplements the power available from the battery. The generator recharges the battery during flight.
The mass of the fuel consumed by the engine is included in the simulation. The low-voltage DC
network includes a set of loads that turn on and off during the flight cycle, including the fuel pump
for the combustion engine.
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These two variant models are composed of three or four subsystems for load torque, the motor, the
generator, and the DC power distribution.

Load Torque Subsystem

This subsystem converts the required mechanical power into the load torque on the motor shaft. This
model assumes that a specified amount of the motor mechanical power is converted into thrust.
Dividing the required power to maintain thrust by the motor speed results in the load torque on the
motor shaft. The motor control system adjusts to maintain the required shaft speed under the varying
load.

Motor Subsystem

This subsystem represents the electric motor and drive electronics operating in torque-control mode,
or equivalently, current-control mode. The motor permissible range of torques and speeds is defined
by a torque-speed envelope.

Fuel Pump Subsystem

This subsystem models the fuel pump. An electric motor drives a pump that pushes fuel through a
valve. The opening of the valve varies during the flight, which changes the current that the motor
draws from the DC network.

Generator Subsystem

This subsystem represents the generator and drive electronics operating in torque-control mode, or
equivalently, current-control mode. It is driven by the combustion engine to supply additional
electrical power to the aircraft network.

DC Power Distribution Subsystem

This subsystem models the breakers that open and close to connect and disconnect loads from the
low-voltage DC network. The varying conditions affect the power drawn from the network, the range
of the aircraft, and the power requirements for the power lines in the aircraft.

References

[1] https://www.pipistrel-aircraft.com/aircraft/electric-flight/alpha-electro/

[2] https://www.nasa.gov/specials/X57/index.html

See Also
4th Order Point Mass (Longitudinal) | COESA Atmosphere Model
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Constellation Modeling with the Orbit Propagator Block

This example shows how to propagate the orbits of a constellation of satellites and compute and
visualize access intervals between the individual satellites and several ground stations. It uses:

• Aerospace Blockset Orbit Propagator block
• Aerospace Toolbox satelliteScenario object

The Aerospace Toolbox satelliteScenario object lets you load previously generated, time-
stamped ephemeris data into a scenario from a timeseries or timetable object. Data is interpolated in
the scenario object to align with the scenario time steps, allowing you to incorporate data generated
in a Simulink model into either a new or existing satelliteScenario object. This example shows
how to propagate a constellation of satellites in Simulink with the Aerospace Blockset Orbit
Propagator block, and load the logged ephemeris data into a satelliteScenario object for
access analysis.

Define Mission Parameters and Constellation Initial Conditions

Specify a start date and duration for the mission. This example uses MATLAB structures to organize
mission data. These structures make accessing data later in the example more intuitive. They also
help declutter the global base workspace.

mission.StartDate = datetime(2020, 11, 30, 22, 23, 24);
mission.Duration  = hours(24);

The constellation in this example is a Walker-Delta constellation modeled similar to Galileo, the
European GNSS (Global navigation satellite system) constellation. The constellation consists of 24
satellites in medium Earth orbit (MEO).

Walker-Delta constellations use the notation:

i:T /P/F

where

i = inclination

T = total number of satellites

P = number of equally space geometric planes

F = spacing between satellites in adjacent planes
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Walker-Delta constellations are a common solution for maximizing geometric coverage over Earth
while minimizing the number of satellites required to perform the mission. The Galileo navigation
system is a Walker-Delta 56∘:24/3/1 constellation (24 satellites in 3 planes inclined at 56 degrees) in
a 29599.8 km orbit.

Specify Keplerian orbital elements for the constellation at mission.StartDate.

mission.Satellites.SemiMajorAxis  = 29599.8e3 * ones(24,1); % meters
mission.Satellites.Eccentricity   = 0.0005    * ones(24,1);
mission.Satellites.Inclination    = 56        * ones(24,1); % deg
mission.Satellites.ArgOfPeriapsis = 350       * ones(24,1); % deg

The ascending nodes of the orbital planes of a Walker-Delta constellation are uniformly distributed at

intervals of 360∘
P  around the equator. The number of satellites per plane, S, is given as S = T

P . With 24
satellites total, this results in 3 planes of 8 satellites at 120 degree intervals around the equator. The

satellites in each orbital plane are distributed at intervals of 360∘
S , or 45 degrees.

mission.Satellites.RAAN               = sort(repmat([0 120 240], 1,8))'; % deg
mission.Satellites.TrueAnomaly        = repmat(0:45:315, 1,3)'; % deg

Lastly, account for the relative angular shift between adjacent orbital planes. The phase difference is
given as Δϕ = F * 360

T , or 15 degrees in this case.

mission.Satellites.TrueAnomaly(9:16)  = mission.Satellites.TrueAnomaly(9:16)  + 15;
mission.Satellites.TrueAnomaly(17:24) = mission.Satellites.TrueAnomaly(17:24) + 30;

Show the constellation nodes in a table.

ConstellationDefinition = table(mission.Satellites.SemiMajorAxis, ...
    mission.Satellites.Eccentricity, ...
    mission.Satellites.Inclination, ...
    mission.Satellites.RAAN, ...
    mission.Satellites.ArgOfPeriapsis, ...
    mission.Satellites.TrueAnomaly, ...
    'VariableNames', ["a (m)", "e", "i (deg)", "Ω (deg)", "ω (deg)", "ν (deg)"])

ConstellationDefinition=24×6 table
     a (m)        e       i (deg)    Ω (deg)    ω (deg)    ν (deg)
    ________    ______    _______    _______    _______    _______

    2.96e+07    0.0005      56           0        350          0  
    2.96e+07    0.0005      56           0        350         45  
    2.96e+07    0.0005      56           0        350         90  
    2.96e+07    0.0005      56           0        350        135  
    2.96e+07    0.0005      56           0        350        180  
    2.96e+07    0.0005      56           0        350        225  
    2.96e+07    0.0005      56           0        350        270  
    2.96e+07    0.0005      56           0        350        315  
    2.96e+07    0.0005      56         120        350         15  
    2.96e+07    0.0005      56         120        350         60  
    2.96e+07    0.0005      56         120        350        105  
    2.96e+07    0.0005      56         120        350        150  
    2.96e+07    0.0005      56         120        350        195  
    2.96e+07    0.0005      56         120        350        240  
    2.96e+07    0.0005      56         120        350        285  
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    2.96e+07    0.0005      56         120        350        330  
      ⋮

Open and Configure the Orbit Propagation Model

Open the included Simulink model. This model contains an Orbit Propagator block connected to
output ports. The Orbit Propagator block supports vectorization. This allows you to model
multiple satellites in a single block by specifying arrays of initial conditions in the Block
Parameters window or using set_param. The model also includes a "Mission Analysis and
Visualization" section that contains a dashboard Callback button. When clicked, this button runs
the model, creates a new satelliteScenario object in the global base workspace containing the
satellite or constellation defined in the Orbit Propagator block, and opens a Satellite Scenario
Viewer window for the new scenario. To view the source code for this action, double click the callback
button. The "Mission Analysis and Visualization" section is a standalone workflow to create a
new satelliteScenario object and is not used as part of this written example.

mission.mdl = "OrbitPropagatorBlockExampleModel";
open_system(mission.mdl);

Define the path to the Orbit Propagator block in the model.

mission.Satellites.blk = mission.mdl + "/Orbit Propagator";

Set satellite initial conditions. To assign the Keplerian orbital element set defined in the previous
section, use set_param.

set_param(mission.Satellites.blk, ...
    startDate = num2str(juliandate(mission.StartDate)), ...
    stateFormatNum = "Orbital elements", ...
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    orbitType      = "Keplerian", ...
    semiMajorAxis  = "mission.Satellites.SemiMajorAxis", ...
    eccentricity   = "mission.Satellites.Eccentricity", ...
    inclination    = "mission.Satellites.Inclination", ...
    raan           = "mission.Satellites.RAAN", ...
    argPeriapsis   = "mission.Satellites.ArgOfPeriapsis", ...
    trueAnomaly    = "mission.Satellites.TrueAnomaly");

Set the position and velocity output ports of the block to use the Earth-centered Earth-fixed frame,
which is the International Terrestrial Reference Frame (ITRF).

set_param(mission.Satellites.blk, ...
    centralBody  = "Earth", ...
    outportFrame = "Fixed-frame");

Configure the propagator. This example uses the Oblate ellipsoid (J2) propagator which
includes second order zonal harmonic perturbations in the satellite trajectory calculations,
accounting for the oblateness of Earth.

set_param(mission.Satellites.blk, ...
    propagator   = "Numerical (high precision)", ...
    gravityModel = "Oblate ellipsoid (J2)", ...
    useEOPs      = "off");

Apply model-level solver setting using set_param. For best performance and accuracy when using a
numerical propagator, use a variable-step solver.

set_param(mission.mdl, ...
    SolverType = "Variable-step", ...
    SolverName = "VariableStepAuto", ...
    RelTol     = "1e-6", ...
    AbsTol     = "1e-7", ...
    StopTime   = string(seconds(mission.Duration)));

Save model output port data as a dataset of time series objects.

set_param(mission.mdl, ...
    SaveOutput = "on", ...
    OutputSaveName = "yout", ...
    SaveFormat = "Dataset");

Run the Model and Collect Satellite Ephemerides

Simulate the model.

mission.SimOutput = sim(mission.mdl);

Extract position and velocity data from the model output data structure.

mission.Satellites.TimeseriesPosECEF = mission.SimOutput.yout{1}.Values;
mission.Satellites.TimeseriesVelECEF = mission.SimOutput.yout{2}.Values;

Set the start data from the mission in the timeseries object.

mission.Satellites.TimeseriesPosECEF.TimeInfo.StartDate = mission.StartDate;
mission.Satellites.TimeseriesVelECEF.TimeInfo.StartDate = mission.StartDate;

The timeseries objects contain position and velocity data for all 24 satellites.
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mission.Satellites.TimeseriesPosECEF

  timeseries

  Common Properties:
            Name: ''
            Time: [57x1 double]
        TimeInfo: [1x1 tsdata.timemetadata]
            Data: [24x3x57 double]
        DataInfo: [1x1 tsdata.datametadata]

  More properties, Methods

Load the Satellite Ephemerides into a satelliteScenario Object

Create a satellite scenario object for the analysis.

scenario = satelliteScenario(mission.StartDate, mission.StartDate + hours(24), 60);

Add all 24 satellites to the satellite scenario from the ECEF position and velocity timeseries objects
using the satellite method.

sat = satellite(scenario, mission.Satellites.TimeseriesPosECEF, mission.Satellites.TimeseriesVelECEF, ...
    CoordinateFrame="ecef", Name="GALILEO " + (1:24))

sat = 
  1x24 Satellite array with properties:

    Name
    ID
    ConicalSensors
    Gimbals
    Transmitters
    Receivers
    Accesses
    GroundTrack
    Orbit
    OrbitPropagator
    MarkerColor
    MarkerSize
    ShowLabel
    LabelFontColor
    LabelFontSize

disp(scenario)

  satelliteScenario with properties:

         StartTime: 30-Nov-2020 22:23:24
          StopTime: 01-Dec-2020 22:23:24
        SampleTime: 60
      AutoSimulate: 1
        Satellites: [1×24 matlabshared.satellitescenario.Satellite]
    GroundStations: [1×0 matlabshared.satellitescenario.GroundStation]
           Viewers: [0×0 matlabshared.satellitescenario.Viewer]
          AutoShow: 1
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Set Graphical Properties on the Satellites

Set satellites in each orbital plane to have the same orbit color.

set(sat(1:8), MarkerColor="#FF6929");
set(sat(9:16), MarkerColor="#139FFF");
set(sat(17:24), MarkerColor="#64D413");
orbit = [sat(:).Orbit];
set(orbit(1:8), LineColor="#FF6929");
set(orbit(9:16), LineColor="#139FFF");
set(orbit(17:24), LineColor="#64D413");

Add Ground Stations to Scenario

To provide accurate positioning data, a location on Earth must have access to at least 4 satellites in
the constellation at any given time. In this example, use three MathWorks locations to compare total
constellation access over the 1 day analysis window to different regions of Earth:

• Natick, Massachusetts, USA (42.30048°, -71.34908°)
• München, Germany (48.23206°, 11.68445°)
• Bangalore, India (12.94448°, 77.69256°)

gsUS = groundStation(scenario, 42.30048, -71.34908, ...
    MinElevationAngle=10, Name="Natick");
gsUS.MarkerColor = "red";
gsDE = groundStation(scenario, 48.23206, 11.68445, ...
    MinElevationAngle=10, Name="Munchen");
gsDE.MarkerColor = "red";
gsIN = groundStation(scenario, 12.94448, 77.69256, ...
    MinElevationAngle=10, Name="Bangalore");
gsIN.MarkerColor = "red";

figure
geoscatter([gsUS.Latitude gsDE.Latitude gsIN.Latitude], ...
    [gsUS.Longitude gsDE.Longitude gsIN.Longitude], "red", "filled")
geolimits([-75 75], [-180 180])
title("Ground Stations")
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Compute Ground Station to Satellite Access (Line-of-Sight Visibility)

Calculate line-of-sight access between the ground stations and each individual satellite using the
access method.

accessUS = access(gsUS, sat);
accessDE = access(gsDE, sat);
accessIN = access(gsIN, sat);

Set access colors to match orbital plane colors assigned earlier in the example.

set(accessUS, LineWidth="1");
set(accessUS(1:8), LineColor="#FF6929");
set(accessUS(9:16), LineColor="#139FFF");
set(accessUS(17:24), LineColor="#64D413");

set(accessDE, LineWidth="1");
set(accessDE(1:8), LineColor="#FF6929");
set(accessDE(9:16), LineColor="#139FFF");
set(accessDE(17:24), LineColor="#64D413");

set(accessIN, LineWidth="1");
set(accessIN(1:8), LineColor="#FF6929");
set(accessIN(9:16), LineColor="#139FFF");
set(accessIN(17:24), LineColor="#64D413");
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View the full access table between each ground station and all satellites in the constellation as tables.
Sort the access intervals by interval start time. Satellites added from ephemeris data do not display
values for StartOrbit and Stop orbit.

intervalsUS = accessIntervals(accessUS);
intervalsUS = sortrows(intervalsUS, "StartTime", "ascend")

intervalsUS=40×8 table
     Source        Target       IntervalNumber         StartTime                EndTime           Duration    StartOrbit    EndOrbit
    ________    ____________    ______________    ____________________    ____________________    ________    __________    ________

    "Natick"    "GALILEO 1"           1           30-Nov-2020 22:23:24    01-Dec-2020 04:04:24     20460         NaN          NaN   
    "Natick"    "GALILEO 2"           1           30-Nov-2020 22:23:24    01-Dec-2020 01:24:24     10860         NaN          NaN   
    "Natick"    "GALILEO 3"           1           30-Nov-2020 22:23:24    30-Nov-2020 22:57:24      2040         NaN          NaN   
    "Natick"    "GALILEO 12"          1           30-Nov-2020 22:23:24    01-Dec-2020 00:00:24      5820         NaN          NaN   
    "Natick"    "GALILEO 13"          1           30-Nov-2020 22:23:24    30-Nov-2020 23:05:24      2520         NaN          NaN   
    "Natick"    "GALILEO 18"          1           30-Nov-2020 22:23:24    01-Dec-2020 04:00:24     20220         NaN          NaN   
    "Natick"    "GALILEO 19"          1           30-Nov-2020 22:23:24    01-Dec-2020 01:42:24     11940         NaN          NaN   
    "Natick"    "GALILEO 20"          1           30-Nov-2020 22:23:24    30-Nov-2020 22:46:24      1380         NaN          NaN   
    "Natick"    "GALILEO 11"          1           30-Nov-2020 22:25:24    01-Dec-2020 00:18:24      6780         NaN          NaN   
    "Natick"    "GALILEO 17"          1           30-Nov-2020 22:50:24    01-Dec-2020 05:50:24     25200         NaN          NaN   
    "Natick"    "GALILEO 8"           1           30-Nov-2020 23:20:24    01-Dec-2020 07:09:24     28140         NaN          NaN   
    "Natick"    "GALILEO 7"           1           01-Dec-2020 01:26:24    01-Dec-2020 10:00:24     30840         NaN          NaN   
    "Natick"    "GALILEO 24"          1           01-Dec-2020 01:40:24    01-Dec-2020 07:12:24     19920         NaN          NaN   
    "Natick"    "GALILEO 14"          1           01-Dec-2020 03:56:24    01-Dec-2020 07:15:24     11940         NaN          NaN   
    "Natick"    "GALILEO 6"           1           01-Dec-2020 04:05:24    01-Dec-2020 12:14:24     29340         NaN          NaN   
    "Natick"    "GALILEO 23"          1           01-Dec-2020 04:10:24    01-Dec-2020 08:03:24     13980         NaN          NaN   
      ⋮

intervalsDE = accessIntervals(accessDE);
intervalsDE = sortrows(intervalsDE, "StartTime", "ascend")

intervalsDE=40×8 table
     Source         Target       IntervalNumber         StartTime                EndTime           Duration    StartOrbit    EndOrbit
    _________    ____________    ______________    ____________________    ____________________    ________    __________    ________

    "Munchen"    "GALILEO 2"           1           30-Nov-2020 22:23:24    01-Dec-2020 04:34:24     22260         NaN          NaN   
    "Munchen"    "GALILEO 3"           1           30-Nov-2020 22:23:24    01-Dec-2020 01:58:24     12900         NaN          NaN   
    "Munchen"    "GALILEO 4"           1           30-Nov-2020 22:23:24    30-Nov-2020 23:05:24      2520         NaN          NaN   
    "Munchen"    "GALILEO 10"          1           30-Nov-2020 22:23:24    30-Nov-2020 23:58:24      5700         NaN          NaN   
    "Munchen"    "GALILEO 19"          1           30-Nov-2020 22:23:24    01-Dec-2020 01:36:24     11580         NaN          NaN   
    "Munchen"    "GALILEO 20"          1           30-Nov-2020 22:23:24    01-Dec-2020 00:15:24      6720         NaN          NaN   
    "Munchen"    "GALILEO 21"          1           30-Nov-2020 22:23:24    30-Nov-2020 22:28:24       300         NaN          NaN   
    "Munchen"    "GALILEO 9"           1           30-Nov-2020 22:34:24    01-Dec-2020 02:22:24     13680         NaN          NaN   
    "Munchen"    "GALILEO 18"          1           30-Nov-2020 22:41:24    01-Dec-2020 02:31:24     13800         NaN          NaN   
    "Munchen"    "GALILEO 1"           1           30-Nov-2020 23:05:24    01-Dec-2020 06:42:24     27420         NaN          NaN   
    "Munchen"    "GALILEO 16"          1           30-Nov-2020 23:29:24    01-Dec-2020 04:47:24     19080         NaN          NaN   
    "Munchen"    "GALILEO 15"          1           01-Dec-2020 00:50:24    01-Dec-2020 07:27:24     23820         NaN          NaN   
    "Munchen"    "GALILEO 17"          1           01-Dec-2020 01:05:24    01-Dec-2020 03:00:24      6900         NaN          NaN   
    "Munchen"    "GALILEO 8"           1           01-Dec-2020 01:57:24    01-Dec-2020 08:25:24     23280         NaN          NaN   
    "Munchen"    "GALILEO 14"          1           01-Dec-2020 02:36:24    01-Dec-2020 10:19:24     27780         NaN          NaN   
    "Munchen"    "GALILEO 7"           1           01-Dec-2020 04:35:24    01-Dec-2020 09:43:24     18480         NaN          NaN   
      ⋮

intervalsIN = accessIntervals(accessIN);
intervalsIN = sortrows(intervalsIN, "StartTime", "ascend")
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intervalsIN=31×8 table
      Source          Target       IntervalNumber         StartTime                EndTime           Duration    StartOrbit    EndOrbit
    ___________    ____________    ______________    ____________________    ____________________    ________    __________    ________

    "Bangalore"    "GALILEO 3"           1           30-Nov-2020 22:23:24    01-Dec-2020 05:12:24     24540         NaN          NaN   
    "Bangalore"    "GALILEO 4"           1           30-Nov-2020 22:23:24    01-Dec-2020 02:59:24     16560         NaN          NaN   
    "Bangalore"    "GALILEO 5"           1           30-Nov-2020 22:23:24    01-Dec-2020 00:22:24      7140         NaN          NaN   
    "Bangalore"    "GALILEO 9"           1           30-Nov-2020 22:23:24    01-Dec-2020 03:37:24     18840         NaN          NaN   
    "Bangalore"    "GALILEO 10"          1           30-Nov-2020 22:23:24    01-Dec-2020 00:09:24      6360         NaN          NaN   
    "Bangalore"    "GALILEO 16"          1           30-Nov-2020 22:23:24    01-Dec-2020 08:44:24     37260         NaN          NaN   
    "Bangalore"    "GALILEO 21"          1           30-Nov-2020 22:23:24    30-Nov-2020 23:25:24      3720         NaN          NaN   
    "Bangalore"    "GALILEO 22"          1           30-Nov-2020 22:23:24    30-Nov-2020 22:58:24      2100         NaN          NaN   
    "Bangalore"    "GALILEO 15"          1           01-Dec-2020 00:17:24    01-Dec-2020 11:16:24     39540         NaN          NaN   
    "Bangalore"    "GALILEO 2"           1           01-Dec-2020 00:25:24    01-Dec-2020 07:10:24     24300         NaN          NaN   
    "Bangalore"    "GALILEO 22"          2           01-Dec-2020 00:48:24    01-Dec-2020 05:50:24     18120         NaN          NaN   
    "Bangalore"    "GALILEO 21"          2           01-Dec-2020 01:32:24    01-Dec-2020 08:29:24     25020         NaN          NaN   
    "Bangalore"    "GALILEO 1"           1           01-Dec-2020 03:06:24    01-Dec-2020 07:17:24     15060         NaN          NaN   
    "Bangalore"    "GALILEO 20"          1           01-Dec-2020 03:36:24    01-Dec-2020 12:38:24     32520         NaN          NaN   
    "Bangalore"    "GALILEO 14"          1           01-Dec-2020 05:48:24    01-Dec-2020 13:29:24     27660         NaN          NaN   
    "Bangalore"    "GALILEO 19"          1           01-Dec-2020 05:53:24    01-Dec-2020 17:06:24     40380         NaN          NaN   
      ⋮

View the Satellite Scenario

Open a 3-D viewer window of the scenario. The viewer window contains all 24 satellites and the three
ground stations defined earlier in this example. A line is drawn between each ground station and
satellite during their corresponding access intervals. Hide the details of the satellites and ground
stations by setting the ShowDetails name-value pair to false. Show satellite orbits and labels for
the ground station locations.

viewer3D = satelliteScenarioViewer(scenario, ShowDetails=false);
show(sat.Orbit);
gsUS.ShowLabel = true;
gsUS.LabelFontSize = 11;
gsDE.ShowLabel = true;
gsDE.LabelFontSize = 11;
gsIN.ShowLabel = true;
gsIN.LabelFontSize = 11;

 Constellation Modeling with the Orbit Propagator Block

9-89



Compare Access Between Ground Stations

Calculate access status between each satellite and ground station using the accessStatus method.
Each row of the output array corresponds with a satellite in the constellation. Each column
corresponds with time steps in the scenario. A value of True indicates that the satellite can access
the aircraft at that specific time sample. The second output of accessStatus contains the time steps
of the scenario. Plot cumulative access for each ground station over the one day analysis window.

[statusUS, timeSteps] = accessStatus(accessUS);
statusDE = accessStatus(accessDE);
statusIN = accessStatus(accessIN);

% Sum cumulative access at each timestep
statusUS = sum(statusUS, 1);
statusDE = sum(statusDE, 1);
statusIN = sum(statusIN, 1);

subplot(3,1,1);
stairs(timeSteps, statusUS);
title("Natick to GALILEO")
ylabel("# of satellites")
subplot(3,1,2);
stairs(timeSteps, statusDE);
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title("München to GALILEO")
ylabel("# of satellites")
subplot(3,1,3);
stairs(timeSteps, statusIN);
title("Bangalore to GALILEO")
ylabel("# of satellites")

Collect access interval metrics for each ground station in a table for comparison.

statusTable = [table(height(intervalsUS), height(intervalsDE), height(intervalsIN)); ...
    table(sum(intervalsUS.Duration)/3600, sum(intervalsDE.Duration)/3600, sum(intervalsIN.Duration)/3600); ...
    table(mean(intervalsUS.Duration/60), mean(intervalsDE.Duration/60), mean(intervalsIN.Duration/60)); ...
    table(mean(statusUS, 2), mean(statusDE, 2), mean(statusIN, 2)); ...
    table(min(statusUS), min(statusDE), min(statusIN)); ...
    table(max(statusUS), max(statusDE), max(statusIN))];
statusTable.Properties.VariableNames = ["Natick", "München", "Bangalore"];
statusTable.Properties.RowNames = ["Total # of intervals", "Total interval time (hrs)",...
    "Mean interval length (min)", "Mean # of satellites in view", ...
    "Min # of satellites in view", "Max # of satellites in view"];
statusTable

statusTable=6×3 table
                                    Natick    München    Bangalore
                                    ______    _______    _________

    Total # of intervals                40        40          31  
    Total interval time (hrs)       167.88    169.95      180.42  
    Mean interval length (min)      251.82    254.93      349.19  
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    Mean # of satellites in view     7.018    7.1041      7.5337  
    Min # of satellites in view          5         5           5  
    Max # of satellites in view          9        10           9  

Walker-Delta constellations are evenly distributed across longitudes. Natick and München are located
at similar latitudes, and therefore have very similar access characteristics with respect to the
constellation. Bangalore is at a latitude closer to the equator, and despite having a lower number of
individual access intervals, it has the highest average number of satellites in view, the highest overall
interval time, and the longest average interval duration (by about 95 minutes). All locations always
have at least 4 satellites in view, as is required for GNSS trilateration.
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Mission Analysis with the Orbit Propagator Block

This example shows how to compute and visualize line-of-sight access intervals between satellite(s)
and a ground station. It uses:

• Aerospace Blockset Orbit Propagator block
• Aerospace Toolbox satelliteScenario object
• Mapping Toolbox worldmap and geoshow functions

The Aerospace Toolbox satelliteScenario object allows users to add satellites and constellations
to scenarios in two ways. First, satellite initial conditions can be defined from a two line element file
(.tle) or from Keplerian orbital elements and the satellites can then be propagated using Kepler's
problem, simplified general perturbation alogirithm SGP-4, or simplified deep space perturbation
algorithm SDP-4. Additionally, previously generated timestamped ephemeris data can be added to a
scenario from a timeseries or timetable object. Data is interpolated in the scenario object to align
with the scenario time steps. This second option can be used to incorporate data generated in a
Simulink model into either a new or existing satelliteScenario. This example shows how to propagate
satellite trajectories using numerical integration with the Aerospace Blockset Orbit Propagator
block, and load that logged ephemeris data into a satelliteScenario object for access analysis.

Define Mission Parameters and Satellite Initial Conditions

Specify a start date and duration for the mission. This example uses MATLAB structures to organize
mission data. These structures make accessing data later in the example more intuitive. They also
help declutter the global base workspace.

mission.StartDate = datetime(2019, 1, 4, 12, 0, 0);
mission.Duration  = hours(6);

Specify Keplerian orbital elements for the satellite(s) at the mission.StartDate.

mission.Satellite.SemiMajorAxis  = 6786233.13; % meters
mission.Satellite.Eccentricity   = 0.0010537;
mission.Satellite.Inclination    = 51.7519;    % deg
mission.Satellite.RAAN           = 95.2562;    % deg
mission.Satellite.ArgOfPeriapsis = 93.4872;    % deg
mission.Satellite.TrueAnomaly    = 202.9234;   % deg

Specify the latitude and longitude of a ground station to use in access analysis below.
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mission.GroundStation.Latitude  = ;  % deg

mission.GroundStation.Longitude = ; % deg

Open and Configure the Orbit Propagation Model

Open the included Simulink model. This model contains an Orbit Propagator block connected to
output ports. The Orbit Propagator block supports vectorization. This allows you to model
multiple satellites in a single block by specifying arrays of initial conditions in the Block
Parameters window or using set_param. The model also includes a "Mission Analysis and
Visualization" section that contains a dashboard Callback button. When clicked, this button runs
the model, creates a new satelliteScenario object in the global base workspace containing the
satellite or constellation defined in the Orbit Propagator block, and opens a Satellite Scenario
Viewer window for the new scenario. To view the source code for this action, double click the callback
button. The "Mission Analysis and Visualization" section is a standalone workflow to create a
new satelliteScenario object and is not used as part of this example.

mission.mdl = "OrbitPropagatorBlockExampleModel";
open_system(mission.mdl);
snapshotModel(mission.mdl);

Define the path to the Orbit Propagator block in the model.

mission.Satellite.blk = mission.mdl + "/Orbit Propagator";

Set satellite initial conditions. To assign the Keplerian orbital element set defined in the previous
section, use set_param.
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set_param(mission.Satellite.blk, ...
    "startDate",      num2str(juliandate(mission.StartDate)), ...
    "stateFormatNum", "Orbital elements", ...
    "orbitType",      "Keplerian", ...
    "semiMajorAxis",  "mission.Satellite.SemiMajorAxis", ...
    "eccentricity",   "mission.Satellite.Eccentricity", ...
    "inclination",    "mission.Satellite.Inclination", ...
    "raan",           "mission.Satellite.RAAN", ...
    "argPeriapsis",   "mission.Satellite.ArgOfPeriapsis", ...
    "trueAnomaly",    "mission.Satellite.TrueAnomaly");

Set the position and velocity output ports of the block to use the Earth-centered Earth-fixed frame,
which is the International Terrestrial Reference Frame (ITRF).

set_param(mission.Satellite.blk, ...
    "centralBody",  "Earth", ...
    "outportFrame", "Fixed-frame");

Configure the propagator. This example uses a numerical propagator for higher position accuracy.
Use numerical propagators to model Earth gravitational potential using the equation for universal
gravitation ("Pt-mass"), a second order zonal harmonic model ("Oblate Ellipsoid (J2)"), or a
spherical harmonic model ("Spherical Harmonics"). Spherical harmonics are the most accurate,
but trade accuracy for speed. For increased accuracy, you can also specify whether to use Earth
orientation parameters (EOP's) in the internal transformations between inertial (ICRF) and fixed
(ITRF) coordinate systems.

set_param(mission.Satellite.blk, ...
    "propagator",   "Numerical (high precision)", ...
    "gravityModel", "Spherical Harmonics", ...
    "earthSH",      "EGM2008", ... % Earth spherical harmonic potential model
    "shDegree",     "120", ... % Spherical harmonic model degree and order
    "useEOPs",      "on", ... % Use EOP's in ECI to ECEF transformations
    "eopFile",      "aeroiersdata.mat"); % EOP data file

Apply model-level solver setting using set_param. For best performance and accuracy when using a
numerical propagator, use a variable-step solver.

set_param(mission.mdl, ...
    "SolverType", "Variable-step", ...
    "SolverName", "VariableStepAuto", ...
    "RelTol",     "1e-6", ...
    "AbsTol",     "1e-7", ...
    "StopTime",   string(seconds(mission.Duration)));

Save model output port data as a dataset of time series objects.

set_param(mission.mdl, ...
    "SaveOutput", "on", ...
    "OutputSaveName", "yout", ...
    "SaveFormat", "Dataset");

Run the Model and Collect Satellite Ephemerides

Simulate the model. In this example, the Orbit Propagator block is set to output position and
velocity states in the ECEF (ITRF) coordinate frame.

mission.SimOutput = sim(mission.mdl);
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Extract position and velocity data from the model output data structure.

mission.Satellite.TimeseriesPosECEF = mission.SimOutput.yout{1}.Values;
mission.Satellite.TimeseriesVelECEF = mission.SimOutput.yout{2}.Values;

Set the start data from the mission in the timeseries object.

mission.Satellite.TimeseriesPosECEF.TimeInfo.StartDate = mission.StartDate;
mission.Satellite.TimeseriesVelECEF.TimeInfo.StartDate = mission.StartDate;

Load the Satellite Ephemerides into a satelliteScenario Object

Create a satellite scenario object to use during the analysis portion of this example.

scenario = satelliteScenario;

Add the satellites to the satellite scenario as ECEF position and velocity timeseries using the
satellite method.

sat = satellite(scenario, mission.Satellite.TimeseriesPosECEF, mission.Satellite.TimeseriesVelECEF, ...
    "CoordinateFrame", "ecef")

sat = 
  Satellite with properties:

               Name:  Satellite
                 ID:  1
     ConicalSensors:  [1x0 matlabshared.satellitescenario.ConicalSensor]
            Gimbals:  [1x0 matlabshared.satellitescenario.Gimbal]
       Transmitters:  [1x0 satcom.satellitescenario.Transmitter]
          Receivers:  [1x0 satcom.satellitescenario.Receiver]
           Accesses:  [1x0 matlabshared.satellitescenario.Access]
        GroundTrack:  [1x1 matlabshared.satellitescenario.GroundTrack]
              Orbit:  [1x1 matlabshared.satellitescenario.Orbit]
    OrbitPropagator:  ephemeris
        MarkerColor:  [0.059 1 1]
         MarkerSize:  6
          ShowLabel:  true
     LabelFontColor:  [1 1 1]
      LabelFontSize:  15

disp(scenario)

  satelliteScenario with properties:

         StartTime: 04-Jan-2019 12:00:00
          StopTime: 04-Jan-2019 18:00:00
        SampleTime: 60
      AutoSimulate: 1
        Satellites: [1×1 matlabshared.satellitescenario.Satellite]
    GroundStations: [1×0 matlabshared.satellitescenario.GroundStation]
           Viewers: [0×0 matlabshared.satellitescenario.Viewer]
          AutoShow: 1

Preview latitude (deg), longitude (deg), and altitude (m) for each satellite. Use the states method to
query satellite states at each scenario time step.

for idx = numel(sat):-1:1
    % Retrieve states in geographic coordinates
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    [llaData, ~, llaTimeStamps] = states(sat(idx), "CoordinateFrame","geographic");
    % Organize state data for each satellite in a seperate timetable
    mission.Satellite.LLATable{idx} = timetable(llaTimeStamps', llaData(1,:)', llaData(2,:)', llaData(3,:)',...
        'VariableNames', {'Lat_deg','Lon_deg', 'Alt_m'});
    mission.Satellite.LLATable{idx}
end

ans=361×3 timetable
            Time            Lat_deg    Lon_deg      Alt_m   
    ____________________    _______    _______    __________

    04-Jan-2019 12:00:00    -44.804    120.35     4.2526e+05
    04-Jan-2019 12:01:00    -42.797    124.73     4.2229e+05
    04-Jan-2019 12:02:00    -40.626    128.77     4.2393e+05
    04-Jan-2019 12:03:00    -38.322    132.53     4.2005e+05
    04-Jan-2019 12:04:00    -35.848    136.07     4.2004e+05
    04-Jan-2019 12:05:00    -33.289    139.35      4.203e+05
    04-Jan-2019 12:06:00    -30.655    142.41      4.187e+05
    04-Jan-2019 12:07:00    -27.884    145.34     4.1982e+05
    04-Jan-2019 12:08:00    -25.069    148.09     4.1831e+05
    04-Jan-2019 12:09:00    -22.234    150.68     4.1404e+05
    04-Jan-2019 12:10:00    -19.297    153.19     4.1829e+05
    04-Jan-2019 12:11:00    -16.343    155.58     4.1713e+05
    04-Jan-2019 12:12:00    -13.388    157.89       4.07e+05
    04-Jan-2019 12:13:00    -10.354    160.15      4.104e+05
    04-Jan-2019 12:14:00    -7.3077    162.37     4.1291e+05
    04-Jan-2019 12:15:00    -4.2622    164.55     4.0487e+05
      ⋮

clear llaData llaTimeStamps;

Display Satellite Trajectories Over the 3D Globe

To display the satellite trajectories over Earth (WGS84 ellipsoid), use helper function
plot3DTrajectory.

mission.ColorMap = lines(256); % Define colormap for satellite trajectories 
mission.ColorMap(1:3,:) = [];
plot3DTrajectories(mission.Satellite, mission.ColorMap);
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Display Global and Regional 2D Ground Traces

View the global ground trace as a 2D projection using helper function plot2DTrajectories:

plot2DTrajectories(mission.Satellite, mission.GroundStation, mission.ColorMap);
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View regional ground trace. Select the region of interest from the dropdown menu:

plot2DTrajectories(mission.Satellite, mission.GroundStation, mission.ColorMap, );
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Compute Satellite to Ground Station Access (Line-of-Sight Visibility)

Add the ground station to the satelliteScenario object using the groundStation method.

gs = groundStation(scenario, mission.GroundStation.Latitude, mission.GroundStation.Longitude, ...
    "MinElevationAngle", 10, "Name", "Ground Station")

gs = 
  GroundStation with properties:

                 Name:  Ground Station
                   ID:  2
             Latitude:  42 degrees
            Longitude:  -71 degrees
             Altitude:  0 meters
    MinElevationAngle:  10 degrees
       ConicalSensors:  [1x0 matlabshared.satellitescenario.ConicalSensor]
              Gimbals:  [1x0 matlabshared.satellitescenario.Gimbal]
         Transmitters:  [1x0 satcom.satellitescenario.Transmitter]
            Receivers:  [1x0 satcom.satellitescenario.Receiver]
             Accesses:  [1x0 matlabshared.satellitescenario.Access]
          MarkerColor:  [1 0.4118 0.1608]
           MarkerSize:  6
            ShowLabel:  true
       LabelFontColor:  [1 1 1]
        LabelFontSize:  15
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Attach line-of-sight access analyses between all individual satellites and the ground station using the
access method.

ac = access(sat, gs);
ac.LineColor = "green";

Display Access Intervals

Display access intervals for each satellite as a timetable. Use accessStatus and
accessIntervals satellite methods to interact with access analysis results.

for idx = numel(ac):-1:1
    mission.Satellite.AccessStatus{idx} = accessStatus(ac(idx));
    mission.Satellite.AccessTable{idx} = accessIntervals(ac(idx));
    % Use local function addLLAToTimetable to add geographic positions and
    % closest approach range to the Access Intervals timetable
    mission.Satellite.AccessTable{idx} = addLLAToTimetable(...
        mission.Satellite.AccessTable{idx}, mission.Satellite.LLATable{idx}, mission.GroundStation);
end
clear idx;

Display access intervals overlaying 2D ground traces of the satellite trajectories using helper function
plotAccessIntervals.

plotAccessIntervals(mission.Satellite, mission.GroundStation, mission.ColorMap);

mission.Satellite.AccessTable{:}
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ans=2×8 table
      Source            Target         IntervalNumber         StartTime                EndTime           Duration    LLA (deg, deg, m)    ClosestApproach (m)
    ___________    ________________    ______________    ____________________    ____________________    ________    _________________    ___________________

    "Satellite"    "Ground Station"          1           04-Jan-2019 12:44:00    04-Jan-2019 12:50:00      360         {6×3 double}           5.0087e+05     
    "Satellite"    "Ground Station"          2           04-Jan-2019 14:21:00    04-Jan-2019 14:25:00      240         {4×3 double}            1.102e+06     

Further Analysis

Play the satelliteScenario object to open and animate the scenario in a
satelliteScenarioViewer window.

play(scenario);
disp(scenario.Viewers(1))

  Viewer with properties:

                       Name: 'Satellite Scenario Viewer'
                   Position: [560 300 800 600]
                    Basemap: 'satellite'
    PlaybackSpeedMultiplier: 50
       CameraReferenceFrame: 'ECEF'
                CurrentTime: 04-Jan-2019 12:00:32
                ShowDetails: 1
                  Dimension: '3D'

Show the satellite ground track in the viewer.

groundTrack(sat);
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Getting Started with the Spacecraft Dynamics Block

This example shows how to model six degree-of-freedom rigid-body dynamics of a spacecraft or
constellation of spacecraft with the Spacecraft Dynamics block from the Aerospace Blockset.

The Spacecraft Dynamics block models translational and rotational dynamics of spacecraft using
numerical integration. It computes the position, velocity, attitude, and angular velocity of one or more
spacecraft over time. For the most accurate results, use a variable step solver with low tolerance
settings (less than 1e-8). Depending on your mission requirements, you can increase speed by using
larger tolerances. Doing so may impact the accuracy of the solution.

Define orbital states as a set of orbital elements or as position and velocity state vectors. To
propagate orbital states, the block uses the gravity model selected for the current central body. The
block also includes external accelerations and forces provided as inputs to the block.

Attitude states are defined using quaternions, direction cosine matrices (DCMs), or Euler angles. To
propagate attitude states, the block uses moments provided as inputs to the block and mass
properties defined on the block.

This document walks through the various options and configurations available on the block, explains
how to model a constellation of spacecraft, and presents an example Simulink model that implements
the Spacecraft Dynamics block for a low-Earth observation satellite. Finally, the equations used
by the block are presented.

Block Description

The Spacecraft Dynamics block can be found in the Simulink Library Browser (Aerospace
Blockset→Spacecraft→Spacecraft Dynamics), or by typing "Spacecraft Dynamics" into the quick insert
dialog on the Simulink model canvas. This section provides an overview of the options available on
the block, viewed from the Simulink Property Inspector (on the Modeling tab, under Design).
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Main Tab

The Main tab includes block-level configuration parameters. All parameters on this tab apply to every
spacecraft defined in the block.

You can specify whether to include:

• Body forces defined in the body frame
• Body moments defined in the Body frame ports
• External accelerations, to include perturbing accelerations in orbit propagation that are not

included in the block's internal calculations. By default, the block calculates and uses central body
gravity for orbit propagation (see Central Body tab on page 9-111 below). Some examples of
additional perturbing accelerations that you can include in propagation are those due to
atmospheric drag, third body gravity, and solar radiation pressure. You can provide perturbing
accelerations in the inertial (ICRF) or fixed-frame coordinate systems, depending on the value set
for External acceleration coordinate frame. For more information about fixed-frame
coordinate systems used for each central body, see the Coordinate Systems section of the block
reference page.

State vector output coordinate frame controls whether position and velocity state outputs from
the block are in the inertial (ICRF) or fixed-frame coordinate systems.

You can also specify whether to output total inertial acceleration from the block, which is always in
the inertial frame. This value is the total acceleration, including internally computed central body
gravity as well as contributions from body forces and external accelerations provided to the block as
inputs. Note, the acceleration output port is intended for diagnostic use only. It is not a valid
workflow to feed this signal back into the block as an input.

Start date/time is the initial date/time corresponding with the Simulink model start time t0. It is the
assumed epoch for all initial conditions provided on the block. Optionally, you can select Output
current date/time to output a time signal from the block to use elsewhere in the simulation.

Mass Tab

Three mass types are available to model mass properties of the spacecraft: Fixed, Simple
variable, and Custom Variable.
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When Mass type is Fixed, the mass and inertia tensor are held constant at the values provided for
Mass and Inertia tensor throughout the simulation. Mass flow rate and rate of change of inertia
equal zero.

When Mass type is Simple variable, a simplistic approach is taken to vary the mass properties of
the spacecraft during the simulation.

An initial Mass, Empty mass (dry), and Full mass (wet) are defined. Mass flow rate is provided to
the block via an input port (dm/dt). This value is integrated to calculate the current mass at each
time step of the simulation.

Similarly, in this configuration you provide inertia tensor values for the empty and full spacecraft
configurations. The current tensor is approximated by linear interpolation between Empty inertia
tensor and Full inertia tensor based on the current mass value.

You can optionally add another input port (Vreb) to the block to provide a mass flow relative velocity
using parameter Include mass flow relative velocity. This relative velocity is provided in the Body
frame. It is used to calculate the force contribution due to mass being ablated from or added to the
spacecraft.

To limit the mass flow rate provided to the block when the current mass is below the empty mass or
above the full mass value, use parameter Limit mass flow when mass is empty or full.

Finally, the current fuel status can be output from the block (Fuel Status) based on the current
mass. If the current mass exceeds Full mass, the reported status is 1. If the current mass is below
Empty mass, the status is -1. When the mass is within the provided operating range, the status is 0.
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When Mass type is Custom variable, more flexibility is provided regarding how the mass
properties of the spacecraft change over time. However this requires that more values be calculated
externally from the block.

In this configuration, block input ports are added for the current mass (m), current inertia tensor (I),
and the current rate of change of the inertia tensor (dI/dt).

To provide mass flow relative velocity, you can optionally add another input port (Vreb) to the block
with the Include mass flow relative velocity parameter. This relative velocity is provided in the
Body frame. It is used to calculate the force contribution due to mass being ablated from or added to
the spacecraft. Therefore, enabling this parameter adds an additional port to the block to provide
mass flow rate (dm/dt).

Orbit Tab

The Orbit tab defines initial conditions for the spacecraft as sets of orbital elements or as position
and velocity state vectors depending on the value of Initial state format (Orbital elements,
ICRF state vector, or Fixed-frame state vector).

For state vector options, provide the initial position and velocity that correspond with Start date/
time in the specified coordinate frame.

The Initial state format option Orbital elements is further decomposed by parameter Orbit
type.
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When Orbit type is Keplerian, you specify the traditional set of six Keplerian orbital elements:

• Semi-major axis (a)
• Eccentricity (e)
• Inclination (i)
• Right ascension of the ascending node - RAAN (Ω)
• Argument of periapsis (ω)
• True anomaly (ν).
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When specifying orbital elements, three orbit types result in undefined elements:

• When an orbit is equatorial (inclination equal to zero), RAAN is undefined.
• When an orbit is circular (eccentricity equal to zero), argument of periapsis and true anomaly are
undefined.

• When an orbit is circular and equatorial, all three elements are undefined.

To assist in modeling these conditions, the block provides three additional options for Orbit type in
addition to Keplerian.
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For non-circular (elliptical) equatorial orbits, inclination always equals zero, and RAAN and
Argument of periapsis are replaced with Longitude of periapsis. Longitude of periapsis is the
angle between the ICRF X-axis (I) and periapsis. It is equal to the sum of RAAN (Ω) and the argument
of periapsis (ω).

For circular inclined (non-equatorial) orbits, eccentricity always equals zero, and Argument of
periapsis and True anomaly are replaced by Argument of latitude. Argument of latitude is the
angle between the ascending node and the satellite position vector. It is equal to the sum of the true
anomaly (ν) and the argument of periapsis (ω).

Finally, for circular equatorial orbits, inclination and eccentricity always equal zero, and RAAN,
Argument of periapsis, and True anomaly are replaced by True longitude. True longitude is the
angle between the ICRF X-axis (I) and the spacecraft position vector. It is equal to sum of true
anomaly (ν), argument of periapsis (ω), and RAAN (Ω).
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Attitude Tab

The Attitude tab defines initial conditions for the attitude of the spacecraft being modeled. Using
parameter Attitude reference coordinate frame, you can define attitude with respect to the
inertial (ICRF) frame, Fixed-frame, North-East-Down (NED) frame, or local-vertical local-horizontal
(LVLH) frame. Initial attitude and body angular rate parameters provided to the block are assumed to
be defined with respect to the specified frame. The attitude and body angular rate outputs from the
block also use this frame.

To specify what representation method to use for attitude, use the Attitude representation
parameter. Depending on the value selected, the Initial attitude parameter displays as Initial
quaternion, Initial DCM, or Initial Euler angles. It expects the dimensions of the provided initial
condition to match that representation. Additionally, the attitude output port from the block uses the
specified representation.

The initial attitude rate of change, Initial body angular rates PQR, and the corresponding output
port (ω) are always defined as angular rates, regardless of the selection made for Attitude
representation.

You can also specify whether to Output total inertial angular acceleration (ω̇) from the block.
This output is always defined with respect to the inertial (ICRF) frame. If Include gravity gradient
torque is selected, this value is the total angular acceleration due to moments provided as inputs to
the block, and gravity gradient torque computed internally. Note, the angular acceleration output
port is intended for diagnostic use only. It is not a valid workflow to feed this signal back into the
block as an input.

If enabled, gravity gradient torque calculations treat the central body as a spherical body. The overall
contribution due to gravity gradient torque is small. Treating the central body as a spherical body is
generally sufficient for most applications. If a higher level of accuracy is required, gravity gradient
torque values can be calculated externally and provided to the block as a moment. See the block
equations section below for the equations implemented by the block.

Central Body Tab

Use the Central Body tab to provide information about the physical properties, gravitational
potential model, and orientation of the celestial body around which the spacecraft is in orbit. All
planets in our solar system are available, as well as the Earth Moon (Luna). Custom central bodies
may also be defined. First, look at the various options for parameter Gravitational potential model
(None, Point-mass, Oblate ellipsoid (J2), and Spherical harmonics).
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None is available for all central bodies. This option does not include any internally calculated
gravitational acceleration in the system equations. Use this option in conjunction with the external
acceleration input port if you have your own gravity model that you would like to use. When using
option None with a custom central body, only planetary Rotational rate is required.

Point-mass is available for all central bodies. This option treats the central body as a point mass,
and computes gravitational acceleration using Newtons law of universal gravitation. When using
option Point-mass with a custom central body, you must provide Equatorial radius, Flattening,
Gravitational parameter (μ), and planetary Rotational rate.

Oblate ellipsoid (J2) is available for all central bodies. This option includes the perturbing
effects of the second-degree, zonal harmonic gravity coefficient, J2, accounting for the oblateness of
the central body. When using option Oblate ellipsoid (J2) with a custom central body, you must
provide Equatorial radius, Flattening, Gravitational parameter (μ), Second degree zonal
harmonic (J2), and planetary Rotational rate.

Spherical harmonics is available only when central body is set to Earth, Moon, Mars, or Custom.
The Spherical harmonic model options available for each central body are listed in this table:

You must also specify a value for Degree that is below the maximum degree supported by the
selected spherical harmonic model. Recommended and maximum degree values for each model are
provided below:
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When using option Spherical harmonics with a custom central body, you must provide planetary
Rotational rate, a Spherical harmonic coefficient file (.mat), and Degree. For more information
about this file, see the parameter description in the Spacecraft Dynamics block reference page.

All planetary constants used by the block are from NASA JPL Planetary and Lunar Ephemerides
DE405.

All J2 constant values are from NASA Space Science Data Coordinated Archive (NSSDCA).

If you need alternate constant values, use the Custom option for Central body.

In addition to gravity, the Central Body tab includes information about the orientation of the central
body. Available parameters depend on the currently selection Central body. All central bodies except
Earth, Moon, and Custom use planetary rotational pole and meridian definitions from the Report of
the IAU/IAG Working Group on cartographic coordinates and rotational elements: 2006. Options
specific to Earth, Moon, and Custom are discussed below.

When Central body is Earth, the fixed-frame coordinate system used by the block is the ITRF. By
default, the transformation between ICRF and ITRF uses Earth orientation parameter (EOP) data
provided to parameter IERS EOP data file. To generate an up-to-date EOP data file, use the
Aerospace Toolbox function aeroReadIERSData(). This function calls out to the IERS data server
and saves up-to-date EOP data to a MAT-file. To exclude Earth orientation parameter data from the
transformation, clear Use Earth orientation parameters (EOPs).

When Central body is Moon, you can provide Moon libration angles as inputs to the block by
selecting Input Moon libration angles. When this option is selected, an input port is added to the
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block. In this case, libration angles are supplied at each time step of the simulation to use in the
transformation between the fixed frame and ICRF. You can compute libration angles using the Moon
Libration block. When using libration angles, the fixed-frame coordinate system for Moon is the
Mean Earth/pole axis frame (ME). This frame is realized by two transformations. First, the block
transforms values in the ICRF frame to the Principal Axis system (PA), which is the axis defined by the
libration angles provided as inputs to the block. The block then transforms states into the ME system
using a fixed rotation from the Report of the IAU/IAG Working Group on cartographic coordinates and
rotational elements: 2006. If the Input Moon libration angles check box is cleared, the fixed frame
is defined by the directions of the poles of rotation and prime meridians defined in the Report of the
IAU/IAG Working Group on cartographic coordinates and rotational elements: 2006.

When Central body is Custom, there are two options to provide rotation pole and meridian data to
the block, depending on the value of parameter Central body spin axis source. To provide current
right ascension, declination, and rotational rate values as inputs to the block at each timestep, set the
source to Port. To provide initial conditions for right ascension, declination, and rotation angle at
J2000 (JD 2451545.0, i.e. 2000 January 1 12 hours TDB) as well as corresponding rate of change for
each value, set the source to Dialog. These parameters align with the terminology and equations
presented in the Report of the IAU/IAG Working Group on cartographic coordinates and rotational
elements: 2006.

Finally, for all central bodies, you can optionally output a quaternion that performs a position
transformation from ICRF to the fixed-frame by selecting Output quaternion (ICRF to Fixed-
frame).

Units Tab

The Units tab defines the unit system, the Angle units (Degrees or Radians), and the time format
used by the block.
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When Time format is Julian date, Start date/time and the block optional time output port use a
scalar Julian date value. When set to Gregorian, both values are a 1x6 array of the form [Year,
Month, Day, Hour, Minute, Second]. The corresponding units for each option of parameter Units are
presented in the table below. Expected units in each parameter and port label on the block are
updated automatically when Units is changed.

Modeling a Satellite Constellation

Up to this point we have modeled a single spacecraft with the Spacecraft Dynamics block.
However, the block can also be configured to model a constellation of satellites/spacecraft. The
number of spacecraft being modeled is determined by the size of the initial conditions provided. If
more than one value is provided for a parameter in the Mass, Orbit, or Attitude tabs, the block
outputs a constellation of satellites. Any parameter that has a single value provided is expanded and
applied to all satellites in the constellation. For example, if a single value is provided for all
parameters on the block except True anomaly which contains 6 values, a constellation of 6 satellites
is created, varying true anomaly only.
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This behavior applies to all spacecraft initial conditions (all dialog boxes in the Mass, Orbit, or
Attitude tabs). Above, initial condition parameter in the Mass, Orbit, or Attitude tabs must contain
a single value expanded to all satellite or 6 individual values, one for each satellite.
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The same expansion behavior also applies to block input ports. All input ports support expansion
expect Moon libration angles φθψ (when Central body is Moon) and spin-axis Right ascension,
declination, and rotation angle αδW (when Central body is Custom). Moon libration angles and
spin-axis orientation inputs are time-dependant values, and therefore always apply to all spacecraft
being modeled. All other ports accept a single value expanded to all spacecraft being modeled, or
individual values applied to each spacecraft (6, in the above example).

Modeling a Lunar Orbit

To demostrate this port expansion behavior, consider a new scenario in which we have twin lunar
orbiters seperated along their orbit track by 200km. Each satellite operates independently of the
other, so different forces and moments are applied to each. However, we want to include the
gravitational impact of Earth as a perturbing acceleration on both satellites. we assume that the
difference in gravitational acceleration due to Earth in a lunar orbit across 200km is negligable. Our
resulting block is shown below.

There are separate force and moment input values for each satellite, however a single external
acceleration input is expanded and applied to both spacecraft. As stated above, Moon libration angles
φθψ are always spacecraft-independant.

The state outputs from the blocks always match the total number of spacecraft being modeled, where
rows corespond with individual spacecraft. There are also two time-dependant outputs from the
block, the current time tutc and the transformation from inertial frame to fixed frame qicrf2ff.

Simulink Model Example

Now, explore an example model that uses the Spacecraft Dynamics block to simulate an Earth
observation satellite.

mdl = "SpacecraftDynamicsBlockExampleModel";
open_system(mdl);
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The satellite is in a near-circular, low Earth orbit (LEO) at an altitude of approximately 500km. For
orbit propagation, we use Earth spherical harmonic model EGM2008 with degree set to 120. We use
Earth orientation parameter data from default file aeroiersdata.mat, which is included in the
Aerospace Toolbox. The satellite mass properties are fixed, with mass equal to 1kg and a simple

inertia tensor of 
1 0 0
0 1 0
0 0 1

. The mission start date is January 1, 2020, 12:00:00, and runs for 6 hours.

To provide attitude control, we use the Attitude Profile block from the Aerospace Blockset,
connected to a simple PD controller. Our desired attitude aligns the satellite body-z axis with
geographic coordinates 42∘,−71∘  at an altitude of 10m. For our secondary constraint, we align the
body-x axis with the y-axis of the local-vertical, local-horizontal (LVLH) frame. In a (near) circular
orbit, the y-axis of the LVLH frame points in the direction of the travel of the satellite. This alignment
keeps our satellite pointing "forward" as we sweep over our geographic point of interest on each
pass. You can also use the Attitude Profile block to align the satellite with Earth nadir, a
different geographical location, a celestial body from JPL Ephemerides DE405, or any custom vector
provided as an input to the block.
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Included in the model is a Simulink 3D Animation world configured to visualize a 1U CubeSat. This
block is commented out by default because it requires Simulink 3D Animation. To enable the
visualization and change visualization properties, double-click the block .
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The model also has linear and angular acceleration outputs from the Spacecraft Dynamics block
connected to a scope. Do not use these outputs as part of a simulation loop. Our inertial linear
acceleration is smooth throughout the simulation, which is expected as we are not performing any
translational (delta-V) maneuvers. In the angular acceleration plot, we observe that passes over our
geographical point of interest coincide with larger acceleration values. When we pass directly over
the point of interest (the first pass), the change in angular velocity required is much larger than when
we pass over the point of interest at a shallower angle (subsequent passes).

Block Equations

We now explore the equations implemented by the block to better understand how the block
calculates output values at each timestep.

Translational system equations

Translation motion is governed by:

a icrf = acentral body gravity + body2inertial
Fb
m + aapplied
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a icrf integrate
v icrf, r icrf

where:

acentral body gravity is the central body gravity based on the current block parameter selections.

aapplied is the user-defined acceleration provided to the block external acceleration input port.

Fb is the body force in the Body coordinate system, with respect to the ICRF frame (inertial).

m is the current spacecraft mass (see mass equations on page 9-122 below).

body2inertial  is the transformation from the rotating body-fixed coordinate system to the inertial
ICRF coordinate system, resulting in the following acceleration contribution from forces:

body2inertial
Fb
m = a icrfforces = quatrotate qb2icrf , ab

where:

ab =
Fb
m =

Fbinput + ṁv re
m

r b = quatrotate qicrf2b , r icrf

Fbinput is the force provided to the block body forces input port.

v re is the relative velocity at which the mass flow (ṁ) is ejected from or added to the body in the
Body coordinate system, with respect to the Body frame.

qicrf2b is the passive quaternion rotation of the body with respect to the inertial ICRF frame.

ωicrf2b is the angular velocity of the body with respect to the inertial ICRF frame.

Rotational system equations

Rotational motion is governed by:

ω̇icrf2b = Mb− ωicrf2b × Imomωicrf2b − İmomωicrf2b inv Imom

ω̇icrf2b integrate
ωicrf2b , qicrf2b

where:

Imom =
Ixx −Ixy −Ixz
−Iyx Iyy −Iyz
−Izx −Izy Izz

is the inertia tensor with respect to the body origin (see Mass section on page

9-122 below).

 Getting Started with the Spacecraft Dynamics Block

9-121



İmom is the rate of change of the inertia tensor (see Mass section on page 9-122 below).

inv  is the 3x3 matrix inverse.

Mb = Mbinput + Mbgravity gradient is the total body moment, comprised of the value provided to the
block body moments input port and the internally calculated gravity gradient torque:

Mbgravity gradient = 3μ
rb

5 r b × Imom r b

μ is the standard gravitation parameter of the central body.

The integration of the rate of change of the quaternion vector is calculated as:

q0̇

q1̇

q2̇

q3̇

=

0 ωb 1 ωb 2 ωb 3
−ωb 1 0 −ωb 3 ωb 2
−ωb 2 ωb 3 0 −ωb 1
−ωb 3 −ωb 2 ωb 1 0

q0
q1
q2
q3

The Aerospace Toolbox and Aerospace Blockset use quaternions that are defined using the scalar-first
convention.

Mass

The mass m, mass flow rate ṁ, inertia tensor Imom, and rate of change of the inertia tensor İmomused
in the above system equations are determined depending on the current parameter selections in the
Mass tab.

Fixed

This option models the spacecraft as a fixed mass rigid body.

m is the mass provided for parameter Mass on the Mass tab.

ṁ equals zero.

Imom is the inertia tensor provided for parameter Inertia tensor on the Mass tab.

İmom equals zero.

Simple variable

This option models the spacecraft as a simple, variable-mass rigid body.

m is the mass bounded between mfull and mempty, calculated by integrating ṁ.

ṁ is provided to the block's dm/dt input port.

Imom =
Ifull− Iempty

mfull−mempty
m−mempty + Iempty
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İmom =
Ifull− Iempty

mfull−mempty
ṁ

Custom variable

This option models the spacecraft as a variable-mass rigid body, providing the highest level of
configurability.

m is provided to the block m input port.

ṁ is provided to the block dm/dt input port when Include mass flow relative velocity is enabled,
otherwise the value is not needed by the system equations.

Imom is provided to the block I input port.

İmom is provided to the block dI/dt input port.

Central body gravity

The acceleration due to central body gravity acentral body gravity is calculated depending on the current
parameter selections in the Central Body tab. For gravity models that include nonspherical
acceleration terms (Oblate ellipsoid (J2) and Spherical harmonics), nonspherical gravity
is computed in the fixed-frame coordinated system (ITRF, in the case of Earth). Numerical
integration, however, is always performed in the inertial ICRF coordinate system. Therefore, at each
timestep, position and velocity states are transformed into the fixed-frame, nonspherical gravity is
calculated in the fixed-frame, and the resulting acceleration is then transformed into the inertial
frame. In the inertial frame, the resulting acceleration is summed with the other acceleration terms
and double-integrated to find velocity and position.

Point-mass (available for all central bodies)

This option treats the central body as a point mass, including only the effects of spherical gravity
using Newton's law of universal gravitation.

acentral body gravity = − μ
ricrf

2
r icrf
ricrf

Oblate ellipsoid (J2) (available for all central bodies)

In addition to spherical gravity, this option includes the perturbing effects of the second-degree, zonal
harmonic gravity coefficient, J2, accounting for the oblateness of the central body. J2 accounts for
most of central body gravitational departure from a perfect sphere.

acentral body gravity = − μ
ricrf

2
r icrf
ricrf

+ fixed2inertial anonspherical

where:
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anonspherical = 1
r
∂
∂r U −

rffk

r2 rffi
2 + rff j

2
∂
∂ϕ U rffi i

+ 1
r
∂
∂r U +

rffk

r2 rffi
2 + rff j

2
∂
∂ϕ U rff j j

+ 1
r
∂
∂r U rk +

rffi
2 + rff j

2

r2
∂
∂ϕ U k

given the partial derivatives in spherical coordinates:

∂
∂r U = 3μ

r2
Rcb

r
2
P2, 0 sin ϕ J2

∂
∂ϕ U = − μ

r
Rcb

r
2
P2, 1 sin ϕ J2

where:

ϕ and λ are the satellite geocentric latitude and longitude

P2, 0 and P2, 1 are associated Legendre functions

Rcb is the central body equatorial radius

fixed2inertial  converts fixed-frame position, velocity, and acceleration into the ICRF coordinate
system with origin at the center of the central body, accounting for centrifugal and Coriolis
acceleration. For more information about the fixed and inertial coordinate systems used for each
central body, see the Coordinate Frames section of the Spacecraft Dynamics block reference
page. The fixed-frame coordinate frame used for Earth is the ITRF.

Spherical Harmonics (available for Earth, Moon, Mars, Custom)

This option adds increased fidelity by including higher-order perturbation effects accounting for
zonal, sectoral, and tesseral harmonics. For reference, the second-degree zeroth order zonal
harmonic J2 is −C2, 0. The Spherical Harmonics model accounts for harmonics up to max degree
l = lmax, which varies by central body and geopotential model.

acentral body gravity = − μ
r2

ricrf
r + fixed2inertial anonspherical

where:

anonspherical = 1
r
∂
∂r U −

rffk

r2 rffi
2 + rff j

2
∂
∂ϕ U rffi−

1
rffi

2 + rff j
2
∂
∂λ U rff j i

+ 1
r
∂
∂r U +

rffk

r2 rffi
2 + rff j

2
∂
∂ϕ U rff j + 1

rffi
2 + rff j

2
∂
∂λ U rffi j

+ 1
r
∂
∂r U rffk +

rffi
2 + rff j

2

r2
∂
∂ϕ U k
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given the following partial derivatives in spherical coordinates:

∂
∂r U = − μ

r2 ∑
l = 2

lmax
∑

m = 0

l Rcb
r

l
l + 1 Pl, m sin ϕ Cl, mcos mλ + Sl, msin mλ

∂
∂ϕ U = μ

r ∑l = 2

lmax
∑

m = 0

l Rcb
r

l
Pl, m + 1 sin ϕ − m tan ϕ Pl, m sin ϕ Cl, mcos mλ + Sl, msin mλ

∂
∂λ U = μ

r ∑l = 2

lmax
∑

m = 0

l Rcb
r

l
m Pl, m sin ϕ Sl, mcos mλ − Cl, msin mλ

Pl, m are associated Legendre functions.

Cl, m and Sl, m are the un-normalized harmonic coefficients.
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Using Unreal Engine Visualization for Airplane Flight

This example shows how to add Unreal Engine® visualization using the Aerospace Simulation 3D
library blocks. In this example, the Sky Hogg airplane flies over the prebuilt airport scene. To see the
final model incorporating 3D visualization, open SkyHoggSim3DExampleModel.

Start with Sky Hogg Example Model

Open the model used for the Lightweight Airplane Design example, asbSkyHogg.

This model is set up for visualization using FlightGear in the Visualization subsystem. This example
shows how to replace that implementation using Unreal Engine®.

Open the Visualization subsystem and delete everything except for In1 and Bus Selector1.

Adding Simulation 3D Animation Blocks

Use the library browser to go to Aerospace Blockset > Animation > Simulation 3D.

To the model:
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1 Add the blocks Simulation 3D Scene Configuration and Simulation 3D Aircraft.
2 Add a Scope block and attach it to the aircraft Altitude port.
3 Terminate the Simulation 3D Aircraft WoW port.

The WoW (Weight on Wheels) port returns a logical true if either the left or right main gear tire is on
a surface (i.e. its altitude is zero) or false otherwise. Since this example has a flying aircraft, this port
is not used.

Setting Up Simulation 3D Aircraft Block

Double-click to open the Simulation 3D Aircraft block to set up values on the Aircraft Parameters,
Inital Values, and Altitude Sensor tabs.

Aircraft Parameters tab

In the Aircraft Parameters tab:

• Set the Type parameter to SkyHogg.
• Select the desired color.
• Leave the default name of SimulinkVehicle1.
• Leave the Sample time value of -1 to allow the block to use the sample time in the Simulation

3D Scene Configuration block.

Initial Values tab

The initial conditions for the input ports are given in the Initial Values tab. If it is an airliner, each
must be a 12-by-3 array. For the Sky Hogg, each must be an 11-by-3 array because the Sky Hogg has
only one powerplant. The aircraft component associated with each row for the Sky Hogg is as follows.

For this example, change the Initial translation value to [0 0 -2000; 0 0 0; 0 0 0; 0 0 0;
0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0] and leave the Initial rotation value
at zeros( 11, 3 ). The -2000 meter Z value is the negative of the initial altitude (NED).

Altitude Sensor tab

The altitude sensor is optional and can be turned on and off by the Enable altitude sensor check
box on this tab. The sensor works by sending ray traces vertically down from the aircraft body and
each of its wheels. Altitude is only sensed if an object is hit by the rays, which are of the prescribed
finite length. The Z offset values place the starting point of each ray at the given vertical (downward)
distance from the aircraft body origin or wheel centers. For example, if the Z offset value entered for
the Front gear tire radius (in meters) is the actual front tire radius for the aircraft mesh selected,
then the returned second altitude value is zero when the aircraft front gear tire sits on the pavement.
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Leave the default settings in place for now.

Setting Up Simulation 3D Scene Configuration Block

Check the configuration of the Simulation 3D Scene Configuration block. It should have Scene
source set to Default Scenes, with the Airport scene selected. For the Scene view, use the
name entered in the Simulation 3D Aircraft block, which by default is SimulinkVehicle1. A
Sample time of 1/60 or similar is fine; use a smaller value for a higher frame rate. To experiment
with the weather, see the controls on the Weather tab. Note that weather in Unreal Engine® is
currently just a visual sky effect; there are no actual wind vectors or forces, for example.

Connecting Simulation 3D Aircraft to Sky Hogg Translation and Rotation

The remaining step is to configure the Translation and Rotation port inputs to the Simulation 3D
Aircraft block. These ports expect 11-by-3 array input at every time step when using Sky Hogg. See
the Simulation 3D Aircraft block reference page for a full description. Since control surface motions
are not provided by the model, change just the values of the BODY. Set all other values to zero.

Reconfigure the bus selector to output just Xe and body angles.

Next, create a subsystem to take the Xe values as input and return the Translation array that the
aircraft block needs. Connect the Xe input to a Reshape block with row vector (2-D) output. Add a
Constant block for the rest of the translations (zeros(10,3)), and feed both into another Vector
Concatenate block. Set this block to Multidimensional array mode with a Concatenate
dimension of 1.

Create a similar subsystem for rotation, which returns the 11-by-3 array of rotations for the aircraft.
Use a Bus Selector to obtain the three angles from the input and feed those into a Vector
Concatenate. The remainder of the subsystem is identical to the translation subsystem.

The final Visualization subsystem should look like this:
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Simulation

Model is ready to run.

• After pressing the Run button, allow a few seconds for the 3D visualization window to initialize.
• You should now see the airplane flying over the airport.
• Once it is simulating, you can switch between camera views by first left-clicking inside the 3D

window, then using the numbers keys 0 through 9 to choose between ten preconfigured camera
positions. For more information on camera views, see the Run Simulation section in Customize
Scenes Using Simulink and Unreal Editor.

Improving the Visualization to Simulation Interaction

Since the height change is so small (50 meters), it is difficult to see the altitude increase in the 3D
window. For illustrative purposes, you can add a Gain block to increase the translation Z values.

Adding Propeller Rotation

This scene is not very realistic since the propeller isn't turning. Propeller rotation is not something
that is calculated in the model, but you can choose a rotation rate for it. To rotate it at 1500 RPM, or
157 radians per second, add a Ramp block for the roll (phi) angle of the second row of the Rotations
array. The modified Sky Hogg Rotation subsystem should look something like this.
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Altitude Sensor Rays

At first glance, the altitude sensor Scope does not appear to be working (returning -1 values). This is
because the altitude is greater than the length of the rays. Open the Simulation 3D Aircraft block
mask and change the Length of rays (in meters) to 2500. If you want to see the rays, select the
Enable visible sensor rays check box. Run the simulation again. The altitudes output in the two
scopes validates that it is indeed at the prescribed location. If visible sensor rays are enabled, then
they are colored red since they are hitting the ground. Without changing the ray length, the rays are
colored green (if made visible) because they do not reach the ground.

9 Examples

9-130



Updated Simulation 3D Visualization Model

All of these steps have been completed for you in the following example model.

mdl = "SkyHoggSim3DExampleModel";
open_system(mdl);

See Also
Simulation 3D Aircraft | Simulation 3D Scene Configuration

Related Examples
• Visualization Techniques with Aerospace Blockset Video
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Developing the Apollo Lunar Module Digital Autopilot

"Working on the design of the Lunar Module digital autopilot was the highlight of my career as an
engineer. When Neil Armstrong stepped off the LM (Lunar Module) onto the moon's surface, every
engineer who contributed to the Apollo program felt a sense of pride and accomplishment. We had
succeeded in our goal. We had developed technology that never existed before, and through hard
work and meticulous attention to detail, we had created a system that worked flawlessly." -Richard J.
Gran, The Apollo 11 Moon Landing: Spacecraft Design Then and Now

This example shows how Richard and the other engineers who worked on the Apollo Lunar Module
digital autopilot design team could have done it using Simulink® and Aerospace Blockset™ if they
had been available in 1961.

Model Description

Developing the autopilot in Simulink takes a fraction of the time it took for the original design of the
Apollo Lunar Module autopilot.

if ~bdIsLoaded("aero_dap3dof")
    open_system("aero_dap3dof");
end

The Reaction Jet Control subsystem models the digital autopilot design proposed (and implemented)
by MIT Instrumentation Laboratories (MIT IL), now called Draper Laboratory. A Stateflow® diagram
in the model specifies the logic that implements the phase-plane control algorithm described in the
technical article The Apollo 11 Moon Landing: Spacecraft Design Then and Now. Depending on which
region of the diagram the Lunar Module is executing, the Stateflow diagram is in either a
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Fire_region or a Coast_region. Note, the transitions between these different regions depend on
certain parameters. The Stateflow diagram determines whether to transition to another state and
then computes which reaction jets to fire.

Translational and rotational dynamics of the Lunar Module are approximated in the Lunar Module
Dynamics subsystem. Access various visualization methods of the Lunar Module states and autopilot
performance in the Visualization area of the model, including Simulink scopes, animation with
Simulink 3D Animation, and a phase plane plot.

Interactive Controls

To interact with the Lunar Module model, vary autopilot settings and Lunar Module initial states in
the Commands area. For example, to observe how the digital autopilot design handles increased initial
body rates, use the slider components in Configure LM Attitude.
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Mission Description

The LM digital autopilot has three degrees of freedom. This means that by design, the reaction jet
thrusters are configured and commanded to rotate the vehicle without impacting the vehicle's orbital
trajectory. Therefore, the translational dynamics in his model are approximated via orbit propagation
using the Spacecraft Dynamics block from Aerospace Blockset. The block is configured to use Moon
spherical harmonic gravity model LP-100K.
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To demonstrate the digital autopilot design behavior, the "Descent Orbit Insertion" mission segment,
just prior to the initiation of the powered descent, was selected from the Apollo 11 Mission Report.
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(Image Credit: NASA)

The "Descent Orbit Insertion" burn began 101 hours, 36 minutes, and 14 seconds after lift-off and
lasted 30 seconds. The burn set the Lunar module on a trajectory to lower its orbit from
approximately 60 nautical miles to 50,000 ft over about an hour. At 50,000 ft, the Module initiated its
powered descent.

Initialize the model aero_dap3dof with the approximate trajectory of the Lunar Module immediately
after the descent orbit insertion burn.

mission.t_rangeZero             = datetime(1969,7,16,13,32,0); % lift-off
mission.t_descentInsertionStart = mission.t_rangeZero + hours(101) + minutes(36) + seconds(14);
mission.t_descentInsertion      = mission.t_descentInsertionStart + seconds(30);
mission.t_poweredDescentStart   = mission.t_rangeZero + hours(102) + minutes(33) + seconds(5.2);

disp(timetable([mission.t_rangeZero, mission.t_descentInsertionStart, ...
    mission.t_descentInsertion, mission.t_poweredDescentStart]', ...
    {'Range Zero (lift-off)', 'Descent Orbit Insertion (Engine ignition)', ...
    'Descent Orbit Insertion (Engine cutoff)', 'Powered Descent (Engine ignition)'}', VariableNames="Mission Phase"));
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            Time                            Mission Phase                
    ____________________    _____________________________________________

    16-Jul-1969 13:32:00    {'Range Zero (lift-off)'                    }
    20-Jul-1969 19:08:14    {'Descent Orbit Insertion (Engine ignition)'}
    20-Jul-1969 19:08:44    {'Descent Orbit Insertion (Engine cutoff)'  }
    20-Jul-1969 20:05:05    {'Powered Descent (Engine ignition)'        }

The trajectory of the module at "Descent Orbit Insertion (Engine cutoff)" and "Powered Descent
Initiation (Engine ignition)" is provided in the Apollo 11 Mission Report (Table 7-II.- Trajectory
Parameters).

mission.Latitude_deg  = [-1.16, 1.02]';    % [deg]
mission.Longitude_deg = [-141.88, 39.39]'; % [deg]
mission.Altitude_mi   = [57.8, 6.4]';      % [nautical miles]
mission.Altitude_ft   = convlength(mission.Altitude_mi, 'naut mi', 'ft');
mission.Velocity_fps  = [5284.9, 5564.9]'; % [ft/s] (in Inertial frame)
mission.FlightPathAngle_deg = [-0.06, 0.03]'; % [deg] (measured upward from local horizontal plane)
mission.HeadingAngle_deg = [-75.19 -101.23]'; % [deg] (measured East of North)
disp(table({'Range Zero (lift-off)'; 'Descent Orbit Insertion (Engine ignition)'}, ...
    mission.Latitude_deg, mission.Longitude_deg, mission.Altitude_mi, ...
    mission.Velocity_fps, mission.FlightPathAngle_deg, mission.HeadingAngle_deg, ...
    VariableNames=["Mission Phase", ...
    "Latitude (deg)", "Longitude (deg)", "Altitude (mi)", ...
    "Velocity (ft/s)", "Flight path angle (deg)", "Heading (deg)"]));

                    Mission Phase                    Latitude (deg)    Longitude (deg)    Altitude (mi)    Velocity (ft/s)    Flight path angle (deg)    Heading (deg)
    _____________________________________________    ______________    _______________    _____________    _______________    _______________________    _____________

    {'Range Zero (lift-off)'                    }        -1.16             -141.88            57.8             5284.9                  -0.06                 -75.19   
    {'Descent Orbit Insertion (Engine ignition)'}         1.02               39.39             6.4             5564.9                   0.03                -101.23   

Model Initialization

Initialize model parameters for the mission phase "Descent Orbit Insertion (Engine cutoff)" using the
data defined above.

The intialization function aero_dap3dofdata requires information about the orientation of the
Moon, which can be calculated using the Aerospace Blockset function moonLibration. This function
requires "Ephemeris Data for Aerospace Toolbox". Use aeroDataPackage to install this data if it is
not already installed.

mission.LibrationAngles_deg = moonLibration(juliandate(mission.t_descentInsertion), "405");

This example uses saved libration angle data corresponding with t_descentInsertion. Use the
above command after installing the required ephemeris data.

mission.LibrationAngles_deg = [0.006379917345247; 0.382328074214300; 6.535718297208969];

Run the intialization function:

[moon, ic, vehicle, rcs] = aero_dap3dofdata(...
    mission.Latitude_deg(1), mission.Longitude_deg(1), mission.Altitude_ft(1), ...
    mission.Velocity_fps(1), mission.FlightPathAngle_deg(1), ...
    mission.HeadingAngle_deg(1), mission.LibrationAngles_deg)

moon = struct with fields:
    r_moon_eq: 5702428
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       f_moon: 0.0012

ic = struct with fields:
       t_runtime: 120
    pos_inertial: [-3.6488e+06 -4.4381e+06 -1.9070e+06]
    vel_inertial: [4.0625e+03 -3.3792e+03 86.4867]
         euler_0: [-30 -10 -60]

vehicle = struct with fields:
    inertia_0: [3x3 double]
       mass_0: 33296

rcs = struct with fields:
     Force: 100
     L_arm: 5.5000
        DB: 0.0060
      tmin: 0.0140
     alph1: 0.0550
     alph2: 0.0039
     alph3: 0.0050
     alphu: 0.0063
     alphv: 7.8553e-04
    alphs1: 0.0055
    alphsu: 6.2855e-04
    alphsv: 7.8553e-05
    clockt: 0.0050
      delt: 0.1000

Closing Remarks

Building a digital autopilot was a daunting task in 1961 because there was very little industrial
infrastructure for it - everything about it was in the process of being invented. Here is an excerpt
from the technical article The Apollo 11 Moon Landing: Spacecraft Design Then and Now:

"One reason why the [autopilot's machine code] was so complex is that the number of jets that could
be used to control the rotations about the pilot axes was large. A decision was made to change the
axes that the autopilot was controlling to the "jet axes" shown in aero_dap3dof. This change
dramatically reduced the number of lines of code and made it much easier to program the autopilot in
the existing computer. Without this improvement, it would have been impossible to have the autopilot
use only 2000 words of storage. The lesson of this change is that when engineers are given the
opportunity to code the computer with the system they are designing, they can often modify the
design to greatly improve the code."
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See Also
Zonal Harmonic Gravity Model | 6DOF ECEF (Quaternion)
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Transition from Low- to High-Fidelity UAV Models in Three
Stages

Evolve your UAV plant model continuously to stay in sync with the latest information available.

Background

An unmanned aerial vehicle (UAV) design cycle provides incrementally better access to UAV
characteristics as the design progresses. By increasing its fidelity, this information can be used to
continuously evolve a plant model through a Model Based Design approach.

Towards the end of the design cycle, there is enough information to develop a high-fidelity plant. To
accurately model the UAV, a high-fidelity model incorporates modeling all forces and moments, wind
and environmental effects and sensors in detail. However, this level of information may be unavailable
to a designer early in the design process. To build such a complex model, it can take several flight and
wind tunnel tests to create enough detailed aerodynamic coefficients to compute all forces and
moments that affect the UAV. These factors can potentially block guidance algorithm design until the
end of the design process, when a more realistic estimate of UAV dynamics is obtained.   

To concurrently design a guidance algorithm sooner, a UAV algorithm designer can start with a low-
fidelity model and evolve their plant model as and when additional data becomes available. 

Designing a guidance algorithm using only a low-fidelity model can also pose a risk. Without
controller or aerodynamic constraints, an optimistic guidance technique can fail for a real UAV with
slower aircraft dynamics. 

This example highlights an alternative approach. You progress from the low-fidelity Guidance Block to
a medium and then high-fidelity model by progressively adding layers of control and dynamics to the
simulation. In this process, the medium-fidelity model becomes a useful tool for leveraging limited
information about a plant model to tune and test guidance algorithms.

The medium-fidelity model is thus used to test a given path following an algorithm. Since the high-
fidelity model is unavailable until the end of the design process, the high-fidelity model is only used
later to validate our modelling approach by comparing step response and path following behavior. 
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Open Example and Project Files

To access the example files, click Open Live Script or use the openExample function.

openExample('shared_uav_aeroblks/UAVFidelityExample')

Open the Simulink™ project provided in this example.

cd fidelityExample
openProject('fidelityExample.prj')

The project contains three versions of a UAV model, low-fidelity, medium-fidelity and high-fidelity with
steps to study their step response and path following behaviour.

Low-Fidelity Model

Assume your UAV has the following design specifications shown in the table below. The low-fidelity
variant provided in this model is tuned to achieve the desired response, but you can tune these gains
for your specific requirements. The low-fidelity plant uses the UAV Guidance Block which is a reduced
order model for a UAV. To run the low-fidelity variant, click the Simulate Plant shortcut under the
Low Fidelity group of the project toolstrip.

This shortcut sets the FidelityStage parameter to 1, configures the FidelityStepResponse model to
simulate the low-fidelity model, and outputs the step response. The step response is computed for
height, airspeed, and roll response.

Open the UAV Fixed Wing Guidance Model block in the FidelityStepResponse/FixedWingModel/
LowFidelity subsystem. In the Configuration tab, inspect the gains set for height, airspeed, and roll
response. This guidance block integrates the controller with the dynamics of the aircraft. The low-
fidelity variant gives a first estimate of how fast the UAV can realistically respond to help tune high-
level planners.
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Medium-Fidelity Model

As the UAV design progresses, the lift and drag coefficients become available. A motor for the aircraft
is selected by the user, which defines the thrust curves. To test the validity of the guidance algorithm
against this new information, the example adds this information to the plant model in this step.

To design a medium-fidelity model, the model needs only preliminary aerodynamic coefficients, thrust
curves, and response time specifications. To model a medium-fidelity UAV, you can use the Fixed-Wing
Point Mass Block. The block only requires lift, drag and thrust force inputs, which are much easier to
approximate at an early design stage than detailed forces and moments of an aircraft. To set up the
medium-fidelity variant, click the Setup Plant shortcut under the Medium Fidelity group of the
project toolstrip.

Examine the Vehicle Dynamics tab in the model under FidelityStepResponse/
FixedWingModel/Mid Fidelty/UAV Plant Dynamics/Vehicle Dynamics.

The medium-fidelity model represents the UAV as a point mass with the primary control variables
being the angle of attack and roll. This medium-fidelity plant model takes in roll, pitch, thrust as
control inputs. The point mass block assumes instantaneous dynamics of roll and angle of attack. This
model uses a transfer function to model roll lag based on our roll-response specification shared in the
table within the previous step.

The medium-fidelity aircraft controls pitch instead of angle of attack. Since the angle of attack is an
input to the point mass block, the plant model converts pitch to alpha using the following equation.

Θ = γa+α

Θ,γa and α represent pitch, flight path angle in the wind frame, and angle of attack respectively.

Unlike the low-fidelity model, the medium-fidelity model splits the autopilot from the plant dynamics.
The medium-fidelity plant needs an outer-loop controller for height-pitch and airspeed-throttle control
to be added. The predefined controllers provided are using standard PID-tuning loops to reach
satisfactory response without overshoot. To inspect the outer-loop controller, open the
Outer_Loop_Autopilot Simulink model.

Medium-Fidelity Step Response

The low-fidelity plant was tuned in the previous step by assuming that all response time specifications
are met by the UAV. To test this assumption, use the medium-fidelity plant. The study of the step

9 Examples

9-142



response of the improved plant is used to contrast the performance of the low-fidelity and medium-
fidelity variant. To simulate the medium-fidelity step response, click the Simulate Plant shortcut
under the Medium Fidelity group of the project toolstrip. The step response plots appear as figures.

Notice that the model meets the design criteria shown in the table below by achieving an air speed
settling time of 0.6 seconds and a height response of 4.1 seconds. However, the height response is
slower than the low-fidelity variant. This lag in response is expected due to the additional
aerodynamic constraints placed on the medium-fidelity plant.

Simulate Path Following Algorithm

With a more accurate response from the UAV medium-fidelity model, you can now test waypoint
follower or guidance algorithms to follow waypoints. For the guidance algorithm design, see the
"Tuning Waypoint Follower for Fixed-Wing UAV" example.

To simulate and visualize the medium-fidelity UAV path following the model, click the Simulate Path
Follower shortcut under the Medium Fidelity group of the project toolstrip.

Notice that the medium-fidelity UAV follows the desired path accurately.
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High-Fidelity Step Response

The medium-fidelity model was used to test a path follower design using simple aircraft parameters
available at an early design state. However, it is important to continue adding fidelity to capture UAV
control response to study more complex situations. For example, the use of more detailed
aerodynamics coefficients allows analysis of complex motions such as doublet maneuvers. Another
example is, adding actuator dynamics lets you study the subsequent effect on inner loop controllers
for attitude, which can cause destabilization. In this way, the high-fidelity plant allows refinement of
control system design. In this step, to study the change in response, we look at a high-fidelity plant
with these added dynamics.

The high-fidelity plant inputs all forces and moments to a 6-DOF block, adds on-board sensors, and
models actuator dynamics for the UAV. Unlike the mid-fidelity plant, the high-fidelity version does not
take attitude inputs directly. Instead, an inner loop controller is added to control attitude.
Additionally, a yaw compensation loop balances the non-zero sideslip. The model reuses the outer-loop
controller designed for the medium-fidelity model. To validate that the medium-fidelity model
provided useful intermediate information, use the response of the higher fidelity model.
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To simulate and visualize the high-fidelity step response, click the Simulate Plant shortcut under the
High-Fidelity group of the project toolstrip. Notice that despite added complexity, the trajectory
matches well with the medium-fidelity model. Also, notice the design specifications are relatively the
same for the high-fidelity stage. This similarity shows that the medium-fidelity plant modelled UAV
dynamics accurately.

Simulate Path Following Algorithm for High-Fidelity

Towards the end of the design cycle, the high-fidelity model finally becomes available. To get the final
UAV path following characteristics, you can now test the guidance algorithm developed in previous
steps on the high-fidelity plant. Click the Simulate Path Follower shortcut under the High-
Fidelity group of the project toolstrip.

 Transition from Low- to High-Fidelity UAV Models in Three Stages

9-145



Notice that the model obtains a similar response to the medium-fidelity model using the guidance and
outer-loop control parameters. This validates the guidance algorithm with a high-fidelity plant.

Conclusion

The medium-fidelity model accurately predicts the UAV dynamics making optimum use of limited
information available during design. The example designs the outer loop controller and tests a
waypoint follower without needing all the information in a high-fidelity plant model.

To model additional dynamics such as actuator lag, the medium-fidelity plant is flexible and can
continuously evolve alongside design. The example obtains results under zero-wind conditions. In the
presence of wind disturbances, the controller and path follower performance tracking might be
adversely affected. To augment the autopilot controller to compensate for wind effects, leverage the
atmospheric wind model in the high-fidelity plant model.

See Also
Fixed-Wing Point Mass
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Lunar Mission Analysis with the Orbit Propagator Block

This example shows how to compute and visualize line-of-sight access intervals between the Apollo
Command and Service module (CSM) and a rover on the lunar surface. The module's orbit is modeled
using Reference Trajectory #2 from the NASA report Variations of the Lunar Orbital Parameters of
the Apollo CSM-Module [2]. This is a lunar orbit studied by NASA for the Apollo program. The
example uses:

• Aerospace Toolbox™
• Aerospace Blockset™
• Mapping Toolbox™

Define Mission Parameters and Module Initial Conditions

Specify the start date and duration for the mission. This example uses MATLAB® structures to
organize mission data. These structures make accessing data later in the example more intuitive.
They also help declutter the global base workspace.

mission.StartDate = datetime(1969, 9, 20, 5, 10, 12.176);
mission.Duration  = hours(2);

Specify Keplerian orbital elements for the CSM at the mission.StartDate based on Reference
Trajectory #2 [2]. The criteria for the reference trajectories featured in Reference 2 are:

• The plane of the trajectory must contain a landing site vector on the Earth side of the Moon, which
has a longitude of between 315 and 45 degrees and a latitude of between +5 and -5 degrees in
selenographic coordinates. [2]

• The plane of the orbit must be oriented so that the lunar landing side doesn't move out of the
orbital plane more than 0.5 degrees during the period of 3 to 39 hours after lunar insertion. [2]

csm.SemiMajorAxis  = 1894578.3;     % [m]
csm.Eccentricity   = 0.0004197061;
csm.Inclination    = 155.804726;    % [deg]
csm.RAAN           = 182.414087;    % [deg]
csm.ArgOfPeriapsis = 262.877900;    % [deg]
csm.TrueAnomaly    = 0.000824;      % [deg]

Note that the inclination angle is relative to the ICRF X-Y plane. The ICRF X-Y axis is normal to
Earth's north pole. The axial tilt of Earth relative to the ecliptic is ~23.44 degrees, while the axial tilt
of the Moon is ~5.145 degrees. Therefore, the axial tilt of the Moon relative to the ICRF X-Y plane
varies between approximately 23 . 44 ± 5 . 145 degrees. This explains why the orbital inclination of
~155.8 degrees above satisfies the requirement to maintain a latitude of ±5 degrees in selenographic
coordindates.

Specify the latitude and longitude of a rover on the lunar surface to use in the line-of-sight access
analysis.

rover.Latitude  = ;  % [deg]

rover.Longitude = ; % [deg]
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Open and Configure the Model

Open the included Simulink® model. This model contains an Orbit Propagator block connected to
output ports. The Orbit Propagator block supports vectorization. This allows you to model
multiple satellites in a single block by specifying arrays of initial conditions in the Block Parameters
window or using set_param.

mission.mdl = "LunarOrbitPropagatorBlockExampleModel";
open_system(mission.mdl);

Use a SimulationInput object to configure the model for our mission. SimulationInput objects
provide the ability to configure multiple missions and run simulations with those settings without
modifying the model.

mission.sim.in = Simulink.SimulationInput(mission.mdl);

Define the path to the Orbit Propagator block in the model.

csm.blk = mission.mdl + "/Orbit Propagator";

Load Moon properties into the base workspace.

moon.F = 0.0012;  % Moon ellipticity (flattening) (Ref 1)
moon.R_eq = 1737400; % [m] Lunar radius in meters (Ref 1)
moon.ReferenceEllipsoid = referenceEllipsoid("moon","meter"); % Moon reference ellipsoid
moon.Data = matfile("lunarGeographicalData.mat"); % Load moon geographical data

Set CSM initial conditions. To assign the Keplerian orbital element set defined in the previous section,
use setBlockParameter.
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mission.sim.in = mission.sim.in.setBlockParameter(...
    csm.blk, "startDate", string(juliandate(mission.StartDate)),...
    csm.blk, "stateFormatNum", "Orbital elements",...
    csm.blk, "orbitType", "Keplerian",...
    csm.blk, "semiMajorAxis", string(csm.SemiMajorAxis),...
    csm.blk, "eccentricity", string(csm.Eccentricity),...
    csm.blk, "inclination", string(csm.Inclination),...
    csm.blk, "raan", string(csm.RAAN),...
    csm.blk, "argPeriapsis", string(csm.ArgOfPeriapsis),...
    csm.blk, "trueAnomaly", string(csm.TrueAnomaly));

Set the position and velocity output ports of the block to use the Moon-fixed frame. The fixed-frame
for the Moon is the Mean Earth/Pole Axis (ME) reference system.

mission.sim.in = mission.sim.in.setBlockParameter(...
    csm.blk, "centralBody", "Moon",...
    csm.blk, "outportFrame", "Fixed-frame");

Configure the propagator.

mission.sim.in = mission.sim.in.setBlockParameter(...
    csm.blk, "propagator", "Numerical (high precision)",...
    csm.blk, "gravityModel", "Spherical Harmonics",...
    csm.blk, "moonSH", "LP-100K",... % moon spherical harmonic potential model
    csm.blk, "shDegree", "100",... % Spherical harmonic model degree and order
    csm.blk, "useMoonLib", "off");

Apply model-level solver settings using setModelParameter. For best performance and accuracy when
using a numerical propagator, use a variable-step solver.

mission.sim.in = mission.sim.in.setModelParameter(...
    SolverType="Variable-step",...
    SolverName="VariableStepAuto",...
    RelTol="1e-6",...
    AbsTol="1e-7",...
    StopTime=string(seconds(mission.Duration)));

Save model output port data as a dataset of timetable objects.

mission.sim.in = mission.sim.in.setModelParameter(...
    SaveOutput="on",...
    OutputSaveName="yout",...
    SaveFormat="Dataset",...
    DatasetSignalFormat="timetable");

Run the Model and Collect CSM Ephemerides

Simulate the model using the SimulationInput object defined above. In this example, the Orbit
Propagator block is set to output position and velocity states in the Moon-centered fixed coordinate
frame.

mission.sim.out = sim(mission.sim.in);

Extract the position and velocity data from the model output data structure.

csm.TimetablePos = mission.sim.out.yout{1}.Values;
csm.TimetableVel = mission.sim.out.yout{2}.Values;

Set the start date of the mission in the timetable object.
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csm.TimetablePos.Properties.StartTime = mission.StartDate;

Process Simulation Data

Compute latitude, longitude, and altitude using lunar equatorial radius and flattening. Values are
displayed in degrees and meters.

csm.MEPos = [csm.TimetablePos.Data(:,1) ...
    csm.TimetablePos.Data(:,2) csm.TimetablePos.Data(:,3)];
lla = ecef2lla(csm.MEPos, moon.F, moon.R_eq);
csm.LLA = timetable(csm.TimetablePos.Time, ...
    lla(:,1), lla(:,2), lla(:,3), ...
    VariableNames=["Lat", "Lon", "Alt"]);
clear lla;
disp(csm.LLA);

            Time               Lat         Lon         Alt    
    ____________________    _________    _______    __________

    20-Sep-1969 05:10:12      -2.3072     175.32    1.5639e+05
    20-Sep-1969 05:10:22      -2.3039     174.83    1.5639e+05
    20-Sep-1969 05:11:12      -2.2846     172.39    1.5639e+05
    20-Sep-1969 05:13:36      -2.2061     165.35    1.5639e+05
    20-Sep-1969 05:16:00      -2.0947     158.31     1.564e+05
    20-Sep-1969 05:18:24       -1.952     151.27    1.5641e+05
    20-Sep-1969 05:20:48      -1.7804     144.24    1.5641e+05
    20-Sep-1969 05:23:12      -1.5824     137.21    1.5642e+05
    20-Sep-1969 05:25:36      -1.3608     130.17    1.5641e+05
    20-Sep-1969 05:28:00       -1.119     123.14    1.5641e+05
    20-Sep-1969 05:30:24     -0.86057     116.11     1.564e+05
    20-Sep-1969 05:32:48     -0.58934     109.09     1.564e+05
    20-Sep-1969 05:35:12     -0.30942     102.06    1.5639e+05
    20-Sep-1969 05:37:36    -0.025001     95.032    1.5639e+05
    20-Sep-1969 05:40:00      0.25967     88.006     1.564e+05
    20-Sep-1969 05:42:24      0.54034     80.978     1.564e+05
    20-Sep-1969 05:44:48      0.81284     73.951    1.5641e+05
    20-Sep-1969 05:47:12       1.0732     66.923    1.5642e+05
    20-Sep-1969 05:49:36       1.3175     59.893    1.5643e+05
    20-Sep-1969 05:52:00       1.5422     52.863    1.5646e+05
    20-Sep-1969 05:54:24       1.7439     45.831    1.5649e+05
    20-Sep-1969 05:56:48       1.9194     38.797    1.5652e+05
    20-Sep-1969 05:59:12       2.0662     31.763    1.5656e+05
    20-Sep-1969 06:01:36       2.1821     24.728     1.566e+05
    20-Sep-1969 06:04:00       2.2652     17.691    1.5664e+05
    20-Sep-1969 06:06:24       2.3145     10.655    1.5668e+05
    20-Sep-1969 06:08:48       2.3291     3.6183    1.5673e+05
    20-Sep-1969 06:11:12        2.309     -3.418    1.5676e+05
    20-Sep-1969 06:13:36       2.2544    -10.454    1.5679e+05
    20-Sep-1969 06:16:00       2.1663    -17.489    1.5682e+05
    20-Sep-1969 06:18:24        2.046    -24.522    1.5683e+05
    20-Sep-1969 06:20:48       1.8953    -31.554    1.5685e+05
    20-Sep-1969 06:23:12       1.7163    -38.585    1.5686e+05
    20-Sep-1969 06:25:36       1.5116    -45.614    1.5686e+05
    20-Sep-1969 06:28:00       1.2844    -52.642    1.5686e+05
    20-Sep-1969 06:30:24       1.0381    -59.668    1.5686e+05
    20-Sep-1969 06:32:48      0.77625    -66.693    1.5685e+05
    20-Sep-1969 06:35:12      0.50273    -73.718    1.5684e+05
    20-Sep-1969 06:37:36      0.22159    -80.741    1.5683e+05

9 Examples

9-150



    20-Sep-1969 06:40:00    -0.062926    -87.765    1.5682e+05
    20-Sep-1969 06:42:24     -0.34651    -94.789     1.568e+05
    20-Sep-1969 06:44:48     -0.62489    -101.81    1.5677e+05
    20-Sep-1969 06:47:12     -0.89393    -108.84    1.5673e+05
    20-Sep-1969 06:49:36      -1.1497    -115.87    1.5669e+05
    20-Sep-1969 06:52:00      -1.3884    -122.89    1.5664e+05
    20-Sep-1969 06:54:24      -1.6064    -129.92     1.566e+05
    20-Sep-1969 06:56:48      -1.8006    -136.96    1.5656e+05
    20-Sep-1969 06:59:12      -1.9679    -143.99    1.5652e+05
    20-Sep-1969 07:01:36      -2.1058    -151.03    1.5647e+05
    20-Sep-1969 07:04:00       -2.212    -158.06    1.5641e+05
    20-Sep-1969 07:06:24      -2.2849     -165.1    1.5635e+05
    20-Sep-1969 07:08:48      -2.3235    -172.14     1.563e+05
    20-Sep-1969 07:10:12      -2.3299    -176.25    1.5626e+05

Results

Display CSM Trajectories Over the 3-D Moon

figure; axis off; colormap gray; view(-5,23);
axesm("globe","Geoid", moon.ReferenceEllipsoid);
geoshow(moon.Data.moonalb20c, moon.Data.moonalb20cR, DisplayType="texturemap");
plot3(csm.MEPos(:,1), csm.MEPos(:,2), csm.MEPos(:,3),"r");

Display 2-D Projection of CSM Ground Trace and Rover Position

figure; colormap gray;
axesm(MapProjection="robinson");
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geoshow(moon.Data.moonalb20c, moon.Data.moonalb20cR, DisplayType="texturemap");
plotm(csm.LLA.Lat, csm.LLA.Lon, Color="r");
plotm(rover.Latitude, rover.Longitude, "xy", LineWidth=3);

Display CSM Field Of View at Time of Interest

Define a time of interest (TOI) to anayze. For this example, we select the 30th sample in the dataset.

csm.TOI.LLA = csm.LLA(30,:);

Calculate angular radius of orbiter line-of-sight (LOS) field of view (FOV) measured from the Moon
center.

csm.TOI.FOV.Lambda0 = acosd(moon.R_eq / (moon.R_eq + csm.TOI.LLA.Alt)); % [deg]
[csm.TOI.FOV.Lats, csm.TOI.FOV.Lons] = ...
    scircle1(csm.TOI.LLA.Lat, csm.TOI.LLA.Lon, csm.TOI.FOV.Lambda0);

Plot TOI. The location of the CSM is indicated by a green cross, LOS field of view is indicated by
dashed circle.

figure; colormap gray;
axesm(MapProjection="robinson");
geoshow(moon.Data.moonalb20c, moon.Data.moonalb20cR, DisplayType="texturemap");
plotm(csm.TOI.FOV.Lats, csm.TOI.FOV.Lons, "g--", LineWidth=1); % CSM visibility projected onto the map
plotm(csm.LLA.Lat, csm.LLA.Lon, Color="r");                    % CSM ground trace
plotm(csm.TOI.LLA.Lat, csm.TOI.LLA.Lon, "g+", MarkerSize=8);   % sub-CSM point
plotm(rover.Latitude, rover.Longitude, "xy", LineWidth=3);
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Display CSM Line-of-Sight Visibility from Rover

Estimate access intervals by assuming the Moon is spherical.

lambda_all  = acosd(moon.R_eq ./ (moon.R_eq + csm.LLA.Alt)); % [deg] angular radius of CSM FOV measured from Moon center  
d = distance(csm.LLA.Lat, csm.LLA.Lon, ...
    rover.Latitude, rover.Longitude);                        % [deg] angular distance between sub-CSM point and rover
rover.Access.InView = csm.LLA(lambda_all - d > 0,:);         % timetable containing the in view data samples
rover.Access.InView.Time.Format = "HH:mm:ss";
clear lambda_all d;

Plot access intervals between the orbiting module and rover.

if height(rover.Access.InView) ~= 0
    % Look for breaks in the timestamps to identify pass starts
    rover.Access.StartIdx = [1, find(diff(rover.Access.InView.Time) > minutes(5))]; 
    rover.Access.StartTime = rover.Access.InView.Time(rover.Access.StartIdx);
    rover.Access.StopIdx = [rover.Access.StartIdx(2:end)-1, height(rover.Access.InView)];
    rover.Access.StopTime = rover.Access.InView.Time(rover.Access.StopIdx);
    rover.Access.Duration = rover.Access.StopTime - rover.Access.StartTime;
    % Show pass intervals in table
    rover.Access.IntervalTable = table(rover.Access.StartTime, rover.Access.StopTime, rover.Access.Duration, ...
        VariableNames=["Pass Start", "Pass End", "Duration"]); 
    disp(rover.Access.IntervalTable);
    disp(' ');
    % Set up figure window/plot
    figure; colormap gray;
    axesm(MapProjection="robinson")
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    geoshow(moon.Data.moonalb20c, moon.Data.moonalb20cR, DisplayType="texturemap")
    title(join(["Passes Between", string(csm.LLA.Time(1)), ...
        "and", string(csm.LLA.Time(end))]));
    % Plot inView, rover, and CSM orbit
    plotm(rover.Access.InView.Lat, rover.Access.InView.Lon, "+g");
    plotm(rover.Latitude, rover.Longitude, "xy", LineWidth=3);
    plotm(csm.LLA.Lat, csm.LLA.Lon, Color="r");
    % Plot pass inteval
    rover.Access.EdgeIndices = rover.Access.InView(sort([rover.Access.StartIdx rover.Access.StopIdx]), :);
    for j = 1 : height(rover.Access.EdgeIndices)
        textm(rover.Access.EdgeIndices.Lat(j) + 10, ...
            rover.Access.EdgeIndices.Lon(j), ...
            string(rover.Access.EdgeIndices.Time(j)), Color="y", Rotation=30);
    end 
else
    disp("The CSM is not visible from the rover during the defined mission time.")
end             

    Pass Start    Pass End    Duration
    __________    ________    ________

     05:54:24     06:08:48    00:14:24
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Analyzing Spacecraft Attitude Profiles with Satellite Scenario

This example shows how to propagate the orbit and attitude states of a satellite in Simulink® and
visualize the computed trajectory and attitude profile in a satellite scenario. It uses:

• Aerospace Blockset™ Spacecraft Dynamics block
• Aerospace Blockset Attitude Profile block
• Aerospace Toolbox satelliteScenario object

The Spacecraft Dynamics block models translational and rotational dynamics of spacecraft using
numerical integration. It computes the position, velocity, attitude, and angular velocity of one or more
spacecraft over time. For the most accurate results, use a variable step solver with low tolerance
settings (less than 1e-8). Depending on your mission requirements, you can increase speed by using
larger tolerances. Doing so might impact the accuracy of the solution.

The Attitude Profile block returns the shortest quaternion rotation that aligns the satellite's
provided alignment axis with the specified target. In this example, the satellite points towards the
nadir at the beginning of the mission, then slews to align with Target 1, points back at the nadir, then
slews to point at Target 2. Both targets are provided as geographic locations.

The Aerospace Toolbox satelliteScenario object lets you load previously generated, time-
stamped ephemeris and attitude data into a scenario as timeseries or timetable objects. Data is
interpolated in the scenario object to align with the scenario time steps, allowing you to incorporate
data generated in a Simulink model into either a new or existing satelliteScenario object. In this
example, the satellite orbit and attitude states are computed with the Spacecraft Dynamics block,
then this data is used to add a satellite to a new satelliteScenario object for access analysis.

Open the Example Model

The example model is configured to perform an Earth Observation mission during which a satellite
performs a flyover of a region of the Amazon Rainforest to capture images of, and track deforestation
trends in, the area. The satellite points at the nadir when not actively imaging or downlinking to the
ground station in Svalbard, NO.

mission.mdl = "SpacecraftDynamicsCustomAttitudeExampleModel";
open_system(mission.mdl);
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Define Mission Parameters and Satellite Initial Conditions

Specify a start date and duration for the mission. This example uses MATLAB® structures to organize
mission data. These structures make accessing data later in the example more intuitive. They also
help declutter the global base workspace.

mission.StartDate = datetime(2021,1,1,12,0,0);
mission.Duration = hours(1.5);

Set Satellite Properties on Spacecraft Dynamics Block

Specify initial orbital elements for the satellite.

mission.Satellite.blk = mission.mdl + "/Spacecraft Dynamics";
mission.Satellite.SemiMajorAxis  = 7.2e6; % meters
mission.Satellite.Eccentricity   = .05;
mission.Satellite.Inclination    = 70;    % deg
mission.Satellite.ArgOfPeriapsis = 0;     % deg
mission.Satellite.RAAN           = 215;   % deg
mission.Satellite.TrueAnomaly    = 200;   % deg

Specify an initial attitude state for the satellite.

mission.Satellite.q0 = [0.1509 0.4868 0.3031 -0.8052];
mission.Satellite.pqr = [0, 0, 0]; % deg/s

Configure the Spacecraft Dynamics block with the provided initial conditions and desired propagation
settings. These values can also be set from the Property Inspector in Simulink.

set_param(mission.Satellite.blk, ...
    "startDate",      string(juliandate(mission.StartDate)), ...
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    "stateFormatNum", "Orbital elements", ...
    "orbitType",      "Keplerian", ...
    "semiMajorAxis",  string(mission.Satellite.SemiMajorAxis), ...
    "eccentricity",   string(mission.Satellite.Eccentricity), ...
    "inclination",    string(mission.Satellite.Inclination), ...
    "raan",           string(mission.Satellite.RAAN), ...
    "argPeriapsis",   string(mission.Satellite.ArgOfPeriapsis), ...
    "trueAnomaly",    string(mission.Satellite.TrueAnomaly));
set_param(mission.Satellite.blk, ...
    "attitudeFormat", "Quaternion", ...
    "attitudeFrame",  "ICRF", ...
    "attitude",       mat2str(mission.Satellite.q0), ...
    "attitudeRate",   mat2str(mission.Satellite.pqr));

Use the EGM2008 spherical harmonic gravity model for orbit propagation.

set_param(mission.Satellite.blk, ...
    "gravityModel", "Spherical Harmonics", ...
    "earthSH",      "EGM2008", ... % Earth spherical harmonic potential model
    "shDegree",     "120", ... % Spherical harmonic model degree and order
    "useEOPs",      "on", ... % Use EOP's in ECI to ECEF transformations
    "eopFile",      "aeroiersdata.mat"); % EOP data file

Gravity gradient torque contributions can be included in attitude dynamics calculations.

set_param(mission.Satellite.blk, "useGravGrad", "on");

Configure Attitude Profile Block for Target Pointing

The Attitude Profile block targets two ground locations, first a location in the Amazon Rainforest of
Brazil for observation of deforestation, and second for down-linking image data to a ground station in
Svalbard, NO. The block is preconfigured in the model as shown below.
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The "Point at LatLonAlt" option is selected for the Pointing mode parameter. The z-axis is used as
the satellite's primary alignment vector. This means that the satellite Body z-axis points towards the
geographic coordinates passed into the block throughout the simulation. The y-Axis of the LVLH
frame, which points along-track in the direction of travel, is defined as the secondary constraint
vector. The satellite Body x-axis is specified as the secondary alignment vector. This keeps our
satellite pointed forward throughout the mission as much as possible without disrupting primary
alignment.
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Set up Simulink Model to Produce Desired Output

Apply model-level solver setting using set_param. For best performance and accuracy, use a
variable-step solver. Set the max step size to a value that results in output data without large time
gaps.

set_param(mission.mdl, ...
    "SolverType", "Variable-step", ...
    "SolverName", "VariableStepAuto", ...
    "RelTol",     "0.5e-5", ...
    "AbsTol",     "1e-5", ...
    "MaxStep",    "5", ...
    "MinStep",    "auto", ...
    "StopTime",   string(seconds(mission.Duration)));

Save model output port data as a dataset of timetable objects.

set_param(mission.mdl, ...
    "SaveOutput", "on", ...
    "OutputSaveName", "yout", ...
    "SaveFormat", "Dataset", ...
    "DatasetSignalFormat", "timetable");

Run the Model and Collect Satellite Ephemeris and Attitude Profile

Simulate the model. In this example, the Spacecraft Dynamics block outputs position and velocity
states in the inertial (ICRF/GCRF) coordinate frame.

mission.SimOutput = sim(mission.mdl);

Create and Visualize the Satellite Scenario

For the analysis, create a satellite scenario object. Specify a timestep of 1 minute.

scenario = satelliteScenario(mission.StartDate, ...
    mission.StartDate + mission.Duration, 60);

Add the two targets as ground stations in Brazil and Svalbard.

gsNO = groundStation(scenario, 78, 21, Name="Svalbard, NO")

gsNO = 
  GroundStation with properties:

                 Name:  Svalbard, NO
                   ID:  1
             Latitude:  78 degrees
            Longitude:  21 degrees
             Altitude:  0 meters
    MinElevationAngle:  0 degrees
       ConicalSensors:  [1x0 matlabshared.satellitescenario.ConicalSensor]
              Gimbals:  [1x0 matlabshared.satellitescenario.Gimbal]
         Transmitters:  [1x0 satcom.satellitescenario.Transmitter]
            Receivers:  [1x0 satcom.satellitescenario.Receiver]
             Accesses:  [1x0 matlabshared.satellitescenario.Access]
          MarkerColor:  [1 0.4118 0.1608]
           MarkerSize:  6
            ShowLabel:  true
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       LabelFontColor:  [1 1 1]
        LabelFontSize:  15

gsAmazon = groundStation(scenario, -4.9, -66, Name="Amazon Rainforest")

gsAmazon = 
  GroundStation with properties:

                 Name:  Amazon Rainforest
                   ID:  2
             Latitude:  -4.9 degrees
            Longitude:  -66 degrees
             Altitude:  0 meters
    MinElevationAngle:  0 degrees
       ConicalSensors:  [1x0 matlabshared.satellitescenario.ConicalSensor]
              Gimbals:  [1x0 matlabshared.satellitescenario.Gimbal]
         Transmitters:  [1x0 satcom.satellitescenario.Transmitter]
            Receivers:  [1x0 satcom.satellitescenario.Receiver]
             Accesses:  [1x0 matlabshared.satellitescenario.Access]
          MarkerColor:  [1 0.4118 0.1608]
           MarkerSize:  6
            ShowLabel:  true
       LabelFontColor:  [1 1 1]
        LabelFontSize:  15

Add the observation satellite to the scenario. Update the position timetable data in the SimOutput
object to remove excess data points.

mission.Satellite.Ephemeris = retime(mission.SimOutput.yout{1}.Values, ...
    seconds(uniquetol(mission.SimOutput.tout, .0001)));
sat = satellite(scenario, mission.Satellite.Ephemeris, ...
    "CoordinateFrame", "inertial", "Name", "ObservationSat");

Add a conical sensor to the satellite, with a 35 deg half angle to represent the onboard camera.
Enable field of view visualization in the scenario viewer. To assist in visualization, the sensor is
mounted 10m from the satellite, in the +z direction.

snsr = conicalSensor(sat, MaxViewAngle=70, MountingLocation=[0 0 10]);
fieldOfView(snsr);

Add access between the conical sensor and the two ground stations.

acNO = access(snsr, gsNO)

acNO = 
  Access with properties:

    Sequence:  [4 1]
    LineWidth:  3
    LineColor:  [0.3922 0.8314 0.0745]

acAmazon = access(snsr, gsAmazon)

acAmazon = 
  Access with properties:
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    Sequence:  [4 2]
    LineWidth:  3
    LineColor:  [0.3922 0.8314 0.0745]

Use the pointAt method to associate the logged attitude timetable with the satellite. Parameter
ExtrapolationMethod controls the pointing behavior outside of the timetable range.

mission.Satellite.AttitudeProfile = retime(mission.SimOutput.yout{3}.Values, ...
    seconds(uniquetol(mission.SimOutput.tout, .0001)));
pointAt(sat, mission.Satellite.AttitudeProfile, ...
    "CoordinateFrame", "inertial", "Format", "quaternion", "ExtrapolationMethod", "nadir");

Open the Satellite Scenario Viewer to view and interact with the scenario.

viewer1 = satelliteScenarioViewer(scenario);

The satellite points at nadir to begin the scenario. As it nears Target 1 in the Amazon Rainforest, it
slews to point and track this target.
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After the imaging segment is complete, the satellite returns to pointing at nadir.
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As the satellite comes into range of the arctic ground station, it slews to point at this target.
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Custom Gimbal Steering

This example shows how to import custom attitude data for a simple Earth Observation satellite
mission in MATLAB and Simulink, where the onboard camera is fixed to the satellite body. Another
common approach is to fix the sensor on a gimbal and orient the sensor by maneuvering the gimbal,
rather than the spacecraft body itself. Modify the above scenario to mount the sensor on a gimbal and
steer the gimbal to perform uniform sweeps of the area directly below the satellite.

Reset the satellite to always point at nadir, overwriting the previously provided custom attitude
profile.

delete(viewer1);
pointAt(sat, "nadir");

Delete the existing sensor object to remove it from the satellite and attach a new sensor with the
same properties to a gimbal.

delete(snsr);
gim = gimbal(sat);
snsr = conicalSensor(gim, MaxViewAngle=70, MountingLocation=[0 0 10]);
fieldOfView(snsr);

Define azimuth and elevation angles for gimbal steering to model a sweeping pattern over time below
the satellite.

gimbalSweep.Time = seconds(1:50:5000)';

gimbalSweep.Az = [...
    45*ones(1,7),...
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    45:-5:-45,...
    -45*ones(1,13),...
    -45:5:45,...
    45*ones(1,13),...
    45:-5:-45,...
    -45*ones(1,13)];
gimbalSweep.Az(end-2:end) = [];
gimbalSweep.Az = gimbalSweep.Az + 90;

gimbalSweep.El = [...
    0:-5:-30,...
    -30*ones(1,19),...
    -30:5:30,...
    30*ones(1,19),...
    30:-5:-30,...
    -30*ones(1,19),...
    -30:5:30];
gimbalSweep.El(end-2:end) = [];

Plot the commanded azimuth and elevation values over time.

figure(1)
hold on;
plot(gimbalSweep.Time', gimbalSweep.Az);
plot(gimbalSweep.Time', gimbalSweep.El);
hold off;
legend(["Az (deg)", "El (deg)"]);
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Store the azimuth and elevation angles in a timetable.

gimbalSweep.TT = timetable(gimbalSweep.Time, [gimbalSweep.Az', gimbalSweep.El']);

Steer the gimbal with the timetable. The gimbal returns to its default orientation for timesteps that
are outside of the provided data.

pointAt(gim, gimbalSweep.TT);

View the updated scenario in the Satellite Scenario Viewer.

viewer2 = satelliteScenarioViewer(scenario);
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Model-Based Systems Engineering for Space-Based
Applications

This example provides an overview of the CubeSat Model-Based System Engineering Project
template, available from the Simulink® start page, under Aerospace Blockset™. It demonstrates how
to model a space mission architecture in Simulink with System Composer™ and Aerospace Blockset
for a 1U CubeSat in low Earth orbit (LEO). The CubeSat's mission is to image MathWorks
Headquarters in Natick, Massachusetts at least once per day. The project references the Aerospace
Blockset CubeSat Simulation Project, reusing the vehicle dynamics, environment models, data
dictionaries, and flight control system models defined in that project.

This project demonstrates how to:

• Define system level requirements for a CubeSat mission in Simulink
• Compose a system architecture for the mission in System Composer
• Link system-level requirements to components in the architecture with Requirements Toolbox™
• Model vehicle dynamics and flight control systems with Aerospace Blockset
• Validate orbital requirements using mission analysis tools and Simulink Test™

Open the Project

To create a new instance of the CubeSat Model-Based System Engineering Project, select
Create Project in the Simulink start page. When the project is loaded, an architecture model for the
CubeSat opens.

open("asbCubeSatMBSEProject.sltx");
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Define System-level Requirements

Define a set of system-level requirements for the mission. You can import these requirements from
third-party requirement management tools such as ReqIF (Requirements Interchange Format) files or
author them directly in the Requirements Editor.

This example contains a set of system-level requirements stored in SystemRequirements.slreqx. Open
this requirement specification file in the Requirements Editor. Access the Requirements Editor
from the Apps tab or by double-clicking on SystemRequirements.slreqx in the project folder browser.

Our top level requirement for this mission is:

1 The system shall provide and store visual imagery of MathWorks headquarters [42.2775 N,
71.2468 W] once daily at 10 meters resolution.

Additional requirements are decomposed from this top-level requirement to create a hierarchy of
requirements for the architecture.
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Compose a System Architecture

System Composer enables the specification and analysis of architectures for model-based systems
engineering. Use the system-level requirements defined above to guide the creation of an
architecture model in System Composer. The architecture in this example is based on CubeSat
Reference Model (CRM) developed by the International Council on Systems Engineering (INCOSE)
Space Systems Working Group (SSWG) [1].
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The architecture is composed of components, ports, and connectors. A component is a part of a
system that fulfills a clear function in the context of the architecture. It defines an architectural
element, such as a system, subsystem, hardware, software, or other conceptual entity.

Ports are nodes on a component or architecture that represent a point of interaction with its
environment. A port permits the flow of information to and from other components or systems.
Connectors are lines that provide connections between ports. Connectors describe how information
flows between components in an architecture.

Extend the Architecture with Stereotypes and Interfaces

You can add additional levels of detail to an architecture using stereotypes and interfaces.

Stereotypes

Stereotypes extend the architectural elements by adding domain-specific metadata to each element.
Stereotypes are applied to components, connectors, ports, and other architectural elements to
provide these elements with a common set of properties such as mass, cost, power, etc.

Packages of stereotypes used by one or more architectures are stored in profiles. This example
includes a profile of stereotypes called CubeSatProfile.xml. To view, edit, or add new stereotypes to
the profile, open this profile in the Profile Editor from the Modeling Tab.

This profile defines a set of stereotypes that are applied to components and connectors in the
CubeSat architecture.
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Stereotypes can also inherit properties from abstract base stereotypes. For example,
BaseSCComponent in the profile above contains properties for size, mass, cost, and power demand.
We can add another stereotype to the profile, CubeSatTotal, and define BaseSCComponent as its
base stereotype. CubeSatTotal adds in its own property, nominalVoltage, but also inherits
properties from its base stereotype.
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In the architecture model, apply the CubeSatTotal stereotype to CubeSat system component
(asbCubeSatArchModel/CubeSat Mission Enterprise/Space Segment/CubeSat). Select
the component in the model. In the Property Inspector, select the desired stereotype from the drop-
down window. Next, set property values for the CubeSat component.
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Interfaces

Data interfaces define the kind of information that flows through a port. The same interface can be
assigned to multiple ports. A data interface can be composite, meaning that it can include data
elements that describe the properties of an interface signal. Create and manage interfaces from the
Interface Editor. Existing users of Simulink can draw a parallel between interfaces in System
Composer and buses in Simulink. In fact, buses can be used to define interfaces (and vice versa). For
example, the data dictionary asbCubeSatModelData.sldd contains several bus definitions, including
ACSOutBus, that can be viewed in the Interface Editor and applied to architecture ports.
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Visualize the System with Architecture Views

Now that we have implemented our architecture using components, stereotypes, ports, and
interfaces, we can visualize our system with an architecture view. In the Modeling Tab, select Views.

Use the Component Hierarchy view to show our system component hierarchy. Each component also
lists its stereotype property values and ports.
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You can also view the hierarchy at different depths of the architecture. For example, navigate to the
Power System Plant component of the architecture by double-clicking the component in the View
Browser.
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Link Requirements to Architecture Components

To link requirements to the architectural elements that implement them, use the Requirements
Manager. Drag the requirement onto the corresponding component, port, or interface. Using this
linking mechanism, we can identify how requirements are met in the architecture model. The column
labeled "Implemented" in the Requirements Manager shows whether a textual requirement has
been linked to a component in the given model. For example, our top-level requirement "Provide
visual imagery" is linked to our top-level component CubeSat Mission Enterprise with
decomposed requirements linked to respective decomposed architectural components.
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Connecting the Architecture to Design Models

As the design process matures through analysis and other systems engineering processes, we can
begin to populate our architecture with dynamics and behavior models. System Composer is built as a
layer on top of Simulink, which enables Simulink models to be directly referenced from the
components we have created. We can then simulate our architecture model as a Simulink model and
generate results for analysis. For example, the GNC subsystem component contains 3 Simulink
model references that are part of the CubeSat Simulation Project.

Double-click these reference components to open the underlying Simulink models. Notice that the
interfaces defined in the architecture map to bus signals in the Simulink model.
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This example uses the Spacecraft Dynamics block from Aerospace Blockset to propagate the
CubeSat orbit and rotational states.
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Simulate System Architecture to Validate Orbital Requirements

We can use simulation to verify our system-level requirements. In this scenario, our top level
requirement states that the CubeSat onboard camera captures an image of MathWorks Headquarters
at [ 42.2775 N, 71.2468 W] once daily at 10 meters resolution. We can manually validate this
requirement with various mission analysis tools. For examples of these analyses, click on the project
shortcuts Analyze with Mapping Toolbox and Analyze with Satellite Scenario.
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The satellite scenario created in the Analyze with Satellite Scenario shortcut example is shown above.

Validate Orbital Requirements using Simulink Test

Although we can use MATLAB to visualize and analyze the CubeSat behavior, we can also use
Simulink Test to build test cases. This test case automates the requirements-based testing process by
using the testing framework to test whether our CubeSat orbit and attitude meet our high-level
requirement. The test case approach enables us to create a scalable, maintainable, and flexible
testing infrastructure based on our textual requirements.

This example contains a test file systemTests.mldatx. Double-click this file in the project folder
browser to view it in the Test Manager. Our test file contains a test to verify our top-level
requirement. The "Verify visual imagery" testpoint is mapped to the requirement "Provide visual
imagery" and defines a MATLAB function to use as custom criteria for the test. While this test case is
not a comprehensive validation of our overall mission, it is useful during early development to
confirm our initial orbit selection is reasonable, allowing us to continue refining and adding detail to
our architecture.
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Run the test point in the Test Manager and confirm that the test passes. Passing results indicate that
the CubeSat onboard camera as visibility to the imaging target during the simulation window.
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Related Examples
• “CubeSat Simulation Project” on page 2-66
• “Compose and Analyze Systems Using Architecture Models” (System Composer)
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High Precision Orbit Propagation of the International Space
Station

This example shows how to propagate the orbit of the International Space Station (ISS) using high
precision numerical orbit propagation with Aerospace Blockset™. It uses the Orbit Propagator block
to calculate the ISS trajectory for 24 hours. The example then compares position and velocity states
to publicly available ISS trajectory data available from NASA Trajectory Operations and Planning
(TOPO) flight controllers at Johnson Space Center.

The Orbit Propagator block models translational dynamics of spacecraft using numerical integration.
It computes the position and velocity of one or more spacecraft over time. For the most accurate
results, use a variable step solver with low tolerance settings (less than 1e-9). Depending on your
mission requirements, you can increase speed by using larger tolerances. Doing so might impact the
accuracy of the solution. To propagate orbital states, the block uses the gravity model selected for the
current central body. The block also includes atmospheric drag (for Earth orbits), and external
perturbing accelerations provided as inputs to the block.

In this example, use ISS International Celestial Reference Frame (ICRF) position and velocity states
directly from the referenced NASA public distribution file [1] to initialize an ISS orbit in the Orbit
Propagator block. Use the EGM2008 spherical harmonic gravity model to model Earth's gravity, and
the NRLMSISE-00 atmospheric model to compute atmospheric drag. Calculate third body gravity
perturbations (for the Moon, Sun, and other planets in the solar system) and solar radiation pressure
(SRP) outside of the Orbit Propagator block and pass the results into the block as external applied
accelerations. Run the model for 24 hours, and compare against the published NASA trajectory data.

Set Mission Initial Conditions

This example uses MATLAB® structures to organize mission data. These structures make accessing
data later in the example more intuitive. They also help declutter the global base workspace.

The referenced ISS ephemeris data file [1] provided by NASA begins on January 3, 2022 at
12:00:00.000 UTC.

mission.StartDate = datetime(2022, 1, 3, 12, 0, 0);
mission.Duration  = hours(24);

The file contains ICRF position (km) and velocity (km/s) data sampled every 4 minutes.

iss.X0_icrf = [-1325.896391725290 5492.890955896010 3762.423747679220]; % km
iss.V0_icrf = [-4.87470128630892  -4.10251688094599 4.26428812476909];  % km/s

It also contains mass (kg), drag area (m^2), and drag coefficient data corresponding with the epoch.

iss.Mass      = 459023.0; % kg
iss.DragArea  = 1951.0;   % m^2
iss.DragCoeff = 2.0;

The file also includes solar radiation area (m^2) and a solar radiation coefficient; however these
values are zero because SRP is not prominent in low Earth orbit (LEO) where the ISS operates.
Despite their trivial impact on the resultant trajectory, we will include solar radiation pressure
calculations in this example to fully demonstrate high precision orbit propagation. SRP is more
prominent at higher orbital regimes.
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iss.SRPArea  = 1500;         % m^2
iss.SRPCoeff = 1.8;
iss.P_sr     = 4.5344321e-6; % N/m^2

High Precision Orbit Propagation Algorithm

This example performs high precision numerical orbit propagation using Cowell's method. In the
inertial (ICRF) frame, Earth's gravitational acceleration is summed with all acceleration perturbations
and double-integrated to find velocity and position at each time step of the simulation.

a icrf = agravity + adrag + a3rd body + asrp

a icrf integrate
v icrf, r icrf

where:

agravity is the acceleration due to Earth gravity.

adrag is the acceleration due to atmospheric drag.

a3rd body = aMoon + aSun + aMercury + aVenus + aMars + a Jupiter + aSaturn + aUranus + aNeptune is the
acceleration due to gravity of the Moon, Sun, and planets of the solar system.

asrp is the acceleration due to solar radiation pressure.

Earth Gravity

The gravity model for Earth in this example is the EGM2008 spherical harmonic gravity model. This
model accounts for zonal, sectoral, and tesseral harmonics. For reference, the second-degree zeroth
order zonal harmonic J2, which accounts for the oblateness of Earth, is −C2, 0. Spherical Harmonic
models accounts for harmonics up to max degree l = lmax. For EGM2008, lmax = 2159 .

Spherical harmonic gravity is computed in the fixed frame (ff) coordinated system (International
Terrestrial Reference Frame (ITRF), in the case of Earth). Numerical integration, however, is always
performed in the inertial ICRF coordinate system. Therefore, at each timestep, position and velocity
states are transformed into the fixed-frame, gravity is calculated in the fixed-frame, and the resulting
acceleration is transformed into the inertial frame.

agravity = − μ
r3ricrf + ff2icrf anonspherical

where:

anonspherical = 1
r
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given the following partial derivatives in spherical coordinates:

∂
∂r U = − μ

r2 ∑
l = 2

lmax
∑

m = 0

l Rcb
r

l
l + 1 Pl, m sin ϕ Cl, mcos mλ + Sl, msin mλ

∂
∂ϕ U = μ

r ∑l = 2

lmax
∑

m = 0

l Rcb
r

l
Pl, m + 1 sin ϕ − m tan ϕ Pl, m sin ϕ Cl, mcos mλ + Sl, msin mλ

∂
∂λ U = μ

r ∑l = 2

lmax
∑

m = 0

l Rcb
r

l
m Pl, m sin ϕ Sl, mcos mλ − Cl, msin mλ

Pl, m are associated Legendre functions.

Cl, m and Sl, m are the unnormalized harmonic coefficients.

Atmospheric Drag

The Orbit Propagator block supports inclusion of acceleration due to atmospheric drag using the
NRLMSISE-00 atmosphere model. Atmospheric drag is a dominant perturbation in LEO and causes
the ISS orbit to degrade over time without assistance from orbital maneuvers.

Atmospheric drag is calculated as:

adrag = − 1
2ρ

CDAD
m vrel

2

where:

ρ is the atmospheric density.

CD is the spacecraft drag coefficient.

AD is the spacecraft drag area, or the area normal to vrel.

m is the spacecraft mass.

v rel = v icrf − Ω × r icrf is the spacecraft velocity relative to the atmosphere.

The NRLMSISE-00 model is used to calculate atmospheric density. It requires space weather data
(F10.7 and F10.7A radio flux values and geomagnetic indices) which can be obtained from NOAA, or
in a consolidated format from Celestrak. For more information on the NRLMSISE-00 model, visit the
NRLMSISE-00 Atmospheric Model block reference page or the Aerospace Toolbox
atmosnrlmsise00 function reference page.

Third Body Gravity

Third body gravity is included in orbit propagation by passing the summed accelerations due to each
celestial body into the Orbit Propagator block using the Applied Acceleration (Aicrf) port. Gravity for
each body is calculated as (example shown for Sun):

a⊙ = μ⊙
r sat, ⊙
rsat, ⊙

3 −
r ⊕ , ⊙
r ⊕ , ⊙

3

 High Precision Orbit Propagation of the International Space Station

9-187



where:

μ⊙ is the gravitational parameter of the Sun.

r sat, ⊙  is the vector from the spacecraft to the center of the Sun, based on JPL DE405 planetary
ephemeris data. For more information about planetary ephemerides, visit the Planetary Ephemeris
block reference page or the Aerospace Toolbox planetEphemeris function reference page.

r ⊕ , ⊙  is the vector from the center of Earth to the center the Sun, based on JPL DE405 ephemeris
data.

Solar Radiation Pressure

Solar radiation pressure has a minimal impact on orbit propagation in LEO, however the calculations
are included in this example for completeness. Solar radiation pressure is calculated as:

asrp = − ν
CrAs

m
psr

rsat, ⊙
3 r sat, ⊙

where:

ν is the shadow fraction. The value is equal to 0 in umbra, is between 0 and 1 in penumbra, and is
otherwise equal to 1. Eclipse models of varying levels of fidelity can be used to determine this value
depending on the mission requirements.

Cr is the reflectivity coefficient.

As is the spacecraft SRP area, or the cross-sectional area seen by the Sun.

m is the spacecraft mass.

psr = 1353
3e8

W /m2
m/s = 4 . 5344321e−6 N

m2  is the solar flux radiation pressure. This value corresponds with

the solar flux at 1AU divided by the speed of light.

r sat, ⊙  is the vector from the spacecraft to the center the Sun, based on JPL DE405 ephemeris data.

Open the Orbit Propagation Model

Open the included Simulink® model. This model contains an Orbit Propagator block connected to
root-level outport blocks and 3 subsystem blocks used to model perturbing accelerations. The model
also includes a "Mission analysis / visualization" section that contains a dashboard Callback button.
When clicked, this button runs the model, creates a new satelliteScenario object in the base
workspace containing the spacecraft defined in the Orbit Propagator block, and opens a Satellite
Scenario Viewer window. To view the source code for this action, double-click the callback button.
The "Mission analysis / visualization" section is a standalone workflow to create a new
satelliteScenario object and is not used as part of this example.

mission.mdl = "ISSHighPrecisionOrbitPropagationExampleModel";
open_system(mission.mdl);
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Configure the Simulink Model

Define the path to the Orbit Propagator block in the model.

iss.blk = mission.mdl + "/High Precision Numerical Orbit Propagator";

Set spacecraft initial conditions in the Simulink property inspector, or programmatically using
set_param.

set_param(iss.blk, ...
    startDate = string(juliandate(mission.StartDate)), ...
    stateFormatNum = "ICRF state vector", ...
    inertialPosition = mat2str(iss.X0_icrf), ...
    inertialVelocity = mat2str(iss.V0_icrf));

Set spacecraft physical properties in the Orbit Propagator block.

set_param(iss.blk, ...
    mass = string(iss.Mass), ...
    dragCoeff = string(iss.DragCoeff), ...
    dragArea = string(iss.DragArea));

Set spacecraft physical properties in the Perturbations section.

mission.srpBlk = mission.mdl + "/Solar Radiation Pressure";
set_param(mission.srpBlk + "/SRPCoeff", Value=string(iss.SRPCoeff));
set_param(mission.srpBlk + "/SRPArea",  Value=string(iss.SRPArea));
set_param(mission.srpBlk + "/Mass",     Value=string(iss.Mass));

Apply model-level solver setting and save model output port data as a dataset of timetable objects.

set_param(mission.mdl, ...
    SolverType = "Variable-step", ...
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    SolverName = "VariableStepAuto", ...
    RelTol = "1e-12", ...
    AbsTol = "1e-12", ...
    StopTime = string(seconds(mission.Duration)), ...
    SaveOutput = "on", ...
    OutputSaveName = "yout", ...
    SaveFormat = "Dataset", ...
    DatasetSignalFormat = "timetable");

Run the Model and Collect Ephemerides

Simulate the model. The Orbit Propagator block is configured to output position and velocity states in
the ICRF coordinate frame. The simulation might take several minutes to run due to the strict
tolerance settings we applied to the model in the previous section (1e-12).

mission.SimOutput = sim(mission.mdl);

Extract position and velocity data from the model output data structure.

iss.EphPosICRF = mission.SimOutput.yout{1}.Values;
iss.EphVelICRF = mission.SimOutput.yout{2}.Values;

Set the start data from the mission in the timetable object to convert the Time row from duration to
datetime.

iss.EphPosICRF.Properties.StartTime = mission.StartDate;
iss.EphPosICRF.Time.TimeZone = "UTC";
iss.EphVelICRF.Properties.StartTime = mission.StartDate;
iss.EphVelICRF.Time.TimeZone = "UTC";

Import Ephemerides into a satelliteScenario Object

Create a satellite scenario object.

scenario = satelliteScenario;

Add the spacecraft to the satelliteScenario as ICRF position and velocity timetable objects
using the satellite method.

iss.EphPosICRF_m = iss.EphPosICRF;
iss.EphPosICRF_m.Data = iss.EphPosICRF.Data*1e3;
iss.EphVelICRF_mps = iss.EphVelICRF;
iss.EphVelICRF_mps.Data = iss.EphVelICRF.Data*1e3;
iss.obj = satellite(scenario, iss.EphPosICRF_m, iss.EphVelICRF_mps, ...
    CoordinateFrame="inertial", Name="ISS");

The start and stop time of the scenario are automatically adjusted to reflect the start and stop time of
the timetable objects.

disp("Start: " + string(scenario.StartTime)); disp("Stop:  " + string(scenario.StopTime));

Start: 03-Jan-2022 12:00:00
Stop:  04-Jan-2022 12:00:00

Open the Satellite Scenario Viewer.

satelliteScenarioViewer(scenario);
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Load the Reference Trajectory and Compare to the Calculated Trajectory

Load ISS trajectory data from Reference [1].

iss.RefEphemeris = load("ISS_ephemeris.mat", "pos_eme2000", "vel_eme2000");

Resample the simulation data to match the 4-minute sample rate of the reference trajectory.

iss.EphPosICRF = retime(iss.EphPosICRF, iss.RefEphemeris.pos_eme2000.Time);
iss.EphVelICRF = retime(iss.EphVelICRF, iss.RefEphemeris.vel_eme2000.Time);

Plot the position error between the simulation data and the reference trajectory.

plot(iss.EphPosICRF.Time, iss.EphPosICRF.Data - iss.RefEphemeris.pos_eme2000.Position);
title("ISS High Precision Trajectory Position Error");
xlabel("Time");
ylabel("Position Error (km)");
legend(["\DeltaX_{icrf}","\DeltaY_{icrf}","\DeltaZ_{icrf}"], Location="northwest");
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The maximum error between the simulation and the reference data over 24 hours is below 0.25km.

plot(iss.EphPosICRF.Time, vecnorm(iss.EphPosICRF.Data - iss.RefEphemeris.pos_eme2000.Position, 2, 2));
title("ISS High Precision Trajectory Position Error Magnitude");
xlabel("Time");
ylabel("Position Error (km)");
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Compare High Precision Trajectory to Analytical Propagation

For comparison, add a new spacecraft to the satellite scenario using Two-Body-Keplerian
propagation.

Convert initial position and velocity to orbital elements.

[iss.OrbEl.SemiMajorAxis, ...
    iss.OrbEl.Eccentricity, ...
    iss.OrbEl.Inclination, ...
    iss.OrbEl.RAAN, ...
    iss.OrbEl.ArgPeriapsis, ...
    iss.OrbEl.TrueAnomaly] =  ijk2keplerian(iss.X0_icrf*1e3, iss.V0_icrf*1e3);

Add a new ISS object to the scenario using Two-Body-Keplerian propagation.

iss.KeplerianOrbit.obj = satellite(scenario, iss.OrbEl.SemiMajorAxis, ...
    iss.OrbEl.Eccentricity, iss.OrbEl.Inclination, iss.OrbEl.RAAN, ...
    iss.OrbEl.ArgPeriapsis, iss.OrbEl.TrueAnomaly, ...
    OrbitPropagator="two-body-keplerian", ...
    Name="ISS Keplerian");
iss.KeplerianOrbit.obj.MarkerColor = "magenta";
iss.KeplerianOrbit.obj.Orbit.LineColor = "magenta";
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For comparison, plot the maximum error using Keplerian two body propagation.

[iss.KeplerianOrbit.EphPosICRFData, ~, ...
    iss.KeplerianOrbit.TimeSteps] = states(iss.KeplerianOrbit.obj, CoordinateFrame="inertial");
iss.KeplerianOrbit.EphPosICRF = retime(timetable(iss.KeplerianOrbit.TimeSteps', iss.KeplerianOrbit.EphPosICRFData', VariableNames="Data"), ...
    iss.RefEphemeris.pos_eme2000.Time);
plot(iss.EphPosICRF.Time, iss.KeplerianOrbit.EphPosICRF.Data/1e3 - iss.RefEphemeris.pos_eme2000.Position);
title("ISS Two Body Keplerian Position Error");
xlabel("Time");
ylabel("Position Error (km)");
legend(["\DeltaX_{icrf}","\DeltaY_{icrf}","\DeltaZ_{icrf}"], Location="northwest");
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The maximum error between the Two-Body-Keplerian propagation and the reference data over 24
hours approaches exceeds 450km, compared to less than 0.25km for the high precision numerical
propagation simulation.

plot(iss.EphPosICRF.Time, vecnorm(iss.KeplerianOrbit.EphPosICRF.Data/1e3 - iss.RefEphemeris.pos_eme2000.Position, 2, 2));
title("ISS Two Body Keplerian Position Error Magnitude");
xlabel("Time");
ylabel("Position Error (km)");
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Convert Pressure

Convert pressure from psi to Pa.

Open the model.

mdl = "ConvertPressurePsiToPa";
open_system(mdl);

Simulate the model.

sim(mdl);
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Fly the De Havilland Beaver with Unreal Engine Visualization

This example shows how to model the De Havilland Beaver using Simulink® and Aerospace
Blockset™ software with Unreal Engine® (UE) visualization. It also shows how to use a pilot's
joystick to fly the De Havilland Beaver in either the Airport or Griffiss Airport scenes.

The De Havilland Beaver model includes airframe dynamics and aerodynamics. Effects of the
atmosphere are also modeled, such as wind profiles for the landing phase.

The “Fly the De Havilland Beaver” on page 9-7 example interfaces with the FlightGear flight
simulator. This example explores the use of UE visualization.

Explore UE Visualization

To begin the conversion, open the De Havilland Beaver Airframe > Aircraft Dynamics subsystem
and add the pilot commands to ACBus so that the control surface movements can be included in the
visualization.

Replace the three animation and FlightGear blocks on the right side of the model with a single
subsystem called UE Visualization that takes the ACBus as input.
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In the new UE Visualization subsystem, add a Simulation 3D Aircraft block first, and then the
Simulation 3D Scene Configuration block. Double-click the aircraft block and clear Enable
altitude sensor in the Altitude Sensor tab, then click OK.

Connect the ACBus input to a bus selector and configure it to output Xe (body location), [phi,
theta, psi] (body rotation), and Pilot (actuator commands). Send that data to the translation and
rotation subsystems as shown below.
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The Sky Hogg aircraft type represents the De Havilland Beaver, although it is a smaller and less
massive airframe than the Beaver. To properly visualize the Beaver, create a skeletal mesh for it using
the General Aviation skeleton and import that FBX file imported into Unreal Editor®. For more
details, see “Prepare Custom Aircraft Mesh for the Unreal Editor” on page 4-33 and General Aviation.

To place the aircraft in a better location in the Airport and Griffiss Airport maps, the UE Translation
Subsystem adds an offset to the body location.

The Translation and Rotation inputs to the Simulation 3D Aircraft block are sized as [11x3] as
required for the Sky Hogg aircraft type. The following table shows what part of the aircraft each of
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these affect. Note that, other than the body, only one rotation of the six degrees of freedom is enabled

for each part. 

The UE Rotation Subsystem assembles the [11x3] rotation matrix using the body rotations as well
as pilot actuator commands for the propeller RPM, rudder, elevator, left and right ailerons, and flaps.

Open the model.

mdl = "asbdhc2_FlyBeaverUE";
open_system(mdl);

Fly

Before running the model, note that Simulation Pacing has been turned on so that the simulation
clock matches the wall clock.
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• Make sure your joystick is connected.
• Click the Run button, then allow a few seconds for the 3D visualization window to initialize.
• Use the joystick to fly the aircraft. Make a left turn to fly towards the airport.
• Once it is simulating, you can switch between camera views by first left-clicking inside the 3D

window, then using the keys 0 through 9 to choose between ten preconfigured camera positions.
For flight simulation, views 2 (behind) and 5 (cockpit) are the most useful. For more information
on camera views, see the Run Simulation section in “Customize Scenes Using Simulink and
Unreal Editor” on page 4-6.

To fly in the Griffiss Airport scene, double-click the Simulation 3D Scene Configuration block to
open its mask, and set the Scene source to Unreal Editor. Enter the Project location (i.e., the
location to which you save the AutoVrtlEnv.uproject file from the support package), then click
the Open Unreal Editor button and close the mask. Once Unreal Editor opens, change the map to
Griffiss Airport (find the folder MathWorksAerospaceContent Content > Maps and double-click
GriffissAirport).

Click the Run button, and once the model has compiled and "Initializing" is displaying on the bottom
bar, press the Play button in Unreal Editor. Allow a few seconds for the connection to be made and
simulation to begin.
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See Also
Simulation 3D Aircraft | Simulation 3D Scene Configuration

Related Examples
• Visualization Techniques with Aerospace Blockset Video
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Aerospace Units Appendix
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Aerospace Units
The main blocks of the Aerospace Blockset library support standard measurement systems. The Unit
Conversion blocks support all units listed in this table.

Quantity Metric (MKS) English
Acceleration meters/second2 (m/s2), kilometers/

second2 (km/s2), (kilometers/hour)/
second (km/h-s), g-unit (g)

inches/second2 (in/s2), feet/second2

(ft/s2), (miles/hour)/second (mph/s), g-
unit (g)

Angle radian (rad), degree (deg), revolution radian (rad), degree (deg), revolution
Angular acceleration radians/second2 (rad/s2), degrees/

second2 (deg/s2), revolutions/minute
(rpm), revolutions/second (rps)

radians/second2 (rad/s2), degrees/
second2 (deg/s2), revolutions/minute
(rpm), revolutions/second (rps)

Angular velocity radians/second (rad/s), degrees/
second (deg/s), revolutions/minute
(rpm)

radians/second (rad/s), degrees/
second (deg/s), revolutions/minute
(rpm)

Density kilogram/meter3 (kg/m3) pound mass/foot3 (lbm/ft3), slug/foot3

(slug/ft3), pound mass/inch3 (lbm/in3)
Force newton (N) pound (lb)
Inertia kilogram-meter2 (kg-m2) slug-foot2 (slug-ft2)
Length meter (m) inch (in), foot (ft), mile (mi), nautical

mile (nm)
Mass kilogram (kg) slug (slug), pound mass (lbm)
Pressure Pascal (Pa) pound/inch2 (psi), pound/foot2 (psf),

atmosphere (atm)
Temperature kelvin (K), degrees Celsius (oC) degrees Fahrenheit (oF), degrees

Rankine (oR)
Torque newton-meter (N-m) pound-feet (lb-ft)
Velocity meters/second (m/s), kilometers/

second (km/s), kilometers/hour
(km/h)

inches/second (in/s), feet/second
(ft/s), feet/minute (ft/min), miles/hour
(mph), knots
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